




# CWave® Ultra Wideband Coax AFE



**Datasheet** 

111-00004-01[8/13/14]



The information in this document is believed to be accurate and reliable. Pulse~LINK assumes no responsibility for any consequences arising from the use of this information, nor from any infringement of patents or the rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or other rights of Pulse~LINK. The information in this publication replaces and supersedes all information previously supplied, and is subject to change without notice. The customer is responsible for assuring that proper design and operating safeguards are observed to minimize inherent and procedural hazards. Pulse~LINK assumes no responsibility for applications assistance or customer product design.

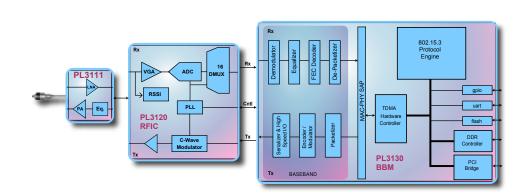
Pulse~LINK assumes no responsibility for applications assistance or customer product design. The devices described in this document are not authorized for use in medical, life-support equipment, or any other application involving a potential risk of severe property or environmental damage, personal injury, or death without prior express written approval of Pulse~LINK. Any such use is understood to be entirely at the user's risk.

Pulse~LINK is a registered trademark of Pulse~LINK, Incorporated.

Sales and corporate contact information can be found in the back of this document.



# PL3111 CWAVE® ULTRA WIDEBAND COAX AFE


### PL3111 CWave® Ultra-Wideband Low Noise Analog Front End Coax Cable Amplifier

The PL3111 CWave Ultra-Wideband (UWB) Analog Front End (AFE) is an integral part of Pulse~LINK's CWave UWB chipset solution for high-speed coax cable connectivity. The PL3111 AFE is specifically designed for high-speed Ethernet-over-coax network solutions, but can also be used on other wired media. As shown in Figure 1, there are three major blocks encompassing the CWave<sup>TM</sup> UWB chipset solution. As depicted, the PL3111 AFE directly interfaces with the PL3120 UWB Transceiver RFIC supporting data rates up to 675 Mbps. The PL3111 UWB AFE operates over a wide frequency range of 3.1GHz to 5.8 GHz.

The PL3111 UWB AFE provides a single receive channel containing a highperformance LNA with large dynamic range and high gain. LNA operation and gain settings can be controlled through a dedicated control interface, linking the PL3111, PL3120, and the PL3130. The PL3111 AFE is a critical component, making it feasible for Pulse~LINK's CWave system to transmit high data rates over coaxial cable.

### **PL3111 UWB Coax Cable AFE Overview**

The PL3111 UWB AFE chip consists of a two LNA block low-noise wideband amplifier designed to connect to a coax cable interface. The LNA amplifies an RF receive channel, operating over a wide frequency range from 3.3 - 4.8 GHz optimized at the center frequency of 4 GHz. The PL3111 AFE provides a single-channel receive signal source to the PL3120 Transceiver RFIC.

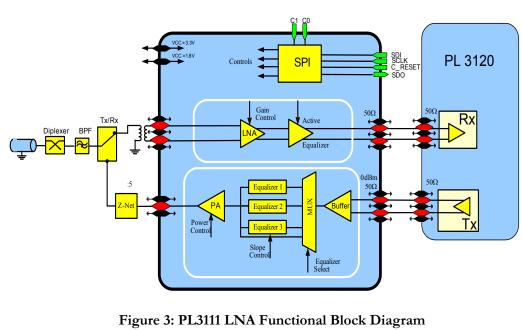


#### Figure 1: PL3111 Functional Chipset Interfaces

The LNA includes:

- A input variable-gain wideband Low-noise Amplifier (LNA)
- An RF differential output buffer amplifier
- Selection of High-gain or Low-gain mode
- A control interface (to set the modes of operation such as Select Channel A or B gain of LNA, RX enable/disable, and LNA IC On/Off).

### **Functional Descriptions**


As shown in the block diagram of Figure 3, the PL3111 UWB LNA is a basic two-stage receiver Front-End designed specifically for UWB applications. It functions as the initial low-noise gain stage for the PL3120 Transceiver RFIC receiver processing block.

ONFIDENTIAI

CONFIDENTIAL

CONFIDENTI

**IDENTIAI** 



### Ultra-Wideband LNA

The LNA sets the device Noise Figure (NF) at less than 2 dB and the total maximum system gain provided by the LNA in high-gain mode is 24 dB. When the LNA is set in low-gain mode, the total device system gain is typically set at 4 dB.

#### **LNA Inputs**

The LNA has differential 100-Ohm inputs. Signals captured by the receive antenna system or coax cable interface are boosted by the LNA prior to filtering through an analog filter, and then passed to the differential output buffer amplifier that provides a second stage of gain.

#### **LNA Gain Control**

The LNA gain mode can be configured for either high-gain or low-gain mode and is set by the (BP) control lead.

### **Differential Output Buffer**

The LNA output signal stream is buffered by a differential output buffer amplifier stage prior to being sent to the PL3120 Transceiver RFIC. The buffer's differential outputs are also matched to 50 Ohms to drive a coplanar transmission line connected to the PL3120 Transceiver RFIC receiver input.

## **Integrated Voltage References**

On-chip Band-Gap references provide biasing to the internal LNA circuits.

### **Control Interfaces**

Control of the PL3111 UWB LNA is provided via hardwired control leads. These dedicated leads control the high-gain/low-gain mode of the LNA, enable the receive channel and provide for enable/disable control of the PL3111 UWB LNA chip.

#### **Mode Control Hardware Interface**

The PL3111 LNA IC is set in the ON (default) or OFF mode by CMOS control lead 20 (EN\_IC). Control lead 23 (BP) sets the LNA either in a high-gain state (default) or in low-gain mode. Control lead 22 (EN\_RX) enables/disables the receiver on/offl.

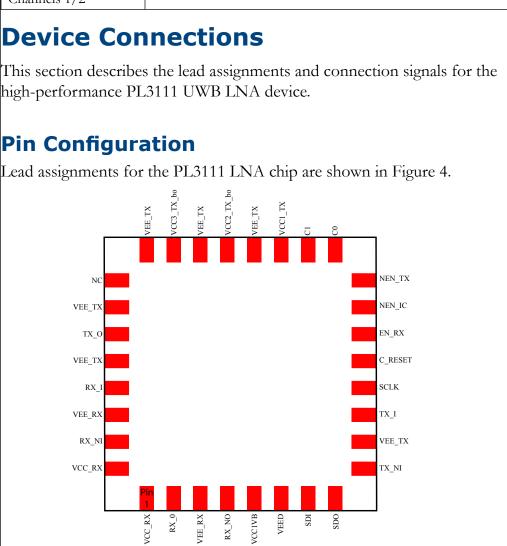
#### Table 1: LNA Mode Control Hardware Interface

| Control Signal | Control Function               |
|----------------|--------------------------------|
| EN_IC          | LNA IC ON/OFF Mode             |
| EN_RX          | Enable/Disable Receive Channel |
| ВР             | LNA High-Gain/Low-Gain Mode    |

CONFIDENT

IDENTIAL

CONFIDE


Channels 1/2**Device Connections** high-performance PL3111 UWB LNA device. **Pin Configuration** VEE 1 TX\_C VEE\_T RX VEE RX RX N VCC\_RX

### **Pin Description Summary**

The following table summarizes the signals names and descriptions for the PL3111 UWB LNA package connections.

#### **Table 2: Signal Names and Lead Assignments**

| 1 VC   | C_RX  |                            |                               |
|--------|-------|----------------------------|-------------------------------|
|        |       | Positive 3.3V Power supply | Connect to 3.3V power supply. |
| 2-4 VE | EE_RX | RX ground                  | Connect to GND                |
| 5 RX   | C_O   | Output positive signal RX  |                               |
| 6 VE   | EE_RX | RX ground                  | Connect to GND                |



#### Figure 4: PL3111 LNA Lead Assignments

| Lead # | # Signal Pad description<br>Name |                                                              | Notes                                                                      |  |  |
|--------|----------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------|--|--|
| 7      | RX_NO                            | Output negative RX signal ground                             |                                                                            |  |  |
| 8      | VEE_RX                           | RX ground                                                    | Connect to GND                                                             |  |  |
| 9      | VCC1V8                           | Positive 1.8V digital power<br>supply for SPI MUX and<br>POR |                                                                            |  |  |
| 10-11  | VEE                              | digital GND                                                  | Connect to GND                                                             |  |  |
| 12     | SDI                              | SPI Serial Data in                                           |                                                                            |  |  |
| 13     | VEED                             | digital GND                                                  | Connect to GND                                                             |  |  |
| 14     | VEE_TX                           | TX ground                                                    | Connect to GND                                                             |  |  |
| 15     | SDO                              | SPI Serial Data out                                          |                                                                            |  |  |
| 16-17  | VEE_TX                           | TX ground                                                    | Connect to GND                                                             |  |  |
| 18     | TX_NI                            | Transmit negative signal RF input                            |                                                                            |  |  |
| 19     | VEE_TX                           | TX ground                                                    | Connect to GND                                                             |  |  |
| 20     | TX_I                             | Transmit positive signal RF input                            |                                                                            |  |  |
| 21     | VEE_TX                           | TX ground                                                    | Connect to GND                                                             |  |  |
| 22     | SCLK                             | SPI clock                                                    |                                                                            |  |  |
| 23     | C_RESET                          | SPI cycle reset                                              |                                                                            |  |  |
| 24     | EN_RX                            | Enable RX                                                    | Connect to 3.3V to enable receiver.                                        |  |  |
| 25     | VEE_TX                           | TX ground                                                    | Connect to GND                                                             |  |  |
| 26     | NEN_IC                           | Enable the chip                                              | Enable by default. Disable IC:<br>connect to 3.3V through 10k<br>resistor. |  |  |
| 27     | VEE_TX                           | TX ground                                                    | Connect to GND                                                             |  |  |
| 28     | NEN_TX                           | Enable TX                                                    | Connect to ground to enable transmitter.                                   |  |  |
| 29     | СО                               | First bit for fast switch of slope and gain                  | Digital signal.                                                            |  |  |
| 30     | C1                               | Second bit for fast switch of slope and gain                 | Digital signal                                                             |  |  |
| 31-33  | VEE_TX                           | TX ground                                                    | Connect to GND                                                             |  |  |
| 34     | VCC1_TX                          | Positive power supply                                        | Vcc=3.3V, bypass capacitor to ground                                       |  |  |
| 35-37  | VEE_TX                           | TX ground                                                    | Connect to GND                                                             |  |  |

CONFIDENTIAL CONFIDENTIAL

CONFIDENTIA

CONFIDENTIAL

| Lead # | Signal<br>Name | Pad description                          | Notes                                                                    |
|--------|----------------|------------------------------------------|--------------------------------------------------------------------------|
| 38     | VCC2_<br>TX_bo | Positive power supply                    | 2nd stage Vcc=3.3V (r=10<br>Ohm on chip). Bypass<br>capacitor to ground. |
| 39-40  | VEE_TX         | TX ground                                | Connect to GND                                                           |
| 41     | VCC3_<br>TX_bo | Positive power supply                    | 3rd stage Vcc=3.3V (r=5<br>Ohm on chip). Bypass<br>capacitor to ground.  |
| 42-45  | VEE_TX         | TX ground                                | Connect to GND                                                           |
| 46-48  | TX_O           | Output signal TX                         |                                                                          |
| 49-51  | VEE_TX         | TX ground                                | Connect to GND                                                           |
| 52     | VEE_RX         | RX ground                                | Connect to GND                                                           |
| 53     | RX_I           | Input positive RF signal RX              |                                                                          |
| 54     | VEE_RX         | Negative power supply                    | Connect to GND                                                           |
| 55     | RX_NI          | Input negarive RF signal RX              |                                                                          |
| 56     | VCC_RX         | Positive 3.3 Connect to GND power supply | Connect to 3.3V power supply.                                            |

# **Electrical Specifications**

## Absolute Maximum Ratings

| Description                                                                | Value          |
|----------------------------------------------------------------------------|----------------|
| Vcc (VCC_RX, , VCC_TX, VCC1_TX, VCC2_TX, VCC3_TX_<br>bo VCC1_TX_bo )to GND | 4V             |
| RF in (RX_NI, RX_I, TX_I) at 50 Ω source                                   | 2 dBm          |
| RF out (RX_O, RX_NO) on 50 Ω load                                          | 5 dBm          |
| Managing signals (NEN_TX, EN_RX, SDO, SDI, SCLK, C_<br>RESET)              | 4.0V           |
| Operating temperature range                                                | -25°C to 90°C  |
| Maximum Junction temperature                                               | 125°C          |
| Max.Power dissipation                                                      | 1500 mW        |
| Storage temperature                                                        | -65°C to 150°C |
| Lead Temperature (soldering, 5s)                                           | +300°C         |

#### Table 3: Absolute Maximum Ratings

prtant: Exceeding these limits may result in malfunction and/or device da

### **Recommended Operating Conditions**

#### Table 4: Recommended Operating Conditions

| Description                   | Value        |
|-------------------------------|--------------|
| Relative Humidity             | 95%          |
| Ambient Operating Temperature | 0 C to +70 C |

#### **DC Characteristics**

#### Table 5: DC Characteristics

| Parameter                | Condition     | Min | Тур | Max | Units |
|--------------------------|---------------|-----|-----|-----|-------|
| RX and TX Supply voltage |               | 3.1 | 3.3 | 3.6 | V     |
| Operating current        | Tx -ON,RX-OFF |     | 350 |     | mA    |
|                          | Tx –OFF,Rx-ON |     | 160 |     |       |
|                          | Tx -ON,RX-ON  |     | 430 |     |       |
|                          | Tx -OFF,RX-   |     | 20  |     |       |
|                          | OFF           |     |     |     |       |
|                          |               |     |     |     |       |
| SPI supply voltage       |               | 1.7 | 1.8 | 1.9 | V     |

### **AC Characteristics**

#### **Ultra-Wideband LNA**

#### Table 6: UWB LNA Characteristics

| Parameter                        | Condition               | Min | Тур | Max | Units |
|----------------------------------|-------------------------|-----|-----|-----|-------|
| Operating frequency              |                         | 3   |     | 5   | GHz   |
| Gain for power amp               | see note below<br>table | 4   |     | 30  | dB    |
| Gain for LNA amp                 | see note below<br>table | 4   |     | 25  | dB    |
| Slope control in TX path         | 3 to 5 GHz              | 0   |     | 20  | dB    |
| Group delay variation on TX path | 3 to 5 GHz              |     |     |     | dB    |
| Slope control on RX path         | 3 to 5 GHz              | 0   |     | 20  | dB    |
| Group delay variation on RX path | 3 to 5 GHz              |     |     |     | dB    |

CONFIDENTIAL

**IDENTIAI** 

NFIDENTIAL

CONFIDEN

| F  | Parameter                            |
|----|--------------------------------------|
| ١  | Noise figure (3GHz-5GHz)             |
| Ι  | nput return loss for TX              |
| (  | Dutput return loss for TX            |
| Ι  | nput return loss for RX              |
| (  | Dutput return loss for RX            |
| F  | Reverse isolation (2GHz-6G           |
|    | nput output isolation (RX C<br>node) |
|    | ote: Include losses for              |
| )2 | aluns. Baluns have a l               |
|    |                                      |

### **Typical Operating Characteristics**

Typical plots of Noise Figure, Input/Output matching (S11, S22) and Input 1dB compression point for Nominal Corners of the process and temperatures are presented below in Figure 5 and Figure 6.

| DUT Amplifi      | er Sys       |   |
|------------------|--------------|---|
| Noise Figure     |              | 5 |
| 0.00             |              |   |
| 9,00             |              |   |
| Scale/           |              |   |
| 1,00             |              |   |
| dB               |              |   |
| -1.00            |              |   |
| 48.88            |              |   |
| GAIN             | ł            |   |
| Scale/<br>S.88 2 |              |   |
| 5,88 s<br>dB     |              |   |
|                  |              |   |
| -18.88           |              |   |
| 3 G              | Hz           |   |
| General          | Base         |   |
| Markers          | Mkr1<br>Mkr2 | 3 |
| Source           | Mkr3         | 2 |

|     | Condition      | Min | Тур | Max | Units |
|-----|----------------|-----|-----|-----|-------|
|     | see note below | 1.5 |     | 2.9 | dB    |
|     | table          |     |     |     |       |
|     | 3 to 5 GHz     | -20 |     | -10 | dB    |
|     | 3 to 5 GHz     | -8  |     | -7  | dB    |
|     | 3 to 5 GHz     | -25 |     | -10 | dB    |
|     | 3 to 5 GHz     | -14 |     | -9  | dB    |
| GH) | 3 to 5 GHz     |     |     | -56 | dB    |
| OFF |                |     |     | -50 | dB    |
|     |                |     |     |     |       |

for PC board, connectors, and input/outpout a loss of 1.0 dB at 4GHz.

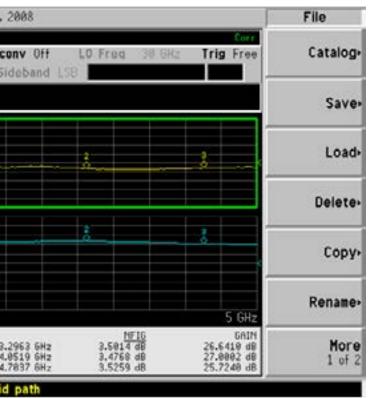



Figure 5: Noise & Gain

#### LNA PL3111 DATSHEET

**IDENTIAL** 

CONFIDENTIAL

CONFIDEN

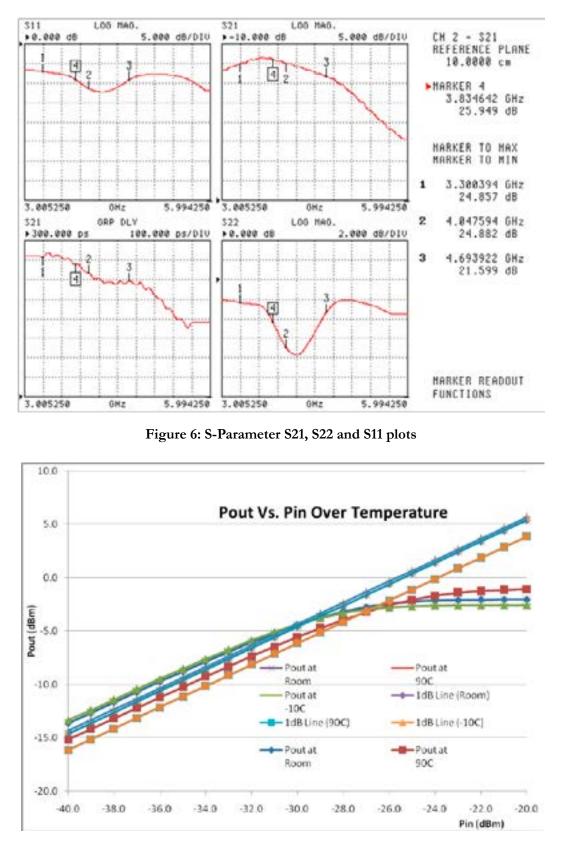
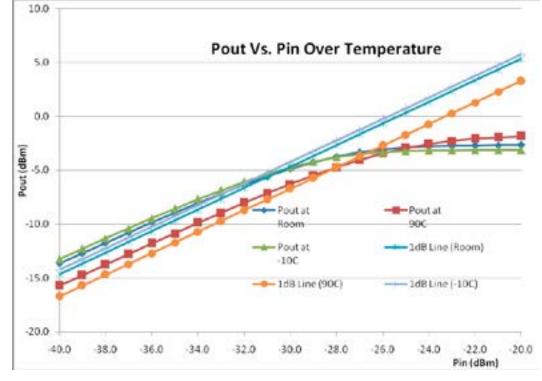




Figure 7: Pout vs. Pin at 4.05GHz and 24dB Gain with Slope Bypassed



# **Mechanical Specifications**

The PL3111 LNA 24-pin QFN package specifications are provided in Table 8.

| Area              | Dimensions       |
|-------------------|------------------|
| Compliance        | Per JEDEC MO-205 |
| Size              | 4x4 mm           |
| Connection Leads  | 24 leads         |
| Lead Pitch        | 0.50 mm          |
| Nominal Thickness | 0.85 mm          |

Figure 8: Pout vs. Pin at 4.7GHz and 24dB Gain with Slope Bypassed.

Table 8: PL3111 LNA QFN Package Mechanical Specifications

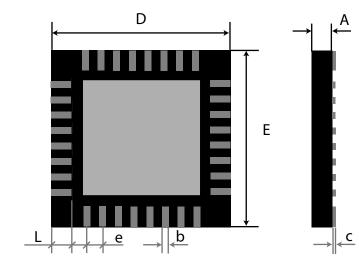



Figure 9: 36-pin QFN Package Dimensions (viewed from bottom)

Table 9: Overall Dimensions

| Body S | Size,mm | Lead Count | Lead Pitch<br>,mm | Package<br>Thk. mm | Footprint mm | Lead Width<br>mm | L/F Thk.<br>mm |
|--------|---------|------------|-------------------|--------------------|--------------|------------------|----------------|
| D      | )/Е     | N          | e                 | А                  | L            | b                | с              |
| 5      | 5/5     | 32         | 0.5               | 0.85               | 0.4          | 0.23             | 0.20           |

Ξ

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIA

CONFIDENTIAL

# **Acronyms & Abbreviations**

| ASIC | Application Specie  |
|------|---------------------|
| BB   | Baseband            |
| DEV  | 802.15.3 Device     |
| EVK  | Evaluation Kit      |
| LNA  | Low Noise Ampli     |
| lsb  | Least Significant H |
| LSB  | Least Significant H |
| MAC  | Media Access Cor    |
| msb  | Most Significant B  |
| MSB  | Most Significant B  |
| OB   | Output Buffer       |
| PHY  | Physical Layer      |
| PLL  | Phase Lock Loop     |
| PNC  | 802.15.3 Piconet (  |
| TDM  | A Time Divis        |
| UWB  | Ultra-Wideband      |
| VGA  | Variable Gain Am    |
|      |                     |

fic Integrated Circuit

lifier Bit Byte ontrol Bit

Byte

Coordinator rision Multiple Access

mplifier

# **Ordering & Contact Information**

#### Ordering

Sales 760.496.2136 Email: sales@pulselink.com

#### Address

2730 Loker Avenue West Carlsbad, CA 92010 Tel: 760.496.2136 Fax: 760.496.2140 Email: admin@pulselink.com

#### Website

http://www.pulselink.com

#### **Publication Number**

111-00004-01