

FEATURES

- Advanced programmable Spread Spectrum clock
 generator with 16 modulation steps to choose from
- Programmable SST Modulation Magnitude:

 Center Spread: ±0.125% to ±2.0% in ±0.125% steps
 Down Spread: -0.25% to -4.0% in 0.25% steps
- Input Frequency Range:
 o Fundamental Crystal: 10MHz to 40MHz
- Output Frequency Range:
 1MHz to 200MHz @ 3.3V operation
 1MHz to 166MHz @ 2.5V operation
- Programmable Output Drive (4mA, 8mA, 16mA)

0.80mm —

Note: ^ denotes internal pull up resistor

8

7

6

5

XOUT

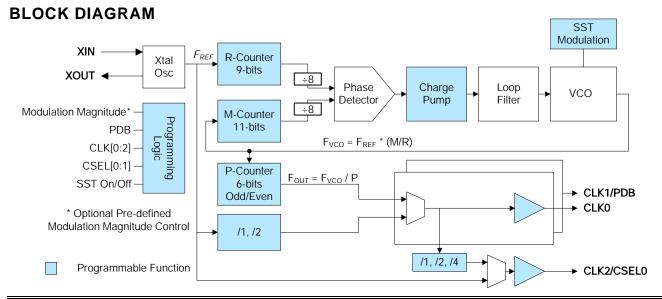
VDD

CLK0

CSEL0[^], CLK2

- Low Cycle to Cycle jitter, 100pS
- Single 2.5V to $3.3V_{1} \pm 10\%$ power supply
- Available in Die form

DESCRIPTION


The PL671-00 is an advanced programmable Spread Spectrum clock generator (PSSCG), and a member of PhaseLink's PicoPLL Programmable Clock family.

The PL671-00 clock outputs can be programmed up to 200MHz (3.3V) or 166MHz (2.5V), and has 16 modulation magnitudes (±0.125 to ±2.0% or -0.25 to -4.0%) to choose from for use in Center or Down Spread modulation applications. In addition, 2 configuration pins can be programmed to allow cycling the device through 4 pre-programmed states*. The option of being able to turn 'ON/OFF' the Spread Spectrum modulation allows for completing a design with PL671-00 and having the assurance of turning 'ON' the EMI modulation if EMI becomes an issue*. The PL671-00's spread spectrum modulation greatly reduces the fundamental and harmonic frequencies' peak magnitude, reducing the system level electromagnetic radiation by as much as 20dB.

*Note: Requires 6-pad package

DIE SPECIFICATION

Parameter	Value
Chip size	1.40mm x 0.80mm
Chip thickness	150 to 250µm
PAD size	90µm x 90 µm
Chip base	GND level

PAD CONFIGURATION

 $\left[1 \right]$

2

3

4

XIN

CLK1

GND

CSEL1^

OE[^], PDB[^]

1.4mm

PAD ASSIGNMENT AND DESCRIPTION

Name	Pad	Assignm	nent*							
Name	Pad #	X (µm)	Υ (µm)	Туре		Description				
XIN	1	124	1286	I	Crystal input pad.					
					This pin can be programmed to function as OE (input), PDB (inpu or CLK1 (output). Output Enable (OE) input. Enables and disables the clock outpu buffer Internal pull up resistor.					
OE, PDB,					buffer. Internal pull up resistor. Power Down (PDB) input. Turns off the oscillator, PLL and th output when pulled to logic "0". Internal pull up resistor.					
CLK1	2	87	930	I/O	Pin State	OE	PDB			
					0	Disable CLK	Power Down Mode			
					1 (default)	Normal mode	Normal mode			
					Clock1 (CLK1) output. This optional clock can be set to F_{REF} , $F_{REF}/2$ or F_{OUT} (Programmable PLL output).					
CSEL1	3	87	628	I	Optional programming of CSEL0 & CSEL1 input pins allow switching between '4' pre-defined configurations. Internal pull up resistor.					
GND	4	87	275	Р	GND connection					
CLK0	5	714	380	0	Programmable Clock Out	put				
CSEL0, CLK2	6	714	677	I	This pin can be programmed to function as CSEL0 (input) or CLK2 (output). CSEL0 input. Optional programming of CSEL0 & CSEL1 input pins allow switching between '4' pre-defined configurations. Internal pull up resistor.					
					CLK2 output. This optional clock can be set to F _{REF} , CLK0, CLK0/2 or CLK0/4.					
VDD	7	714	916	Р	VDD connection					
XOUT	8	677	1286	0	Crystal output pad. See Crystal Specifications on page 6.					

* Note: The X/Y coordinates indicate pad centers referenced from the lower left corner of the die.

KEY PROGRAMMING PARAMETERS

CLK[0:2]	SST Modulation Magnitude	Programmable	Output Drive
Output Frequency	(Spread Percentage)	Input/Output	Strength
$F_{OUT} = F_{REF} * M / (R * P)$ where M =11 bit R = 9 bit P = 6 bit • CLK0= F_{REF}, F_{REF}/2 or F_{VCO}/P* • CLK1= F_{REF}, F_{REF}/2 or F_{VCO}/P* • CLK2= F_{REF}, CLK0, CLK0/2 or CLK0/4 * 'P' is a 6-bit Odd/Even divider.	 16 programmable modulation magnitudes to choose from: Center Spread: ±0.125% to ±2.0% in ±0.125% steps Down Spread: -0.25% to -4.0% in 0.25% steps SST On/Off Control. 	 Programmable I/O's include: PDB – input Optional CSEL0, CSEL1 (Pre-defined configurations) – input SST On/Off control – input CLK[0:2] - output 	Three optional drive strengths to choose from: •Low: 4mA •Std: 8mA (default) •High: 16mA

FUNCTIONAL DESCRIPTION

PL671-00 is a highly featured, very flexible, advanced programmable PLL design for high performance, low-power Spread Spectrum modulation applications. The PL671-00 accepts a fundamental input crystal of 10MHz to 40MHz or a reference clock input of 1MHz to 200MHz and is capable of producing three SST modulated outputs up to 200MHz. This flexible design allows the PL671-00 to deliver any PLL generated frequency, FREF (Crystal or Ref Clk) frequency or FREF /2 to CLK0, CLK1 and/or CLK2. Alternate configuration using CSEL0 & CSEL1 allows the device to choose from up to 4 different pre-defined settings providing a range of spread settings, drive levels and outputs to choose from. Some of the design features of the PL671-00 are mentioned below.

PLL Programming

The PLL in the PL671-00 is fully programmable. The PLL is equipped with a 9-bit input frequency divider (R-Counter), and an 11-bit VCO frequency feedback loop divider (M-Counter). The output of the PLL is transferred to a 6-bit post VCO Odd/Even divider (P-Counter). The output frequency is determined by the following formula [Fout = (FREF * M)/(R*P).

Modulation Magnitude and Type

The PL671-00 provides the following programmable capabilities for Modulation Type and Modulation Magnitude (Spread Percentage):

Modulation Type	Modulation Magnitude	Programming Steps
Center Spread	±0.125% thru ±2.00%	±0.125%
Down Spread	-0.25% thru -4.00%	0.25%

Modulation Rate

The PL671-00 modulation rate is defined as FREF (Crystal Frequency) divided by 8 times the R-counter, i.e. Modulation Rate = (F_{REF} / 8R). The rate can be changed by choosing alternate R-Counter settings.

Clock Outputs (CLK[0:2])

CLK0 is the main clock output. The PL671-00 can also be programmed with additional clock outputs CLK1 and CLK2. The outputs of CLK[0:2] can be configured as described below:

- CLK0= FREF, FREF/2 or Fvco/P*
- CLK1= FREF, FREF/2 or Fvco/P*
- CLK2= FREF, CLK0, CLK0/2 or CLK0/4

Where

FREF - Reference (Crystal) Frequency FOUT = FREF * M / (R * P)

The output drive level of each output can be independently programmed to Low Drive (4mA), Standard Drive (8mA) or High Drive (16mA). The output frequency can be programmed up to 200MHz at 3.3V (166MHz at 2.5V).

Output Enable Control (OE)

When activated (logic '0'), OE disables the clock output buffer putting it into a Hi-Z state. The PDB input incorporates a pull up resistor giving a default condition of logic "1".

Power-Down Control (PDB)

When activated (logic '0'), PDB 'Disables the PLL, the oscillator circuitry, counters, and all other active circuitry. In Power Down mode the IC consumes $<10\mu$ A of power. The PDB input incorporates a pull up resistor giving a default condition of logic "1".

Configuration Selectors (CSEL[0:1])

The PL671-00 has the capability to be programmed with 4 distinct configurations and to toggle "On the Fly" between these configurations using the selector pads CSEL0 and CSEL1. CSEL0 and CSEL1 both incorporate a pull up resistor giving a default condition of logic "1".

When the CSEL0/CLK2 pin is programmed to be CLK2, CSEL0 is set to a default of Logic 1. This means that two programmable configurations are available to be selected "On the Fly" using CSEL1.

ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

PARAMETERS	SYMBOL	MIN	MAX	UNITS
Supply Voltage Range	V _{DD}	-0.5	7	V
Input Voltage Range	VI	-0.5	V_{DD} +0.5	V
Output Voltage Range	Vo	-0.5	V_{DD} +0.5	V
Data Retention @ 85°C		10		Year
Storage Temperature	Ts	-65	150	°C
Ambient Operating Temperature*		-40	85	°C

Exposure of the device under conditions beyond the limits specified by Maximum Ratings for extended periods may cause permanent damage to the device and affect product reliability. These conditions represent a stress rating only, and functional operations of the device at these or any other conditions above the operational limits noted in this specification is not implied. *Operating temperature is guaranteed by design. Parts are tested to commercial grade only.

AC SPECIFICATIONS

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS
Crystal Input Frequency(XIN)	Fundamental Crystal	10		40	MHz
	@ V _{DD} =3.3V	1		200	MHz
Output Frequency	@ V _{DD} =2.5V			166	IVITIZ
Settling Time	At power-up (after V_{DD} increases over 2.25V)			2	ms
Output Enable Time	OE Function; Ta=25° C, 15pF Load. Add one clock period to this measurement for a usable output.			10	ns
	PDB Function; Ta=25° C, 15pF Load			2	ms
Output Dice Time	15pF Load, 10/90% V_{DD} , Standard Drive		2.0	3.0	nc
Output Rise Time	15pF Load, 10/90% V_{DD} , High Drive		1.2	1.7	ns
	15pF Load, 90/10% V_{DD} , Standard Drive		1.7	2.5	nc
Output Fall Time	15pF Load, 90/10% V _{DD} , High Drive		1.2	1.7	ns

47745 Fremont Blvd., Fremont, California 94538 Tel (510) 492-0990 Fax (510) 492-0991 www.phaselink.com Rev 12/22/08 Page 4

AC SPECIFICATIONS (Continued)

PARAMETERS	CONDITIONS		TYP	MAX	UNITS
Duty Cycle	At V _{DD} /2	45	50	55	%
Cycle to Cycle Jitter*	T _{CYC-CYC} Over output frequency range @ 3.3V			100	ps

* Note: Jitter performance depends on the programming parameters.

DC SPECIFICATIONS

PARAMETERS	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current, Dynamic,	I _{DD}	27MHz, 3.3V, load=15pF, (PDB=1)			15	mA
with Loaded Outputs	טטי	PDB=0			10	μA
Operating Voltage	V_{DD}		2.25		3.63	V
Power Supply Ramp	t _{PU}	Time for V_{DD} to reach 90% V_{DD} . Power ramp must be monotonic.			100	ms
Output Low Voltage	V _{OL}	I _{OL} = +4mA (Std Drive)			0.4	V
Output High Voltage	V _{он}	I _{OH} = -4mA (Std Drive)	V _{DD} - 0.4			V
Output Current, Low Drive	I _{OSD}	$V_{OL} = 0.4V$, $V_{OH} = 2.4V$	4			mA
Output Current, Std Drive	I _{OSD}	$V_{OL} = 0.4V$, $V_{OH} = 2.4V$	8			mA
Output Current, High Drive	I _{OHD}	$V_{OL} = 0.4V$, $V_{OH} = 2.4V$	16			mA

CRYSTAL SPECIFICATIONS

PARAMETERS		SYMBOL	MIN	TYP	MAX	UNITS
Fundamental Crystal Res	sonator Frequency	F _{XIN}	10		40	MHz
Crystal Loading Rating		C _{L (xtal)}		14		рF
Maximum Sustainable Drive Level					100	μW
Operating Drive Level	Operating Drive Level			30		μW
High CO	Shunt Capacitance	C0			5.5	рF
High C0	ESR Max	ESR			50	Ω
Low CO	Shunt Capacitance	C0			2.5	рF
Low C0	ESR Max	ESR			80	Ω

PL671-00

PicoEMI[™] Programmable Spread Spectrum Clock

ORDERING INFORMATION

For part ordering, please contact our Sales Department: 47745 Fremont Blvd., Fremont, CA 94538, USA Tel: (510) 492-0990 Fax: (510) 492-0991									
	PART NUMBER The ordering number for this device is a combination of the following: Part number, Package type and Operating temperature range								
	PL671 Part Number — Package Type D=Die W=Wafer		e <u>rature</u> nmercial (0°C to 70°C)						
	Part / Order Number Marking Package Option								
	PL671-00DC	PL671-00DC	Die (Waffle pack)						
	PL671-00WC PL671-00WC Wafer								

PhaseLink Corporation, reserves the right to make changes in its products or specifications, or both at any time without notice. The information furnished by Phaselink is believed to be accurate and reliable. However, PhaseLink makes no guarantee or warranty concerning the accuracy of said information and shall not be responsible for any loss or damage of whatever nature resulting from the use of, or reliance upon this product.

LIFE SUPPORT POLICY: PhaseLink's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of PhaseLink Corporation.