

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

- Complete PWM Power Control Circuitry
- [•] Uncommitted Outputs for 200-mA Sink or Source Current
- Output Control Selects Single-Ended or Push-Pull Operation
- Internal Circuitry Prohibits Double Pulse at Either Output
- Variable Dead Time Provides Control Over Total Range
- Internal Regulator Provides a Stable 5-V Reference Supply With 5% Tolerance
- Circuit Architecture Allows Easy Synchronization

Description

The PL494 incorporates on a single monolithic chip all the functions required in the construction of a pulse-width-modulation control circuit.

Designed primarily for power supply control, this device offers the systems engineer the flexibility to tailor the power supply control circuitry to a specific application.

The PL494 contains two error amplifiers, an on-chip adjustable oscillator, a dead-time control (DTC) comparator , a pulse-steering control flip-flop, a 5-V, 5%precision regulator, and output-control circuits.

The error amplifiers exhibit a common-mode voltage range from -0.3V to Vcc -2V.

The dead-time control comparator has a fixed offset that provides approximately 5% dead time. The on-chip oscillator may be bypassed by terminating RT to the reference output and providing a sawtooth input to CT, or it may drive the common circuits in synchronous multiple-rail power supplies.

FUNCTION TABLE

INPUT TO OUTPUT CTRL	OUTPUT FUNCTION
V _I =GND	Single-ended or parallel output
V _I =V _{ref}	Normal push-pull operation

Revised Date : 2007/11/20 Page No. : 2/14

Description (continued)

The uncommitted output transistors provide either common-emitter or emitter-follower output capability. The PL494 provides for push-pull or single-ended output operation, which may be selected through the output-control function. The architecture of this device prohibits the possibility of either output being pulsed twice during push-pull operation. The PL494CN is characterized for operation from 0°C to 70°C.

PL494

Functional block diagram

Absolute maximum rations over operating free-air temperature range (unless otherwise noted)*

PL494

	PL494CN	UNIT
Supply voltage, Vcc (see Note 1)	41	V
Amplifier input voltage, V ₁	- 0.3 to + 42	V
Collector output voltage, V ₀	41	V
Collector output current, I ₀	250	mA
Power Dissipation T _A 45	1	W
Operating free-air temperature range, T _A	0 to 70	
Storage temperature range, T _{stg}	- 55 to + 125	

*Stresses beyond those listed under "absolute maximum rations" may cause permanent damage to the device. These are stress rations only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Note 1: All voltage values, except differential voltages, are with respect to the network ground terminal.

Recommended operating conditions

	PL494CN			
	MIN	MAX		
Supply voltage, Vcc	7	40	V	
Amplifier input voltage, V _I	-0.3	Vcc -2.0	V	
Collector output voltage, V ₀		40	V	
Collector output current, (each transistor)		200	mA	
Current into feedback terminal		0.3	mA	
Oscillator frequency, f _{osc}	1	300	kHz	
Timing capacitor, C_{T}	0.47	10000	nF	
Timing resistor, R_T	1.8	500	k	
Operating free-air temperature, T _A	0	70	°C	

Electrical characteristics over recommended operating free-air temperature range, Vcc=15V, f=10kHz (unless otherwise noted)

PL494

Reference section

		PL494CN			
FARAMETER		MIN	TVP**	MAX	
Output voltage (REF)	I _o =1mA	4.75	5	5.25	V
Input regulation	V _{cc} =7V to 40V		2	25	mV
Output regulation	I _o =1mA to 10mA		1	15	mV
Output voltage change with temperature	T _A =MIN to MAX		2	10	mV/V
Short-circuit output current***	REF= 0V		25		mA

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

**All typical values except for parameter changes with temperature are at $T_A=25$ °C.

***Duration of the short circuit should not exceed one second.

Oscillator section, C_T=0.01 mkF, R_T=12k

PARAMETER	TEST CONDITIONS*	PL494CN MIN TVP**MAX	UNIT
Frequency		10	kHz
Standard deviation of frequency	All values of Vcc, CT, RT,and T _A constant	100	Hz/kHz
Frequency change with voltage	Vcc=7V to 40V, TA=25°C	1	Hz/kHz
Frequency change with temperature***	T _A =MIN to MAX	10	Hz/kHz

*For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

**All typical values except for parameter changes with temperature are at T_A=25°C.

***Temperature coefficient of timing capacitor and timing resistor not taken into account.

Error amplifier section

PARAMETER	TEST CONDITIONS	PL MIN T	494CN YP* N	N 1AX	UNIT
Input offset voltage	V_{o} (FEEDBACK) = 2.5V		2	10	mV
Input offset current	V _o (FEEDBACK) = 2.5V	250	25		nA
Input bias current	V _o (FEEDBACK) = 2.5V	1	0.2		mkA
Common-mode input voltage range	$V_{\rm CC} = 7V$ to $40V$	-0.3 to V _{cc} –2			V
Open-loop voltage amplification	$V_0=3V$, $R_1=2k$, $V_0=0.5V$ to 3.5V	70	95		dB
Unity-gain bandwidth	$V_0=0.5V$ to 3.5V, $R_1=2k$		800		kHz
Common-mode rejection ratio	$V_0 = 40V, T_A = 25 \circ C$	65	80		dB
Output sink current (FEEDBACK)	V _{ID} =-15mV to –5V, V(FEEDBACK)=0.7V	0.3	0.7		mA
Output source current (FEEDBACK)	V _{ID} =15mV to 5V, V(FEEDBACK)=3.5V	-2			mA

*All typical values except for temperature coefficient are at $T_A=25$ °C

electrical characteristics over recommended operating free-air temperature range, V_{cc} =15V, f = 10kHz (unless otherwise noted)

PL494

Output section

			PL494		
FANAML		TEST CONDITIONS	MIN TYP	* MAX	
Corrector off-state currer	nt	V_{CE} =40V, V_{CC} =40V	2	100	mkA
Emitter off-state current		$V_{CC} = V_{C} = 40V$, $V_{E} = 0$		-100	mkA
Collector emitter	Common emitter	V _E =0, I _C =200mA	1.1	1.3	V
saturation voltage	Emitter follower	V _{0 (C1orC2)} =15V,I _E =-200mA	1.5	2.5	v
Output control input curr	ent	V _I =V _{ref}		3.5	mA

*All typical values except for temperature coefficient are at $T_A=25$ °C

dead-time control section

PARAMETER	TEST CONDITIONS	PL494CN MIN TYP* MAX	UNIT
Input bias current (DEAD-TIME CTRL)	V ₁ =0 to 5.25V	-2 -10	nA
Maximum duty cycle, each output	V_i (DEAD-TIME CTRL) = 0, C_T =0.1mkF, R_T =12k	45%	
Input threshold voltage	Zero duty cycle	3 3.3	V
(DEAD-TIME CTRL)	Maximum duty cycle	0°	V

On products compliant to MIL-STD-883, Class B, this parameter is not production tested. *All typical values except for temperature coefficient are at $T_A=25$ °C.

PWM comparator section

PARAMETER	TEST CONDITIONS		CN	UNIT
		MIN TYP*	MAX	••••
Input threshold voltage (FEEDBACK)	Zero duty cycle	4	4.5	V
Input sink current (FEEDBACK)	V(FEEDBACK) = 0.7V	0.3 0.7		mA
*All to missel usely as a suscept fair to some another				

*All typical values except for temperature coefficient are at $T_A=25$ °C.

Total Device

	TEST CONDITIONS		PL494		
FANAMETEN			MIN TYP*	MAX	
Standby supply	$R_T = V_{ref}$	$V_{\rm CC} = 15V$	6	10	m۸
current	All other inputs and outputs open	$V_{\rm CC} = 40V$	9	15	
Average supply current	V _I (DEAD-TIME CTRL) = 2V		7.5		mA

*All typical values except for temperature coefficient are at $T_A=25$ °C.

electrical characteristics over recommended operating free-air temperature range, V_{cc} =15V, f-10kHz (unless otherwise noted) (continued)

Switching characteristics, T_A=25°C

•	, A	
DADAMETED	PL494CN	
PARAMETER	MIN TYP* MAX	
Rise time	100 20) ns
Fall time	25 100) ns
Rise time	100 20) ns
Fall time	40 100) ns

*All typical values except for temperature coefficient are at $T_A=25$ °C.

Figure 1. Representative Block Diagram

Figure 2. Timing Diagram

APPLICATIONS INFORMATION

Description

The PL494CN is a fixed-frequency pulse width modulation control circuit, incorporating the primary building blocks required for the control of a switching power supply. (See Figure1.) An internal-linear sawtooth oscillator is frequencyprogrammable by two external components. R_{τ} and C_{τ} . The Approximate oscillator frequency is determined by:

For more information refer to Figure 3.

Output pulse width modulation is accomplished by comparison of the positive sawtooth waveform across capacitor C_{T} to either of two control signals. The NOR gates, which drive output transistors Q1and Q2, are enabled only when the flip-flop clock-input line is in its low state. This happens only during that portion of time when the sawtooth voltage is greater than the control signals. Therefore, an increase in control-signal amplitude causes a corresponding linear decrease of output pulse width. (Refer to the Timing Diagram shown in Figure2.)

The Control signals are external inputs that can be fed into the deadtime control, the error amplifier inputs, or the feedback input. The deadtime control comparator has an effective 120 mV input offset which limits the minimum output deadtime to approximately the first 4% of the sawtooth-cycle time. This would result in a maximum duty cycle on a given output of 96% with the output control grounded, and 48% with it connected to the reference line. Additional deadtime may be imposed on the output by setting the deadtime-control input to a fixed voltage, ranging between 0 V to 3.3 V.

Functional Table

Input/Output Controls	Output Function	fout fosc =
Grounded	Single-ended PWM @ Q1 and Q2	1.0
@ Vref	Push-pull Operation	0.5

The pulse width modulator comparator provides a means for the error amplifiers to

adjust the output pulse width from the maximum percent on-time, established by the deadtime control input, down to zero, as the voltage at the feedback pin varies from 0.5 V to 3.5 V. Both error amplifiers have a common mode input range from -0.3 V to (Vcc - 2V), and may be used to sense power-supply output voltage and current. The error-amplifier outputs are active high and are ORed together at the noninverting input of the pulse-width modulator comparator. With this configuration, the amplifier that demands minimum output on time, dominates control of the loop.

When capacitor C_{T} is discharged, a positive pulse is generated on the output of the deadtime comparator, which clocks the pulse-steering flip-flop and inhibits the output transistor, Q1 and Q2. With the output-control connected to the reference line, the pulse-steering flip-flop directs the modulated pulses to each of the two output transistors equal to half that of the oscillator. Output drive can also be taken from Q1 or Q2, when sinle-ended operation with a maximum on-time of less than 50% is required. This is desirable when the output transformer has a ringback winding with a catch diode used for snubbing. When higher operation, Q1 and Q2 may be connected in parallel, and the output-mode pin must be tied to ground to disable the flipflop. The output frequency will now be equal to that of the oscillator.

The PL494CN has an internal 5.0 V reference capable of sourcing up to 10 mA of load current for external bias circuits. The reference has an internal accuracy of

 $\pm 5.0\%$ with a typical thermal drift of less than 50 mV over an operating temperature range of 0°to 70 $\,$.

Figure 3. Oscillator Frequency versus Timing Resistance

120

OPEN LOOP VOLTAGE GAIN (dB)

20 AVOL.

10

0

1.0

Figure 4. Open Loop Voltage Gain and Phase versus Frequency

PL494

Figure 5. Percent Deadtime versus **Oscillator Frequency**

Figure 6. Percent Duty Cycle versus Deadtime Control Voltage

Figure 7. Emitter-Follower Configuration Output Saturation Voltage versus Emitter Current

Figure 9. Standby Supply Current versus Supply Voltage

Figure 10. Error-Amplifier Characteristics

Figure 11. Deadtime and Feedback Control Circuit

Figure 12. Common–Emitter Configuration Test Circuit and Waveform

Figure 13. Emitter–Follower Configuration Test Circuit and Waveform

Figure 14. Error-Amplifier Sensing Techniques

Figure 15. Deadtime Control Circuit

Figure 16. Soft-Start Circuit

Figure 17. Output Connections for Single–Ended and Push–Pull Configurations

Figure 18. Slaving Two or More Control Circuits

Figure 20. Pulse Width Modulated Push-Pull Converter

All capacitors in µF

Test	Conditions	Results
Line Regulation	Vin = 10 V to 40 V	14 mV 0.28%
Load Regulation	Vin = 28 V, IO = 1.0 mA to 1.0 A	3.0 mV 0.06%
Output Ripple	V _{in} = 28 V, I _O = 1.0 A	65 mV pp P.A.R.D.
Short Circuit Current	V _{in} = 28 V, R _L = 0.1 Ω	1.6 A
Efficiency	V _{in} = 28 V, 1 _O = 1.0 A	71%

L1 – 3.5 mH @ 0.3 A T1 – Primary: 20T C.T. #28 AWG Secondary: 120T C.T. #36 AWG Core: Ferroxcube 1408P–L00–3CB

Figure 21. Pulse Width Modulated Step-Down Converter

Test	Conditions	Resi	ults
Line Regulation	Vin = 8.0V to 40V	3.0mV	0.01%
Load Regulation	Vin = 12.6V, lo = 0.2 mA to 200 mA	5.0mV	0.02%
Output Ripple	Vin = 12.6V, lo = 200 mA	40mVpp P.	A.R.D.
Short Circuit Current	Vin = 12.6V, $R_{L} = 0.1$	250mA	
Efficiency	Vin = 12.6V, lo = 200 mA	72	%

DIP-16P Dimension

PL494

SYMBOL	DIMENSION IN INCH	DIMENSION IN MM
А	0.170 MAX.	4.318 MAX.
A1	0.015 MIN	0.381 MIN.
A2	0.130±0.005	3.302±0.127
В	0.018 TYP.	0.457 TYP.
B1	0.060 TYP.	1.524 TYP.
С	0.010 NOM.	0.254 NOM.
D	0.752±0.005	19.101±0.127
Е	0.252±0.005	6.401±0.127
E1	0.300±0.010	7.62±0.254
EA	0.355±0.020	9.017±0.508
е	0.100 TYP.	2.540 TYP.
L	0.130±0.010	3.302±0.254
	0°~15°	0°~15°

NOTE :

1. DIMEMSION D & E DOES NOT INCLUDE FLASH.

SOP-16 Dimension

PL494

DIM	MILLIMETERS
A	9.90 ± 0.10
В	3.90 ± 0.09
С	1.60 ± 0.13
D	0.400 (REF.)
F	0.700 ± 0.20
G	1.27 (BSC.)
J	0.250
K	0.160 ± 0.08
М	0°~5°
Р	5.99 ± 0.20
R	0.375