PN4302 SERIES

N-Channel JFETs

The PN4302 Series of multi-purpose JFETs is designed for a wide range of low cost applications. It features low gate leakage and capacitance, which makes these devices ideal for high-frequency amplifiers. This series is packaged in TO-92 for low cost and compatibility with automated assembly.

For further design information please consult the typical performance curves NPA which are located in Section 7.

PART NUMBER	V _{GS(OFF)} MAX (V)	V _(BR) GSS MIN (V)	g fs MIN (mS)	I _{DSS} MAX (mA)
PN4302	-4	-30	1	5
PN4303	-6	-30	2	10
PN4304	-10	-30	1	15

SIMILAR PRODUCTS

- TO-18. See 2N4338 Series
- SOT-23, See SST201 Series
- Chips, Order PN430XCHP

BOTTOM VIEW

1 DRAIN 2 SOURCE

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS	
Gate-Drain Voltage	$V_{\sf GD}$	-30	٧	
Gate-Source Voltage	V _{GS}	-30		
Gate Current	IG	50	mA	
Power Dissipation	PD	360	mW	
Power Derating		3.27	mW/°C	
Operating Junction Temperature	TJ	-55 to 135		
Storage Temperature	T _{stg}	-55 to 150	°C	
Lead Temperature (1/16" from case for 10 seconds)	TL	300		

PN4302 SERIES

ELECTRICAL CHARACTERISTICS 1			LIMITS							
	,			PN4302		PN4303		PN4304		
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ²	MIN	МАХ	MIN	MAX	MIN	МАХ	UNIT
STATIC										
Gate-Source Breakdown Voltage	V _{(BR)GSS}	I _G = -1μΑ, V _{DS} = 0 V	-57	-30		-30		-30		
Gate-Source Cutoff Voltage	V _{GS(OFF)}	V _{DS} = 20 V, I _D = 10 nA			-4		-6		-10	٧
Saturation Drain Current ³	I _{DSS}	V _{DS} = 20 V, V _{GS} = 0 V		0.5	5	4	10	0.5	15	mA
Gate Reverse Current	I _{GSS}	V _{GS} = -10 V V _{DS} = 0 V	-0.001 -0.03		-1 -100		-1 -100		-1 -100	nA
Gate-Source Forward Voltage	V _{GS(F)}	I _G = 1 mA, V _{DS} = 0 V	0.7							٧
DYNAMIC										
Common-Source Forward Transconductance	g _{fs}	V _{DS} = 20 V, V _{GS} = 0 V		1		2		1		mS
Common-Source Output Conductance	g _{os}	f = 1 kHz			50		50		50	ДS
Common-Source Input Capacitance	C _{iss}	V _{DS} = 20 V, V _{GS} = 0 V	4.5		6		6		6	
Common-Source Reverse Transfer Capacitance	C _{rss}	f = 1 MHz	1.3		3		3		3	pF
Equivalent Input Noise Voltage	ē _n	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}$ f = 1 kHz	6							nV/Hz
Noise Figure	NF	V_{DS} = 10 V, V_{GS} = 0 V f = 1 kHz, R $_{G}$ = 1 M Ω	<0.1		2		2		3	dB

NOTES: 1. $T_A = 25\,^{\circ}\text{C}$ unless otherwise noted. 2. For design aid only, not subject to production testing. 3. Pulse test; PW = 300 μ s, duty cycle $\leq 3\%$.