




## SMT Planar Transformers For Applications up to 160 Watts



- Designed to operate between 200 kHz and 700 kHz with a nominal 48 V input.
- High efficiency; excellent DCR; very low leakage inductance; 1500 Vrms, one minute primary to secondary isolation.
- Provides 0.009" (0.229 mm) clearance above the seating plane
- · May be special ordered with an auxiliary winding

Core material Ferrite

Terminations Matte tin over nickel over brass

Weight 12.0 - 12.8 g

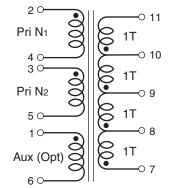
Ambient temperature -40°C to +125°C

Storage temperature Component: -40°C to +125°C.

Tray packaging: -40°C to +80°C

Resistance to soldering heat Max three 40 second reflows at +260°C, parts cooled to room temperature between cycles

Moisture Sensitivity Level (MSL) 1 (unlimited floor life at <30°C / 85% relative humidity)

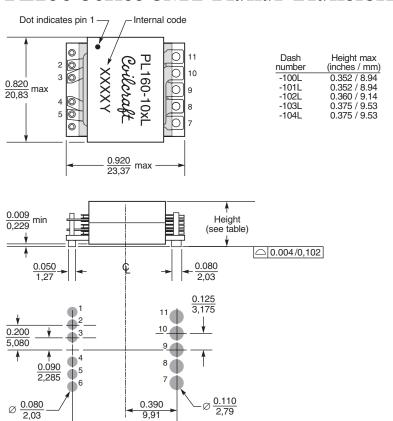

Failures in Time (FIT) / Mean Time Between Failures (MTBF) 38 per billion hours / 26,315,789 hours, calculated per Telcordia SR-332 Packaging 36 per tray

PCB washing Tested with pure water or alcohol only. For other solvents, see Doc787\_PCB\_Washing.pdf

| Part                | Primary<br>turns |                | Primary inductance <sup>2</sup> | Leakage inductance <sup>3</sup> | DCR max (mOhms)           |                           |                        | Volt-time<br>product typ5 | Height<br>max |
|---------------------|------------------|----------------|---------------------------------|---------------------------------|---------------------------|---------------------------|------------------------|---------------------------|---------------|
| number <sup>1</sup> | N <sub>1</sub>   | N <sub>2</sub> | min (µH)                        | max (µH)                        | Primary (N <sub>1</sub> ) | Primary (N <sub>2</sub> ) | Secondary <sup>4</sup> | ˙ (Vµsec)˙                | (in/mm)       |
| PL160-100L          | 4                | 4              | 246                             | 0.35                            | 14.7                      | 14.7                      | 6.8                    | 150                       | 0.352 / 8.94  |
| PL160-101L          | 4                | 5              | 312                             | 0.40                            | 14.7                      | 18.5                      | 6.8                    | 168                       | 0.352 / 8.94  |
| PL160-102L          | 5                | 5              | 378                             | 0.45                            | 18.5                      | 18.5                      | 6.8                    | 187                       | 0.360 / 9.14  |
| PL160-103L          | 5                | 6              | 449                             | 0.55                            | 18.5                      | 21.5                      | 6.8                    | 206                       | 0.375 / 9.53  |
| PL160-104L          | 6                | 6              | 534                             | 0.55                            | 21.5                      | 21.5                      | 6.8                    | 224                       | 0.375 / 9.53  |

- 1. To order a transformer with an optional auxiliary winding, add an "X" and the turn count after the PL160, e.g. PL160X3-100LB.
  - Turn counts of 2, 3, 4, 5, 7 and 9 are available for the auxiliary winding. Transformers with auxiliary windings are not stocked.
- 2. Inductance measured on an Agilent/HP 4284 at 200 kHz, 0.5 Vrms, 0 Adc between pins 2 and 5 with pins 3 and 4
- 3. Leakage inductance measured at 200 kHz, 0.5 Vrms, 0 Adc between pins 2 and 5, with pins 3 and 4 connected, and with all secondary pins shorted.
- 4. DCR for secondary is measured between pins 7 and 11.
- 5. Volt-time product is based on primary windings connected in series.
- 6. Electrical specifications at 25°C.

Refer to Doc 362 "Soldering Surface Mount Components" before soldering.










## **PL160 Series SMT Planar Transformers**





0.800



Dimensions are in  $\frac{\text{inches}}{mm}$