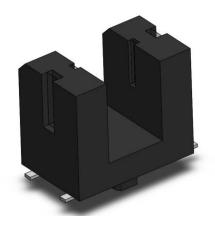
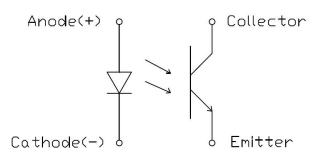


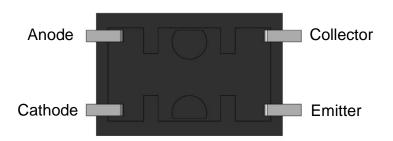
Features

- High reliability
- Gap width = 3mm
- Slit width = 0.45mm
- Good spectral matching to Si photo detector
- RoHS compliance


Description

The PIT3005S-01 is a transmissive type photo-interrupter which consist of an infrared emitting diode and an NPN silicon photo-transistor.


Applications


- Infrared sensor
- Printers
- Switch scanner

Package Outline

Schematic

Absolute Maximum Rating at 25°C

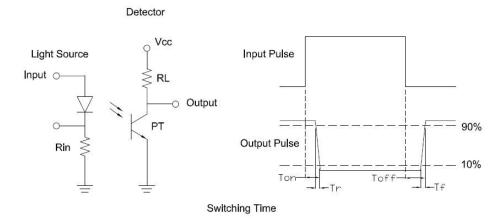
Symbol	Parameters	Ratings	Units	Notes	
Topr	Operating Temperature	-25 ~ +80	°C		
T _{stg}	Storage Temperature	-40 ~ +85	°C		
T _{sol}	Soldering Temperature	260	٥C	1	
Emitter					
I _F	Continuous Forward Current	50	mA		
V _R	Reverse Voltage	5	V		
P _D	Power Dissipation at(or below) 25°C Free Air Temperature	80	mW		
Detector					
Pc	Collector Power Dissipation	75	mW		
Ic	Collector Current	20	mA		
B _{VCEO}	Collector-Emitter Voltage	30	V		
Bveco	Emitter-Collector Voltage	5	V		

Electro-Optical Characteristics TA = 25°C (unless otherwise specified)

Emitter Characteristics

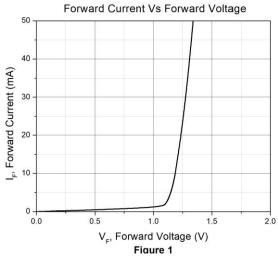
Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
V Familiary Valters		I _F =20mA	1.00	1.25	1.50	V	
VF	Forward Voltage	I _F =50mA	1.10	1.35	1.60	V	
I _R	Reverse Current	V _R =5V	-	-	10	μΑ	
λр	Peak Wavelength	I _F =20mA	-	940	-	nm	

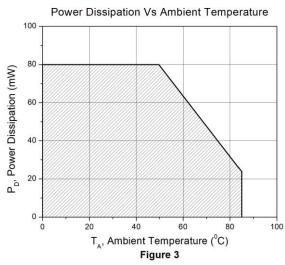
Detector Characteristics

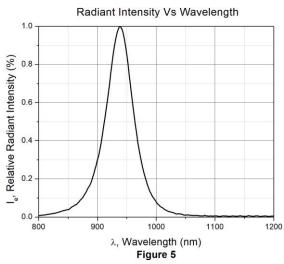

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
B _{VCEO}	Collector-Emitter Breakdown	Ic=100μA	35	-	-	V	
B _{VECO}	Emitter-Collector Breakdown	I _E =100μA	5	-	-	V	
I _{CEO}	Dark Current	V _{CE} =20V	-	-	100	nA	

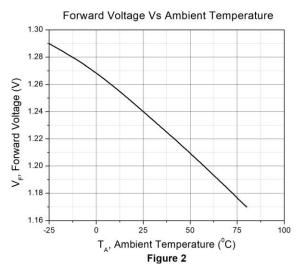
Transfer Characteristics

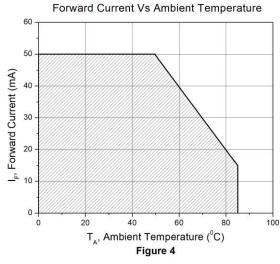
Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
Ic	Collect Current	V _{CE} =5V, I _F =20mA	0.5	-	5.0	mA	
V _{CE(sat)}	C-E Saturation Voltage	I _F =20mA, I _C =1.6mA	-	-	0.4	V	
tr	Rise Time	V _{CE} =5V, I _C =1mA	-	17	-		2
t _f	Fall Time	$R_L=1k\Omega$	-	17	-	μs	2

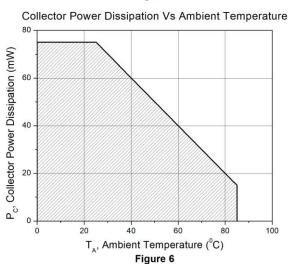

Notes:

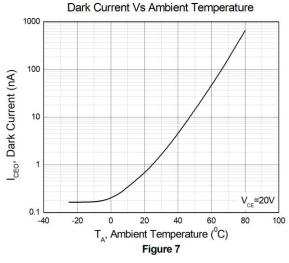

- 1 : Soldering time $\leq\!\!5$ seconds.
- 2 : Test circuit:

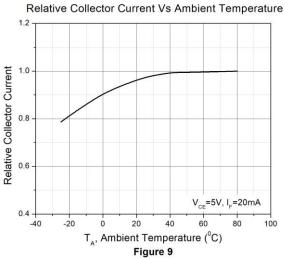


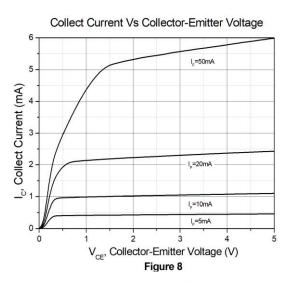


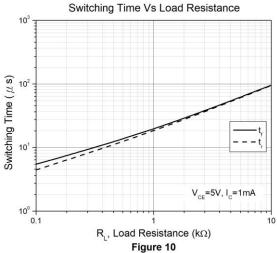

Typical Characteristic Curves



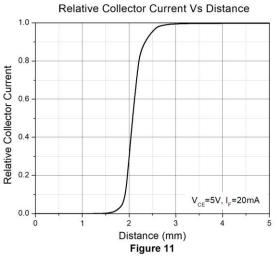


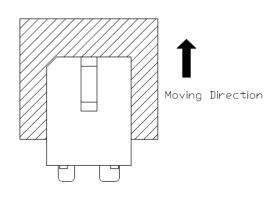


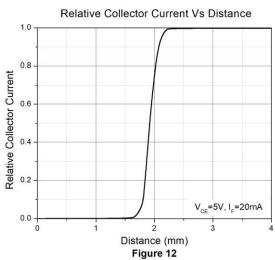


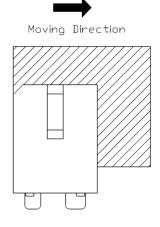


Typical Characteristic Curves

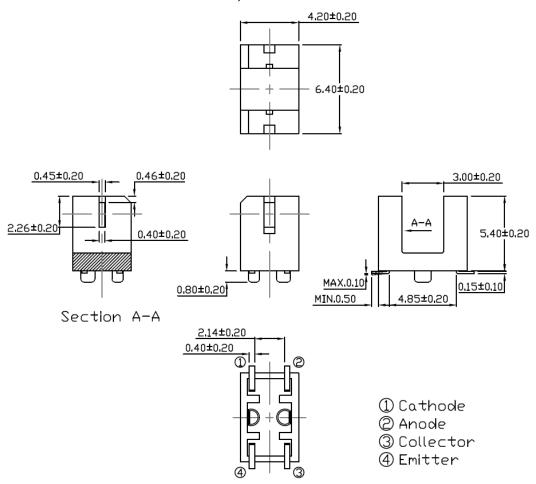


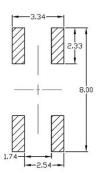






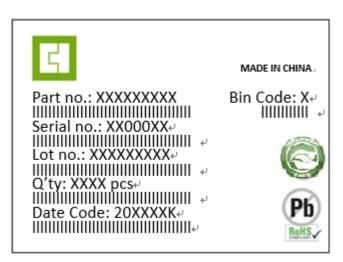
Typical Characteristic Curves





Package Dimension All dimensions are in mm, unless otherwise stated.

Recommended Soldering Footprint All dimensions are in mm, unless otherwise stated



Ordering Information

Part Number	Description	Quantity
PIT3005S-01	1 Reel	200 Pcs

Label Form Specification

Part no: CTM Production Number

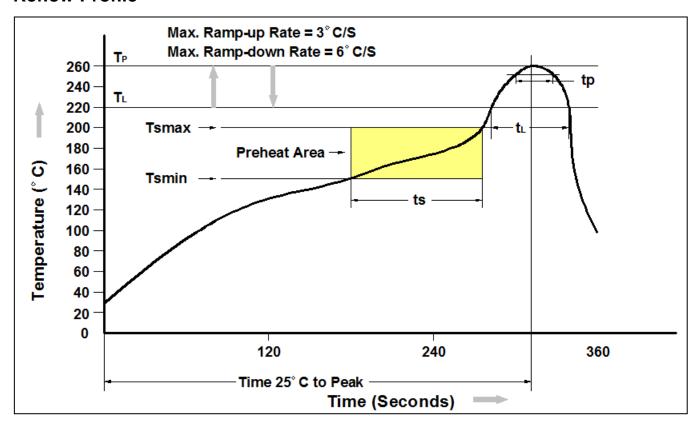
Serial no: Production Number

Lot no: Lot number

Q'ty: Packing Quantity

Date Code: Manufacture Date

Bin Code: Ic Ranks


MADE IN CHINA: Production Place

Storage Condition

- 1. Do not open moisture proof bag before the products are ready to use.
- 2. The moisture barrier bag should be stored at 40°C and 90%R.H. max. before opening. Shelf life of non-opened bag is 12 months after the bag sealing date.
- 3. After opening the moisture barrier bag floor life is 72h at 30°C/60%RH. max. Unused LEDs should be resealed into moisture barrier bag. (Refer to J-STD-020 Standard)
- 4. If the moisture absorbent material has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the J-STD-033 Standard conditions.

Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t∟ to t⊳)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max
Time 25°C to Peak Temperature	8 minutes max.

DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.