

PMGD290UCEA

20 / 20 V, 725 / 500 mA N/P-channel Trench MOSFET 28 March 2014

Product data sheet

General description 1.

Complementary N/P-channel enhancement mode Field-Effect Transistor (FET) in a very small SOT363 Surface-Mounted Device (SMD) plastic package using Trench MOSFET technology.

Features and benefits 2.

- Very fast switching
- Trench MOSFET technology
- 2 kV ESD protection
- AEC-Q101 qualified

Applications

- Relay driver
- High-speed line driver
- Low-side loadswitch
- Switching circuits
- Automotive applications

Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit	
TR1 (N-channe	TR1 (N-channel), Static characteristics							
R _{DSon}	drain-source on-state resistance	V_{GS} = 4.5 V; I_D = 500 mA; T_j = 25 °C		-	290	380	mΩ	
TR2 (P-channe	TR2 (P-channel), Static characteristics							
R _{DSon}	drain-source on-state resistance	V_{GS} = -4.5 V; I_D = -400 mA; T_j = 25 °C		-	670	850	mΩ	
TR1 (N-channe	el)							
V _{DS}	drain-source voltage	T _j = 25 °C		-	-	20	V	
V_{GS}	gate-source voltage			-8	-	8	V	
I _D	drain current	V _{GS} = 4.5 V; T _{amb} = 25 °C	[1]	-	-	725	mA	
TR2 (P-channe	TR2 (P-channel)							
V _{DS}	drain-source voltage	T _j = 25 °C		-	-	-20	V	

© NXP Semiconductors N.V. 2014. All rights reserved

20 / 20 V, 725 / 500 mA N/P-channel Trench MOSFET

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{GS}	gate-source voltage			-8	_	8	V
I _D	drain current	V _{GS} = -4.5 V; T _{amb} = 25 °C	[1]	-	-	-500	mA

^[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and mounting pad for drain 1 cm².

Pinning information

Table 2. **Pinning information**

Pin	Symbol	Description	Simplified outline	Graphic symbol
1	S1	source TR1	<u>654</u>	D1 D2
2	G1	gate TR1		
3	D2	drain TR2	0	G1 $G2$ $G2$
4	S2	source TR2	∐1 ∐2 ∐3	
5	G2	gate TR2	TSSOP6 (SOT363)	
6	D1	drain TR1		S1 S2 017aaa262

Ordering information

Ordering information Table 3.

Type number	Package				
	Name	Description	Version		
PMGD290UCEA	TSSOP6	plastic surface-mounted package; 6 leads	SOT363		

Marking

Table 4. Marking codes

Tuble 4. Marking codes	
Type number	Marking code
	[1]
PMGD290UCEA	YD%

^{[1] % =} placeholder for manufacturing site code

Limiting values

Table 5. **Limiting values**

PMGD290UCEA

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
TR1 (N-channel)						
V_{DS}	drain-source voltage	T _j = 25 °C		-	20	V
V_{GS}	gate-source voltage			-8	8	V

Symbol	Parameter	Conditions		Min	Max	Unit
I _D	drain current	V _{GS} = 4.5 V; T _{amb} = 25 °C	[1]	-	725	mA
		V _{GS} = 4.5 V; T _{amb} = 100 °C	[1]	-	450	mA
I _{DM}	peak drain current	T_{amb} = 25 °C; single pulse; $t_p \le 10$ μs		-	3	Α
P _{tot}	total power dissipation	T _{amb} = 25 °C	[2]	-	280	mW
			[1]	-	320	mW
		T _{sp} = 25 °C		-	990	mW
TR1 (N-cha	nnel), Source-drain diode					
I _S	source current	T _{amb} = 25 °C	[1]	-	370	mA
TR1 N-char	nnel), ESD maximum rating		'		'	
V _{ESD}	electrostatic discharge voltage	НВМ	[3]	-	2000	V
TR2 (P-cha	nnel)	1				
V _{DS}	drain-source voltage	T _j = 25 °C		-	-20	V
V _{GS}	gate-source voltage			-8	8	V
I _D	drain current	V _{GS} = -4.5 V; T _{amb} = 25 °C	[1]	-	-500	mA
		V _{GS} = -4.5 V; T _{amb} = 100 °C	[1]	-	-320	mA
I _{DM}	peak drain current	T_{amb} = 25 °C; single pulse; $t_p \le 10$ μs		-	-2	Α
P _{tot}	total power dissipation	T _{amb} = 25 °C	[2]	-	280	mW
			[1]	-	320	mW
		T _{sp} = 25 °C		-	990	mW
TR2 (P-cha	nnel), Source-drain diode		'		'	
I _S	source current	T _{amb} = 25 °C	[1]	-	-370	mA
TR2 (P-cha	nnel), ESD maximum rating				-	
V _{ESD}	electrostatic discharge voltage	НВМ	[3]	-	2000	V
Per device	,		(1	
P _{tot}	total power dissipation	T _{amb} = 25 °C	[2]	-	445	mW
T _j	junction temperature			-55	150	°C
T _{amb}	ambient temperature			-55	150	°C
T _{stg}	storage temperature			-65	150	°C
	The state of the s	The state of the s	1		1	1

^[1]

Device mounted on an FR4 PCB, single-sided copper, tin-plated and mounting pad for drain 1 cm². Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper; tin-plated and standard

Measured between all pins.

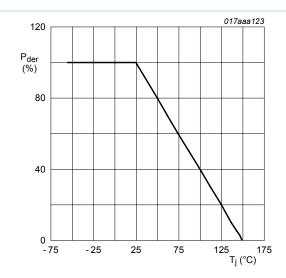


Fig. 1. Normalized total power dissipation as a function of junction temperature

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100 \%$$

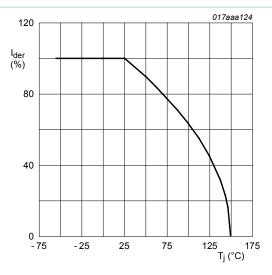


Fig. 2. Normalized continuous drain current as a function of junction temperature

$$I_{der} = \frac{I_D}{I_{D(25^{\circ}C)}} \times 100 \%$$

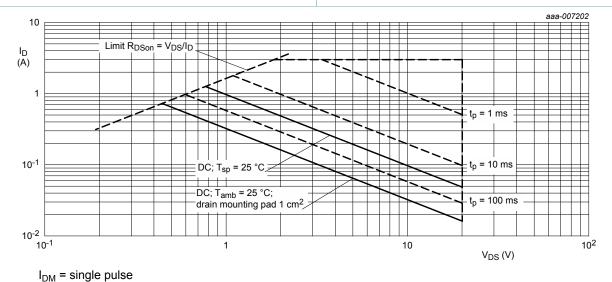


Fig. 3. TR1 (N-channel): safe operating area; junction to ambient; continuous and peak drain currents as a function of drain-source voltage

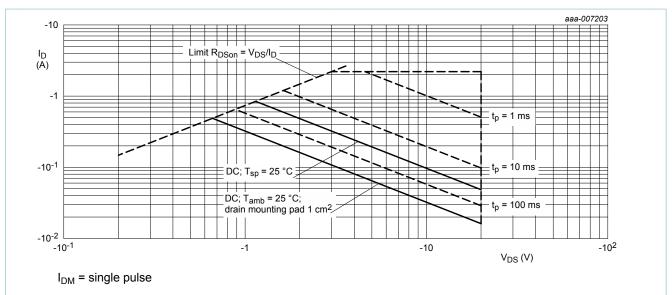
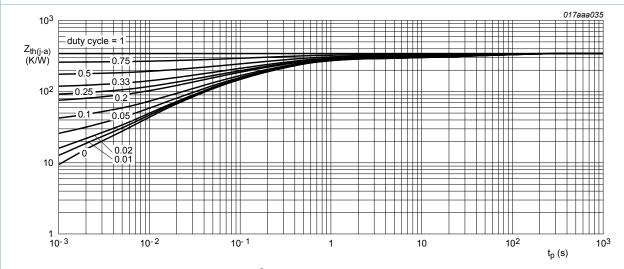


Fig. 4. TR2 (P-channel): safe operating area; junction to ambient; continuous and peak drain currents as a function of drain-source voltage

9. Thermal characteristics

Table 6. Thermal characteristics


Symbol	Parameter	Conditions		Min	Тур	Max	Unit
TR1 (N-cha	nnel)		,				,
R _{th(j-a)} thermal resistance from junction to ambient	in free air	[1]	-	390	445	K/W	
		[2]	-	340	390	K/W	
R _{th(j-sp)}	thermal resistance from junction to solder point			-	-	130	K/W
TR2 (P-cha	nnel)		,				
R _{th(j-a)}	thermal resistance	in free air	[1]	-	390	445	K/W
	from junction to ambient		[2]	-	340	390	K/W
$R_{\text{th(j-sp)}}$	thermal resistance from junction to solder point			-	-	130	K/W
Per device			1				,
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	[1]	-	-	300	K/W

^[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper; tin-plated and standard footprint.

^[2] Device mounted on an FR4 PCB, single-sided copper, tin-plated and mounting pad for drain 1 cm².

Fig. 5. TR1: Transient thermal impedance from junction to ambient as a function of pulse duration; typical values

FR4 PCB, mounting pad for drain 1 cm².

Fig. 6. TR1: Transient thermal impedance from junction to ambient as a function of pulse duration; typical values

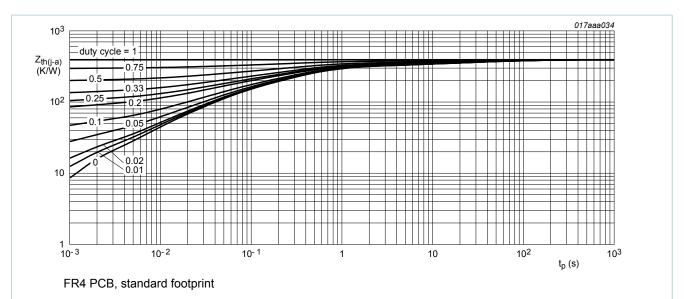


Fig. 7. TR2: transient thermal impedance from junction to ambient as a function of pulse duration; typical values

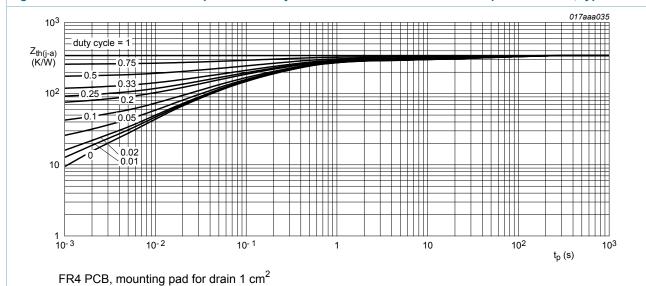


Fig. 8. TR2: transient thermal impedance from junction to ambient as a function of pulse duration; typical values

10. Characteristics

Table 7 Characteristics

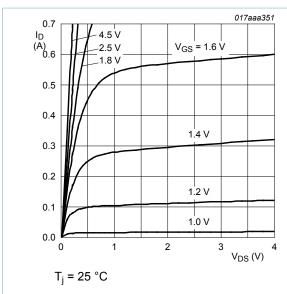
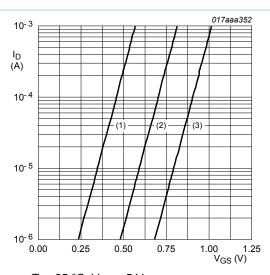
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
TR1 (N-ch	annel), Static characteristic	s		1		
V _{(BR)DSS}	drain-source breakdown voltage	I_D = 250 μ A; V_{GS} = 0 V; T_j = 25 °C	20	-	-	V
V_{GSth}	gate-source threshold voltage	$I_D = 250 \mu A; V_{DS} = V_{GS}; T_j = 25 \text{ °C}$	0.5	0.75	0.95	V
I _{DSS}	drain leakage current	V _{DS} = 20 V; V _{GS} = 0 V; T _j = 25 °C	-	-	1	μA
		V _{DS} = 20 V; V _{GS} = 0 V; T _j = 150 °C	-	-	10	μA
I _{GSS}	gate leakage current	V _{GS} = 8 V; V _{DS} = 0 V; -40 °C < T _j < 150 °C	-	-	10	μA
		V _{GS} = -8 V; V _{DS} = 0 V; -40 °C < T _j < 150 °C	-	-	-10	μA
R _{DSon}	drain-source on-state	V _{GS} = 4.5 V; I _D = 500 mA; T _j = 25 °C	-	290	380	mΩ
resistance	V _{GS} = 4.5 V; I _D = 500 mA; T _j = 150 °C	-	460	610	mΩ	
		V _{GS} = 2.5 V; I _D = 200 mA; T _j = 25 °C	-	420	620	mΩ
	V_{GS} = 1.8 V; I_D = 10 mA; T_j = 25 °C	-	0.6	1.1	Ω	
9 _{fs}	transfer conductance	V_{DS} = 10 V; I_{D} = 200 mA; T_{j} = 25 °C	-	1.6	-	S
TR1 (N-ch	annel), Dynamic characteris	stics		'	'	,
Q _{G(tot)}	total gate charge	V _{DS} = 10 V; I _D = 500 mA; V _{GS} = 4.5 V;	-	0.45	0.68	nC
Q_{GS}	gate-source charge	T _j = 25 °C	-	0.15	-	nC
Q_{GD}	gate-drain charge		-	0.15	-	nC
C _{iss}	input capacitance	V _{DS} = 10 V; f = 1 MHz; V _{GS} = 0 V;	-	55	83	pF
C _{oss}	output capacitance	T _j = 25 °C	-	15	-	pF
C _{rss}	reverse transfer capacitance		-	7	-	pF
t _{d(on)}	turn-on delay time	V_{DS} = 10 V; R_L = 250 Ω ; V_{GS} = 4.5 V;	-	6	12	ns
t _r	rise time	$R_{G(ext)} = 6 \Omega; T_j = 25 °C$	-	4	-	ns
$t_{d(off)}$	turn-off delay time		-	86	172	ns
t _f	fall time		-	31	-	ns
TR1 (N-ch	annel), Source-drain diode	characteristics	ı	-		
V_{SD}	source-drain voltage	I_S = 300 mA; V_{GS} = 0 V; T_j = 25 °C	0.48	0.77	1.2	V
TR2 (P-ch	annel), Static characteristic	s	ı	-		
V _{(BR)DSS}	drain-source breakdown voltage	$I_D = -250 \mu A; V_{GS} = 0 V; T_j = 25 °C$	-20	-	-	V

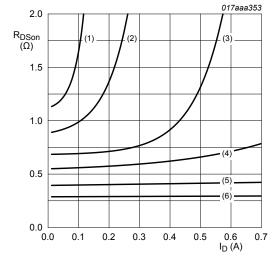
PMGD290UCEA

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2014. All rights reserved

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{GSth}	gate-source threshold voltage	$I_D = -250 \mu A; V_{DS} = V_{GS}; T_j = 25 \text{ °C}$	-0.5	-0.8	-1.3	V
I _{DSS}	drain leakage current	V_{DS} = -20 V; V_{GS} = 0 V; T_j = 25 °C	-	-	-1	μA
		V _{DS} = -20 V; V _{GS} = 0 V; T _j = 150 °C	-	-	-10	μΑ
I _{GSS} gate leakage current	V _{GS} = 8 V; V _{DS} = 0 V; -40 °C < T _j < 150 °C	-	-	10	μA	
		V _{GS} = -8 V; V _{DS} = 0 V; -40 °C < T _j < 150 °C	-	-	-10	μA
R _{DSon}	oson drain-source on-state	V_{GS} = -4.5 V; I_D = -400 mA; T_j = 25 °C	-	670	850	mΩ
resistance	V_{GS} = -4.5 V; I_D = -400 mA; T_j = 150 °C	-	1.1	1.4	Ω	
	V_{GS} = -2.5 V; I_D = -200 mA; T_j = 25 °C	-	1.2	1.5	Ω	
		V _{GS} = -1.8 V; I _D = -10 mA; T _j = 25 °C	-	1.8	2.8	Ω
9fs	transfer conductance	V _{DS} = -10 V; I _D = -200 mA; T _j = 25 °C	-	610	-	mS
TR2 (P-cha	nnel), Dynamic characteris	stics	l			
Q _{G(tot)}	total gate charge	$V_{DS} = -10 \text{ V}; I_D = -400 \text{ mA};$	-	0.76	1.14	nC
Q _{GS}	gate-source charge	$V_{GS} = -4.5 \text{ V}; T_j = 25 \text{ °C}$	-	0.28	-	nC
Q_{GD}	gate-drain charge		-	0.18	-	nC
C _{iss}	input capacitance	V _{DS} = -10 V; f = 1 MHz; V _{GS} = 0 V;	-	58	87	pF
C _{oss}	output capacitance	T _j = 25 °C	-	21	-	pF
C _{rss}	reverse transfer capacitance		-	12	-	pF
t _{d(on)}	turn-on delay time	V_{DS} = -10 V; R_L = 250 Ω ; V_{GS} = -4.5 V;	-	18	36	ns
t _r	rise time	$R_{G(ext)} = 6 \Omega$; $T_j = 25 °C$	-	30	-	ns
t _{d(off)}	turn-off delay time		-	80	160	ns
t _f	fall time		-	72	-	ns
TR2 (P-cha	nnel), Source-drain diode	characteristics	1	1	1	
V_{SD}	source-drain voltage	$I_S = -300 \text{ mA}; V_{GS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C}$	-0.48	-0.84	-1.2	V


Fig. 9. TR1; Output characteristics: drain current as a function of drain-source voltage; typical values

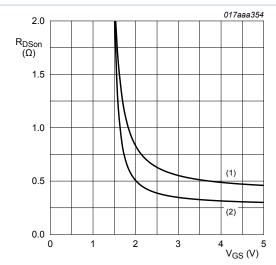
$$T_i = 25 \,^{\circ}C; V_{DS} = 5 \,^{\circ}V$$

- (1) minimum values
- (2) typical values
- (3) maximum values

Fig. 10. TR1; Sub-threshold drain current as a function of gate-source voltage

(1)
$$V_{GS} = 1.3 \text{ V}$$

(2)
$$V_{GS} = 1.4 \text{ V}$$

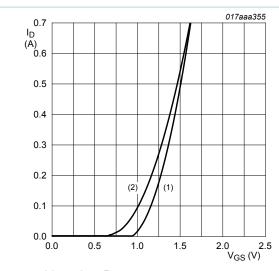

$$(3) V_{GS} = 1.6 V$$

$$(4) V_{GS} = 1.8 V$$

$$(5) V_{GS} = 2.5 V$$

$$(6) V_{GS} = 4.5 V$$

Fig. 11. TR1; Drain-source on-state resistance as a function of drain current; typical values



 $I_D = 400 \text{ mA}$

(1)
$$T_i = 150 \, ^{\circ}C$$

(2)
$$T_i = 25 \, ^{\circ}C$$

Fig. 12. TR1; Drain-source on-state resistance as a function of gate-source voltage; typical values

 $V_{DS} > I_D \times R_{DSon}$

(1) $T_j = 25$ °C

(2) $T_j = 150 \, ^{\circ}C$

Fig. 13. TR1; Transfer characteristics: drain current as a function of gate-source voltage; typical values

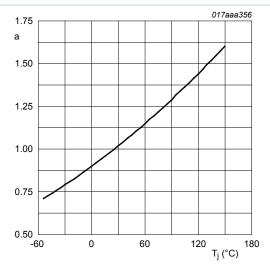
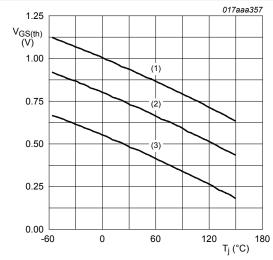
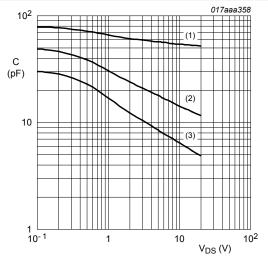



Fig. 14. TR1; Normalized drain-source on-state resistance as a function of junction temperature; typical values


$$a = \frac{R_{DSon}}{R_{DSon(25^{\circ}C)}}$$

 $I_D = 0.25 \text{ mA}; V_{DS} = V_{GS}$

- (1) maximum values
- (2) typical values
- (3) minimum values

Fig. 15. TR1; Gate-source threshold voltage as a function of junction temperature

 $f = 1 MHz; V_{GS} = 0 V$

- (1) C_{iss}
- (2) C_{oss}
- (3) C_{rss}

Fig. 16. TR1; Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

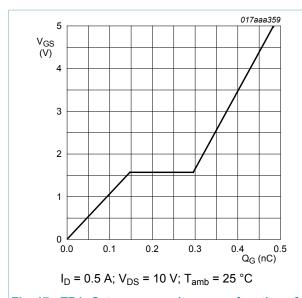


Fig. 17. TR1; Gate-source voltage as a function of gate charge; typical values

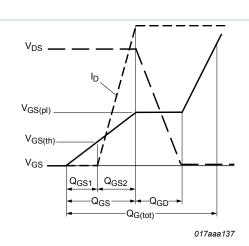
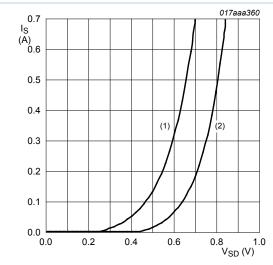
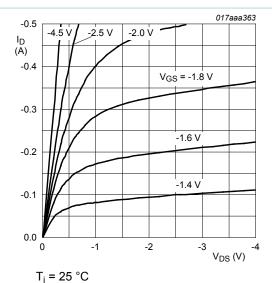
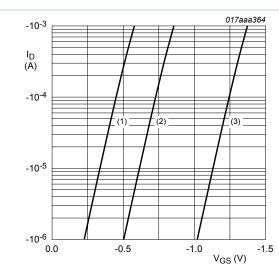
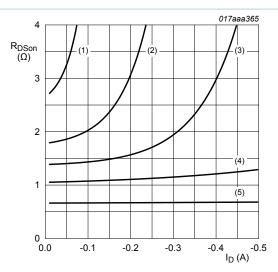



Fig. 18. Gate charge waveform definitions

 $V_{GS} = 0 V$ (1) $T_j = 150 \,^{\circ}C$ (2) $T_i = 25 \,^{\circ}C$

Fig. 19. TR1; Source current as a function of sourcedrain voltage; typical values


Fig. 20. TR2; Output characteristics: drain current as a function of drain-source voltage; typical values

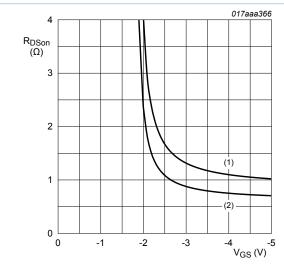
$$T_i = 25 \,^{\circ}C; \, V_{DS} = -5 \,^{\circ}V$$

- (1) minimum values
- (2) typical values
- (3) maximum values

Fig. 21. TR2; Sub-threshold drain current as a function of gate-source voltage

$$T_i = 25 \,^{\circ}C$$

$$(1) V_{GS} = -1.5 V$$

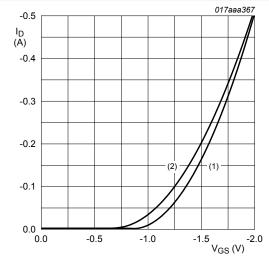

$$(2) V_{GS} = -1.8 V$$

$$(3) V_{GS} = -2.0 V$$

$$(4) V_{GS} = -2.5 V$$

$$(5) V_{GS} = -4.5 V$$

Fig. 22. TR2; Drain-source on-state resistance as a function of drain current; typical values



 $I_D = -400 \text{ mA}$

(1)
$$T_i = 150 \, ^{\circ}C$$

(2)
$$T_i = 25 \, ^{\circ}C$$

Fig. 23. TR2; Drain-source on-state resistance as a function of gate-source voltage; typical values

 $V_{DS} > I_D \times R_{DSon}$ (1) $T_i = 25 \text{ °C}$

(2)
$$T_i = 150 \,^{\circ}\text{C}$$

Fig. 24. TR2; Transfer characteristics: drain current as a function of gate-source voltage; typical values

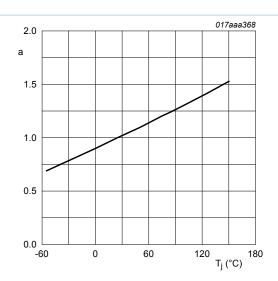
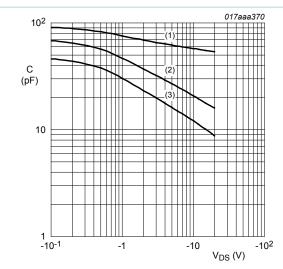
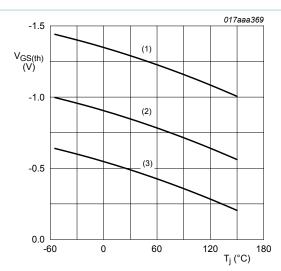



Fig. 25. TR2; Normalized drain-source on-state resistance as a function of ambient temperature; typical values

$$\mathbf{a} = \frac{R_{DSon}}{R_{DSon(25^{\circ}C)}}$$

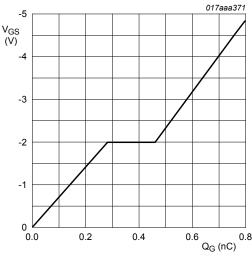

 $f = 1 MHz; V_{GS} = 0 V$

(1) C_{iss}

(2) C_{oss}

(3) C_{rss}

Fig. 27. TR2; Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values


 $I_D = -0.25 \text{ mA}; V_{DS} = V_{GS}$

(1) maximum values

(2) typical values

(3) minimum values

Fig. 26. TR2; Gate-source threshold voltage as a function of junction temperature

 I_D = -0.4 A; V_{DD} = -10 V; T_{amb} = 25 °C

Fig. 28. TR2; Gate-source voltage as a function of gate charge; typical values

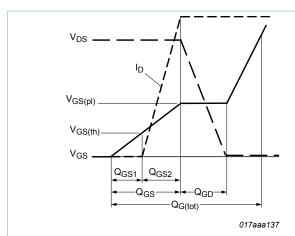


Fig. 29. Gate charge waveform definitions

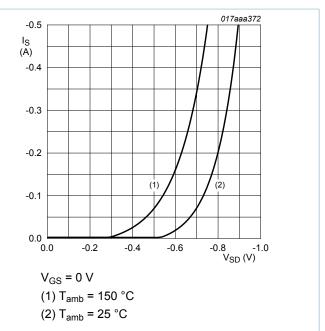
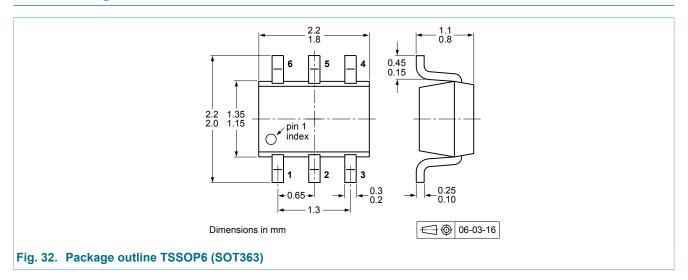
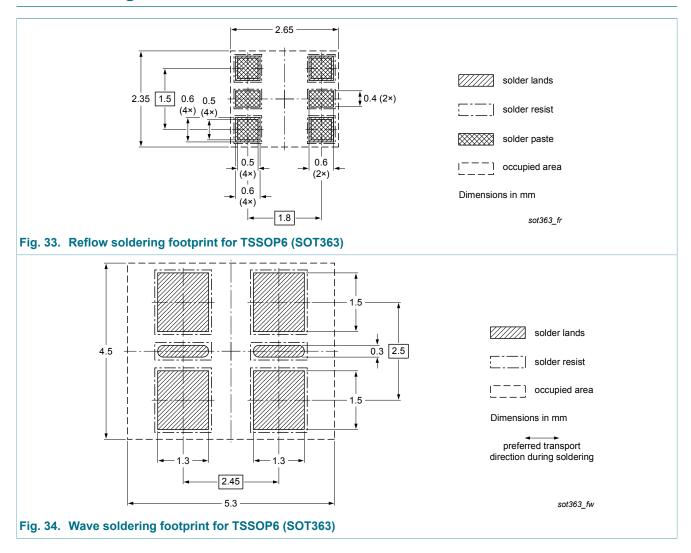



Fig. 30. TR2; Source current as a function of sourcedrain voltage; typical values


11. Test information

11.1 Quality information


This product has been qualified in accordance with the Automotive Electronics Council (AEC) standard Q101 - Stress test qualification for discrete semiconductors, and is suitable for use in automotive applications.

12. Package outline

16 / 21

13. Soldering

14. Revision history

Table 8. Revision history

Data sheet ID	Release date	Data sheet status	Change notice	Supersedes		
PMGD290UCEA v.3	20140328	Product data sheet	-	PMGD290UCEA v.2		
Modifications:	Table 7: I _{GSS} param	Table 7: I _{GSS} parameter unit corrected				
PMGD290UCEA v.2	20130418	Product data sheet	-	PMGD290UCEA v.1		
PMGD290UCEA v.1	20130415	Product data sheet	-	-		

15. Legal information

15.1 Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Preview — The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

PMGD290UCEA

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2014. All rights reserved

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Adelante, Bitport, Bitsound, CoolFlux, CoReUse, DESFire, EZ-HV, FabKey, GreenChip, HiPerSmart, HITAG, I²C-bus logo, ICODE, I-CODE, ITEC, Labelution, MIFARE, MIFARE Plus, MIFARE Ultralight, MoReUse, QLPAK, Silicon Tuner, SiliconMAX, SmartXA, STARplug, TOPFET, TrenchMOS, TriMedia and UCODE — are trademarks of NXP Semiconductors N.V.

 $\ensuremath{\mathbf{HD}}$ Radio and $\ensuremath{\mathbf{HD}}$ Radio logo — are trademarks of iBiquity Digital Corporation.

16. Contents

1	General description	1
2	Features and benefits	1
3	Applications	1
4	Quick reference data	1
5	Pinning information	2
6	Ordering information	2
7	Marking	2
8	Limiting values	2
9	Thermal characteristics	5
10	Characteristics	8
11	Test information	16
11.1	Quality information	16
12	Package outline	16
13	Soldering	17
14	Revision history	18
15	Legal information	19
15.1	Data sheet status	19
15.2	Definitions	19
15.3	Disclaimers	19
15.4	Trademarks	20

© NXP Semiconductors N.V. 2014. All rights reserved

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 28 March 2014