messe.electronic

PICOSTRAIN®

Data Sheet

PSQ9

Single Chip Solution for Strain Gauges
Volume 2: CPU

5th November 2014
Document-No: DB_PSHU9 Vol2_en V1.0

Member of the ams Group

PS@Q DSP mess-electronic

1 Overview

1.1 General

The PS@9 is a system-on-chip for ultra low-power and high resolution applications. It was
designed especially for weight scales but fits also to any kind of force or torque
measurements based on metal strain gages. It takes full advantage of the digital
measuring principle of PICOSTRAIN. Thus, it combines the performance of a 28-Bit signal
converter with a 24-Bit microprocessor. This volume 2 datasheet describes the PS@J9 CPU
and the instruction set for programming the CPU. In stand-alone operation it is mandatory
to have a program running in the CPU, but also in front-end mode, when operated as pure
resistance-to-digital converter, the CPU might be used to implement additional data post-
processing on chip.

For a general description of the converter front-end, configuration and electrical
characteristics please refer to datasheet volume 1.

1.2 Functional Block Diagram
Ceramic |:|
oscilaltor
10 kHz 4 Mhz ;
| CLK | Ref Osc | Watchdog Timer Reset |
T
.. -* . - ;
|
Measurement |
Unit
Load cell oc v »External LCD Driver
ER:
Co
Load cell g 5w < » 8 Digital GPIOs
g2 | = RAM
K 2 =] 160 x 24 0 [» up to 4 Capacitive Keys
Load cell 8 Bit EEPROM Pins
_ E < » up to 24 Resistive Keys
c o Config 128 x 8 8K x 8 ROM
oo . X
Load cell gRe Bit Bt oTe || 3Kx8
508 ! Bit
[€——-» UART GPIOs
Y
SPI / IIC -Interface UART
K
VY SPI / IIC
Figure 1-1: PS@9 block diagram
acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 1-3

Member of the ams Group

PICOSTRAIN® PS@9 DSP
2 CPU & Memory

acam designed its own proprietary 24-bit central processing unit. It combines calculation
power with ultro-low power operation. Only this special design made it possible to build a
system that runs with a few pA current only, but offers complex post-processing of the
high-resolution measurement data.

The program itself is stored in an 8k OTP. During development it can be stored
alternatively in an external EEPROM.

For effective programming, acam implemented already some special functions like the
48-bit ultiplication and division in ROM code.

2.1 Block Diagram

Figure 2-1: Block Diagram

oM e

16-bit address

oTP / H ALU
external .
EEPROM (el I“‘b't
8-bit ‘é‘
) H RAM
16-bit © :
L fig —
Iaddress ‘E — Config —
o
O

8-bit
address

Program ' '
Counter

RAM Address
I Pointer
¢7-bit address
[Stack — 8-bit U
L 8 Level | H ser
EEPROM

{

SPI / IIC Serial Interface

2-4 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

[
PSZQ DSP mess-electronic

2.2 Memory Organization

Figure 2-2: PS589 Memory Organization

FFFF h 65535
.................... ROM Program memory 4k
FOOO h 61440
EFFF h 61439
.................... Reserved
2000 h 8192
1FFF h 8191
.................... User program Memory
8192 bytes of OTP / External EEPROM 8k
2F h 47
.................... Configuration, optional (mirrored to RAM])
0000 h 0

2.2.1 OTP

The user program memory in PSS available for user programming is 8 kbyte in size. This
8 kB user program memory is implemented by an on-chip one time programmable ROM,
the OTP. As the name suggests, this memory is writable only once. Hence for development
of the user program, the PSS supports an erasable and re-programmable external
EEPROM, maximum 8 kB in size. Once the application program development is complete
with the external EEPROM, then the same program can be downloaded into the OTP and it
will function in the same manner with the OTP.

(Except prolonged code execution time as described further in 2.2.3).

The first 48 bytes of the OTP from location O - 47 are reserved for the configuration data.
In order to enable programming of the OTP, an external programming voltage of 6.5 V
must be available on pin VPP_OTP of the PS@83.

The following flow diagram shows how the OTP is generally handled, details follow in
subsequent sections.

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-5

Member of the ams Group

PICOSTRAIN® PS@9 DSP

Figure 2-3: Using the OTP

[Apply OTP programming voltage J

I
I
Writing to the :
oTP <
I v

I
| [Write the OTP contents J

I

[Unprotect OTP (Read Fuse Address)]

oTP

\ 4
[Read and verify the contents of OTP]

-
|
|
|

Reading the :
|
|
|
|

\ -
Writing
Completed No
Yes
e ey o e |
Read : :
proteét_lu_r;g the | [Read protect OTP (Write to Fuse address)] |
| |

2.2.1.1 Writing to the OTP

The OTP needs an external voltage of 6.5 V on the VPP_QOTP pin of the PS®9 in order to
enable programming. In addition to enabling the OTP, there are op codes to enable and
disable the PROG (Enable Programming] signal of the OTP.

The following is a flowchart that shows the SPI command sequence to write a byte to the
oTP.

2-6 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

PS8 DSP

Figure 2-4: Writing to the OTP

[Send pulse on SPI_CSN]
v
[SPI Byte write: otp_enable_on]
i
[Send pulse on SPI_CSN]
¥
[SPI Byte write: otp_prog_ena_on]

[Send pulse on SPI_CSN]
v
SPI Byte write: otp_write (0xA7)]
¥
SPI Byte write: Dummy byte 00 J

v
[SPI Byte write: Block Address

I

SPI Byte write: Address]

v
SPI Byte write: Data [7:0]]
¥
Wait for programming time 30 us]
¥
[Send pulse on SPI_CSN]

Write byte
to Next
address ?

No

(Send pulse on SPI_CSN }

¥
L SPI Byte write : otp_prog_ena_off]
]
[Send pulse on SPI_CSN]
v

[SPI Byte write : otp_enable_off]

mess-electronic

For a list of all op codes pertaining to accessing the OTP through the SPI / IIC interface,
refer to Vol.1, Chapter 4, section 4.5.3.3 OTP Access.

2.2.1.2 Reading the OTP

On power on reset, the OTP is by default read protected. An un-programmed OTP content
is all Os. To enable the OTP, the Address 8143, called the Fuse Address must be read
first. When the content of the Fuse address is all Os indicating an un-programmed OTP,

then the OTP is enabled for reading, i.e. the OTP is unprotected.
Hence this de-protection is the first step in working with the OTP.

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

2-7

PICOSTRAIN® PS@9 DSP

The following is a flowchart that shows the general sequence of sending SPI commands to
read a byte from the OTP. This is the sequence to be used when controlling the PSS by
an external microcontroller, through the SPI / IIC interface.

Figure 2-5: Reading the OTP

[Send pulse on SPI_CSN]
v
[SPI Byte write : otp_enable_on]
i
[Send pulse on SPI_CSN]
¥
[SPI Byte write : Dummy byte 00*]

[Send pulse on SPI_CSN]

v

[SPI Byte write : otp_read (0xA6)]
v

[SPI Byte write : Dummy byte 00*]
¥

[SPI Byte write : Block Address]
¥

[SPI Byte write : Address J
T
)

[Read byte on DO_IOO0 }

Read byte
from next
address?

[Send pulse on SPI_CSN]
¥
[SPI Byte write : otp_enable_off]

* the Dummy byte (0x00) is required to be sent as it is needed because of timing purposes

For a list of values of all op codes for accessing the OTP through the SPI / IIC interface,
refer to Vol.1, Chapter 4, section 4.5.3.3 OTP Access.

2.2.1.3 Read protecting the OTP

Once the OTP has been programmed with the user program and when the code
development is complete, the code can be read protected with the Fuse address. For read
protecting the OTP, the fuse address 8143 must be written with a non-zero value. The
read protection process is completed by reading the address 8143 after writing it with
the non-zero value.

2.2.2 External EEPROM

An external EEPROM of up to 8 kB size is supported as user program memory by the
PS@S with the sole purpose of supporting user program development. The final program
will be written to the on-chip OTP. It is to be noted that the program will be executed in

2-8 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

|
PS@Q DSP mess-electronic

exactly the same manner, irrespective of whether the user program memory is the OTP or
the external EEPROM.

The programming sequence to write a byte into the external EEPROM and to read a byte
from the external EEPROM through the SPI / IIC interface can be found under Vol.1,
Chapter 4, section 4.5.3.4 External EEPROM Access.

Remark: If no EEPROM is connected, pin 8 (EE_DATA) must be terminated with a
capacitance of 100 pF to GND.

2.2.3 User Program development using the external EEPROM
This section describes how the program can be developed by the user using the external
EEPROM as the program memory.

As already stated, basically a user program is executed in the same manner, irrespective
of whether the user program memory used is the OTP or the external EEPROM. However
the PSJ9 has to know, which of the two has to be used as the user program memory. For
this purpose, as a standard operation on power-up, the PSd9 checks for the presence of
an external EEPROM by reading address O of the external EEPROM. When OO or FF is
read back from address O of the EEPROM, then the PSUS takes the internal OTP as the
user program memory and executes the code from the OTP. When a value other than OO
and FF is read from the Address O of the external EEPROM, then the EEPROM is
considered to be the user program memory by the chip and user code in the external
EEPROM is executed.

The content of address OO corresponds to value of the bits 23:16 of Configuration
register O (tdc_conv_cnt).

Figure 2-6: Program Memory on POR

Power on

A 4

[External EEPROM Address 0 = 00 or FF?]
Yes No
OTP is the user program External EEPROM is the
memory user program memory

Once the user program development is completed using the external EEPROM then, the
final program is ready to be written to the OTP. Then the external EEPROM is either
removed physically or it is made inactive to the PSS by writing the address OO of the
external EEPROM with OO or FF. The following flowchart gives an overview of how the user
program is developed using the EEPROM and transferred to the OTP finally.

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-9

Member of the ams Group

PICOSTRAIN® PS@9 DSP

Figure 2-7: User Programm Development

Connect external EEPROM

<

\J

Write value (#00 & #FF) at

external EEPROM address 00

and Write other cnfiguration
registers

v

Develop user program
subsequently

v

Does program
work ? Is
development
complete?

No

Remove external EEPROM or
Write 00 to address 00 of
external EEPROM

A 4

Program OTP

Described in
Section 6.2.1 v

Read and Verify

The PSS Assembler Software which is used for user program development supports
downloading the developed program to the external EEPROM or to the on chip OTP. The
target for downloading the program can be selected from a drop down list on the
Download page of the assembler.

The lower 48 bytes in the user program memory are reserved for an automatic
configuration of the PSH9 during a power-on reset. 3 successive bytes are added to a 24
bit word. So there are 16 words of 24 bit each that are used for configuration register O
to 15. During a power- on reset they are copied into RAM addresses 48 to 63.

Generally the code execution from the external EEPROM takes longer than from the
internal OTP. This fact needs to be considered when delay routines are realized using
incr/decr opcodes in loops as the delay will be longer when executed from the EEPROM in
comparison with the OTP. The code execution from the external EEPROM is approx. 10 to
15 times slower than from the internal OTP.

2-10 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

|
PS@Q DSP mess-electronic

2.2.4 ROM Program memory

In PSY9, 4 kbytes is reserved for the ROM starting at address FOOO h. All computation
routines needed for the PICOSTRAIN measuring method reside here. The program can
jump back from the ROM to the OTP/external EEPROM.

2.2.5 User EEPROM

The user EEPROM in PSU9 is 128 bytes of 8 bits each. This user EEPROM can be used to
store calibration data that can be accessed from the user program. The processor can
write to and read from this EEPROM, byte-wise using the putepr and getepr op-codes. This
EEPROM hangs on the same address bus as the RAM. Hence the RAM address pointer is
used to address both the user EEPROM and the RAM. See section 2.2.7 to get more
details with code snippets on how the RAM address pointer is used to address both the
user EEPROM and the RAM.

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-11

Member of the ams Group

PICOSTRAIN®

2.2.6

RAM Organization
Table 2-1: RAM address organization

PS8 DSP

255 ... 240 Status and Result registers in stand-alone mode (same content as 31 - 16)
(e.g. using the DSP Instruction Set)

239 ... 208 System RAM

207 User RAM 207

96 User RAM 96

95 ... 92 Reserved

91 ...86 UART Config / status reg

85 ... 81 Internal registers

80 UART Config / status reg

79... 64 Reserved for internal use

63 Config reg 15

48 Config reg O

47 User RAM 47

32 User RAM 32

31 Modrspan result User RAM

30 Timer 31...16

29 |/0 status - falling, rising and pressed status of the 8 GPIO s

28 Status of the 24 Multi Input keys, Pressed or Released Status and

27 Status : rising edge on the 24 Multi Input keys Result

26 Status : falling edge on the 24 Multi Input keys registers in

25 UBATT front end

24 CAL mode;

23 HB1+ (e.g. using

22 Status flags external pC)

21 TMP

20 HBO = 1/4 * (HB1+HB2+HB3+HB4)

19 HB4 = (GH) / (G+H) *

18 HB3 = (E-F) / (E+F) *

17 HB2 = (C-D) / (C+D) *

16 HB1 = (A-B) / (A+B) *

15 User RAM 15

0 User RAM O

* Parameters A..H represent the discharging times at the different ports, see section 2.4.1 Result Registers for more details

2-12

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

|
PS@Q DSP mess-electronic

2.2.7 RAM Address Pointer

The RAM has its own address bus with 256 addresses. The width of 24 bit corresponds
to the register width of the ALU. By means of the RAM address pointer a single RAM
address is mapped into the ALU. It then acts as a fourth accumulator register. Changing
the RAM address pointer does not affect the content of the addressed RAM. The RAM
address pointer itself is modified by separate opcodes (ramadr, incramadr, ...]). As
explained in the previous section, the RAM address bus is additionally used to address
128 bytes of user EEPROM with particular op codes.

Figure 2-8: RAM Address Pointer

A 4

A

256 x 24 bit RAM

128 x 8 User EEPROM

8 bit RAM address

<
-«

\

pointer
opcodes:
getepr, putepr opcodes:
move r, X
movey, r

When the RAM address pointer is set to a value and op codes putepr and getepr are
used, the RAM address pointer points to the respective byte in the user EEPROM. Hence
operations are carried out with the respective user EEPROM byte. All other op codes like
move r, x set the RAM address pointer to point to the RAM, hence the operation is
performed in the RAM.

The following sample code illustrates how the RAM address pointer is used to access the
user EEPROM and the RAM, based on the op code used.

Sample code:

Ramadr 3 // Sets the RAM address pointer to address 3
Move r, x // Moves the content of the X accumulator to the RAM address 3
// RAM Address Pointer is pointing to the RAM

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-13

Member of the ams Group

PICOSTRAIN® PS@9 DSP

Ramadr 4 // Sets the RAM address pointer to address 4
Getepr X // Gets the content of the user EEPROM address 4 into the X
// accumulator
// RAM Address Pointer is pointing to the user EEPROM
Ramadr 3 // Sets the RAM address pointer to address 3
Putepr X // Moves the content of the X accumulator to the user EEPROM
// address 3
// RAM Address Pointer is pointing to the user EEPROM
Clear r // Clears the content of RAM address 3
// RAM Address Pointer is pointing to the RAM

2.3 Arithmetic Logic Unit (ALU)

Figure 2-9: ALU block diagram

Flags
CEOS
— X
L
|
‘ Add
! Sub Y
¢ Shift
i
|
|
|
L | S S -
!
|
|
|
|
i]
Control RAM- RAM
+ ROM Address
2-14 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

|
PS@Q DSP mess-electronic

2.3.1 Accumulators

The ALU has three 24-Bit accumulators, X, Y and Z. The RAM is addressed by the RAM
address pointer and the addressed RAM cell is used as forth accumulator. A single RAM
address is mapped into the ALU by the ram address pointer. So in total there are 4
accumulators. All transfer operations (move, swap) and arithmetic—-operations (shift, add,
mult24, ...) can be applied to all accumulators.

2.3.2 Flags

The processor controls 4 flags with each operation. Not-Equal and Sign flags are set with
each write access to one of the accumulators (incl. RAM). Additionally, the Carry and
Overflow flags are set in case of a calculation (Add / Sub / shiftR). It is possible to query
each flag in a jump instruction.

2.3.2.1 Carry
Shows the carry over in an addition or subtraction. With shift operations (shiftL, rotR,
etc.) it shows the bit that has been shifted out.

2.3.2.2 Not-Equal zero
This flag is set to zero in case a new result not equal to zero is written into an
accumulator (add, sub, move ,swap, etc.).

2.3.2.3 Sign
The sign is set when a new result is written into an accumulator (add, sub, move, swap,
etc.) and the highest bit (MSB) is 1.

2.3.2.4 Overflow
Indicates an overflow during an addition or subtraction of two numbers in two's
complement representation.

2.4 Status and Result Registers

2.4.1 Result Registers

Content of the RAM result registers at the end of a measurement:

ram = 16 : HB1 = (A-B) / (A+B]) HB1 un-compensated
ram=17: HB2 = (C-D) / (C+D) HB2 un-compensated
ram =18 : HB3 = (E-F) / (E+F) HB3 un-compensated
ram= 19 : HB4 = (G-H) / (G+H) HB4 un-compensated

ram = 20 : HBO = 1/4 * (HB1+HB2+HB3+HB4)
HBO compensated sum

ram =21 : TMP = RTemp / Rsg Temperature measurement value,
see Vol.1, Chapter 3, Section 3.5.10

Internal Temp. Measurement

ram =22 : Status flags See section 2.4.2 Status Register
ram = 23 : HB1+ Time measurement TDC at SG_A1, Pin11
acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-15

Member of the ams Group

PICOSTRAIN®

ram = 24 :
ram =25 :
ram = 26 :
ram =27 :
ram = 28 :
ram = 29 :
ram = 30 :
ram = 31 :

Descriptions:

CAL
UBATT
Status_Multi_F

Status_Multi_R

Status_Multi_P
Status_IO
Timer

Modrspan

PS8 DSP

Resolution TDC

Measured supply voltage

Indicates falling edge occurrence on 24 possible

Multi Input keys

Indicates rising edge occurrence on 24 possible

Multi Input keys

Status of the 24 Multi Input keys, Pressed or Released
Falling, Rising and Current Status of 8 GPIO pins
Status of the timer on measurement completion

Rspan value on measurement completion.

For load cells with Rspan, the ratio Rspan/Rsg when bit
mod_rspan = 1 in Config_reg1.

A Discharge time measurement at SG_A1
B: Discharge time measurement at SG_A2
C: Discharge time measurement at SG_B1
D: Discharge time measurement at SG_B2
E: Discharge time measurement at SG_C1
F: Discharge time measurement at SG_C2
G: Discharge time measurement at SG_D
H: Discharge time measurement at SG_D2
RTemp : Discharge time measurement through the combination of Integrated Rspan
and strain gage resistor at SG_D1 and SG_C2
Rsg : Discharge time measurement at SG_D1 || SG_C2
Formats:
HB1 : Result in 1/, ppm
HB2 : Result in 1/, ppm
HB3 : Result in 1/100 ppm
HB4 : Result in 1/, prm
HBO : Result in 1/100 ppm
TMP : current ratio CR by 1 + TMP/ZZO
Status : See above
HB1 + : Result in 250 « 5641/, ns @ 4 MHz clock
CAL : Calculation of Resolution by 25O'OOO/CAL ps @ 4 MHz clock
UBATT : Calculation of Supply Voltage by 2.0 + 1.6 UBATT/64 1%
2-16 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

|
PS@Q DSP mess-electronic

HB1, HB2, HB3, HB4, HBO and TMP are given as two’'s complement. MSB = 1 indicates a
negative value. To get the positive value calculate 224 - X.

Explanation:

Based on a standard extension of a load cell (2 mV/V] the resistance variation is 0.2 %,
e.g. 2 Q at a 1000 Q load cell. The change of 0.2 % corresponds to 2000 ppm. For
reasons of internal calculations and accuracy, the result is given in x100 of 2000 ppm (=
200,000 ppm). Please note that the value in this register depends not only on the load
cell's sensitivity but also on the Mult_HBx setting in PSJ9. This explanation is based on
Mult_HBx = 1.

Examples:

1.5 mV/V load cell, PICOSTRAIN wiring, Mult_HBx = 1:
1.5 mV/V = 1500 ppm - result in PSE9 at maximum strain: 150,000 (0x0249F0)

2 mV/V load cell, Wheatstone wiring, Mult_HBx = 1:
2 mV/V means 1.333 mV/V in Wheatstone = 1333 ppm (due to a reduction in strain) >
result in PSJ9 at maximum strain: 133,333 (0x0208D5)

1 mV/V load cell, PICOSTRAIN wiring, Mult_HBx = 4:
1 mV/V = 1000 ppm - result in PSJ9 at maximum strain: 400,000 (0xO061A80)

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-17

Member of the ams Group

PICOSTRAIN®

2.4.2 Status Register

PS8 DSP

Table 2-2: Status Register (RAM Address 246)

Bit

Description

Status[23] = flg_status_cport4

Status flag of capacitive port 4

Status[22] = flg_status_cport3

Status flag of capacitive port 3

Status[21] = flg_status_cport2

Status flag of capacitive port 2

Status[20] = flg_status_cport1

Status flag of capacitive port 1

Status[19] = flg_rstpwr = Power-on reset caused jump into OTP / ext. EEPROM
Status[18] = flg_rstssn = Pushed button caused jump into OTP / ext. EEPROM
Status[17] = flg_wdtalt = Watchdog interrupt caused jump into OTP / ext. EEPROM
Status[16] = flg_endavg = End of measurement caused jump into OTP / ext. EEPROM
Status[15] = flg_intavO = Jump into OTP / ext. EEPROM in sleep mode

Status[14] = flg_ub_low = Low voltage

Status[13] = flg_errtdc = TDC error

Status[12] = reserved = reserved

Status[11] = flg_err_cport

= Error at capacitive ports

Status[10] = flg_errprt

= Error at strain gauge ports

Status[09] = flg_timout

= Timeout TDC

Status[08] = flg_ext_interrupt

= DSP start by external interrupt

Status[07] = flg_cport4_r

= Rising edge at capacitive port 4, O = no edge

Status[0B] = flg_cport3_r

RN UL N . Y DU N UL [Y UL W (U N (U UL N U N [[LY

= Rising edge at capacitive port 3, O = no edge

Status[05] = flg_cport2_r

1 = Rising edge at capacitive port 2, O = no edge

Status[04] = flg_cport1_r

1 = Rising edge at capacitive port 1, O = no edge

Status[03] = flg_cportd_f

1 = Falling edge at capacitive port 4, O = no edge

Status[02] = flg_cport3_f

1 = Falling edge at capacitive port 3, O = no edge

Status[01] = flg_cport2_f

1 = Falling edge at capacitive port 2, O = no edge

Status[00] = flg_cport1_f

1 = Falling edge at capacitive port 1, O = no edge

The status of the inputs can be queried from the status registers at RAM address 250 to
252. Please see Vol.1, Chapter 4, Section 4.3.3 Multi-input keys for more details.

2-18 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

|
PS@Q DSP mess-electronic

3 General Funtions
3.1 System Reset, Sleep Mode and Auto-configuration

ALU activity is requested by a reset (power-on, watchdog), the end of measurement or in
sleep mode the end of the conversion counter. A reset has priority over the other two
items. First the ALU jumps into the ROM code starting with address FOOO h. There a first
check is done whether the ALU was activated after a reset or not.

In case of a reset, the flag otp_pwr_cfg is checked to decide whether the auto-
configuration data from the OTP/external EEPROM have to be copied into the RAM or not.

Subsequently, the flag otp_pwr_prg is checked to decide whether OTP/ external EEPROM
user code (starting at address 48) ought to be executed. In stand-alone operation this is
reasonable and otp_pwr_cfg bit should be 1. In front end operation this is unlikely and with
otp_pwr_cfg = O the pP is stopped.

In case the ALU is started not by a reset the TDC unit starts a measurement or, in sleep
mode, the conversion counter is started without a measurement. Afterwards the flag
otp_usr_prg is checked to decide whether a jump into the user code in OTP/external
EEPROM (address 48) must be performed or not. Again, in stand-alone operation
otp_usr_prg =1 is reasonable, in front-end operation otp_usr_prg = O will be more likely.

In the user code in the OTP / external EEPROM first the flag flg_rstpwr should be checked
to see whether the reason for the jump was a reset. If yes, a detailed check is
recommended to see whether the reset comes from a power-on reset, a pushed button,
the watchdog interrupt.

Otherwise a check of flag flg_intavO will indicate if the chip is still in sleep mode or if an
active strain measurement is running.

At the end the ALU is stopped. This implements a complete reset of the ALU including the
start flags. Also the program stack is reset. Only the RAM data remain unchanged.

3.1.1 Power-On Reset
When applying the supply voltage to the chip a power-on reset is generated. The whole
chip is reset, only the RAM remains unchanged.

In case otp_pwr_prg = 1 the user code at EEPROM address 48 is started.

3.1.2 Watchdog Reset

A power-on reset can also be triggered by the watchdog timer. This happens in case the
microprocessor is started four times without being reset by the opcode “clrwdt”. Status bit
flg_wdtalt in register 224+22; bit 17 indicates a timeout of the watchdog timer.

In case otp_pwr_prg = 1 the user code at EEPROM address 48 is started.

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-19

Member of the ams Group

PICOSTRAIN® PS@9 DSP

3.1.3 External Reset on Pin 6

In stand-alone mode (if Mode pin is unconnected] it is possible to apply an external power-
on at pin 6 (SPI_CSN_RST). This can be used as a reset button. The status of the button
can be requested from status bit flg_rstssn in register 224+22, bit 18.

In case otp_pwr_prg = 1 the user code at EEPROM address 48 is started.

3.1.4 Sleep Mode

In sleep mode only the 10 kHz oscillator is running. At regular intervals the
microprocessor is waked up but without doing a measurement. In this phase it can check
the 1/0s. A start-up of the microprocessor from sleep mode is indicated by status bit
flg_intavO in register 224+22, bit 22.

Configuration: tdc_sleepmode Register 1, Bit 17
tdc_conv_cnt [7:0] Register O, Bits 23 to 16

Note : The sleep mode works only in combination with Single_conversion = 1 in
Configreg_02

Sleep mode is activated by setting tdc_sleepmode = 1. This is equivalent to set avrate = O.

In sleep mode the conversion counter tdc_cnv_cnt is running to the end and then
immediately starting the user program beginning at address 48 in the EEPROM.

After running in sleep mode the TDC has to be reinitialized for measurements.

3.2 CPU Clock Generation

The basic clock for the system is the internal, low-current 10 kHz oscillator. It is used to
trigger measurements in single conversion mode for the TDC unit in measurement range 2
as pre-counter as basis for the cycle time in stretched modes.

3-20 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

|
PS@Q DSP mess-electronic

Figure 3-1: Clock Generation

clrwdt
TDC T
[Melkelud ? Power-on
—>
0sz10khz_ena] Internal Divider Watchdog Reset
0sz10khz_fsos .t"m— Oscillator ———p» Divider
v 10 kHz /64 /4 ————] wdt_alert
rim
auto10k W l [fig_wdtalt
Y f
TDC Conversion Counter TDC start
B— . ——— A
sel_start_osz Delay < Div /tdc_conv_cnt conversion
0 to 400 ps

dis_osc_startup ll—
¢ tdc_conv_cnt

Il stretch

External
Resonator
4 MHz

¢ Cycletime
TDC -e—— Counter

3.3 Watchdog Counter and Single Conversion Counter

The TDC conversion counter starts a measurement in single conversion mode. It is
running continuously. The single conversion rate is given by 10 kHz / 64 / tdc_conv_cnt.

With the beginning of a measurement the watchdog counter is increased. The watchdog
counts the conversions. At the end of a measurement the microprocessor starts to run
the user code. In normal operation the watchdog has to be reset by CLRWDT before the
user code ends. The watchdog causes a power-on reset in case the TDC doesn'’t finish its
measurement because of an error or the user code does not run to end.

It is possible to switch off the watchdog when controlling the PSE39 by the SPI interface
(Mode pin is connected to O) sending SPI opcode watch_dog_off. Further the watchdog is
reset by each signal edge at the SPI_CSN_RST pin.

3.4 Timer

PSU9 has a real time counter that counts automatically after a power-on reset in periods
of 12.8 ms. The value of this timer can be read out at address 254, it is updated at the
end of each measurement. The counter rolls over at 224 bit, which corresponds to a
period of 46 hours

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-21

Member of the ams Group

PICOSTRAIN® PS@9 DSP

q Instruction Set

The complete instruction set of the PSE9 consists of 63 core instructions that have
unique op-codes decoded by the CPU.

4.1 Branch instructions

There are 3 principles of jumping within the code:

Jump. Absolute addressing within the whole address space of 8 kB.

Branch. Relative to the actual address, jump within the address range of -128 to +127.
Skip. Jump ahead up to 3 op-codes (3 to 15 bytes).

The assembler puts together jump and branch into goto-instructions.

It is possible to jump into subroutines only by means of absolute jumps and without any
condition.

4.2 Arithmetic operations

The RAM is organized in 24 Bit words. All instructions are based on two’s complement
operations. An arithmetic command combines two accumulators and writes back the
result into the first mentioned accumulator. The RAM address pointer points to the RAM
address that is handled in the same way as an accumulator. Each operation on the
accumulator affects the four flags. The status of the flags refers to the last operation.

Table 4-1: Instruction set

Simple Arithmetic Complex Arithmetic Shift & Rotate RAM access
abs dive4 clrC clear
add divmod rotl decramadr
compare mult24 rotR incramadr
compl mult48 setC move
decr shiftL ramadr
getflag shiftR swap
incr
sign
sub

4-22 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

PS8 DSP

mess-electronic

Logic Bitwise EEPROM access
OTP/external EPROM

and bitclr equal

eor bitinv getepr

nor bitset putepr

invert addepr

nand

nor

or

Unconditional jump Skip on Flag Miscellaneous

skip

goto clk10kHz

gotoBitC skipBitC clrwdt

gotoBitS skipBitS nop

gotoCarC skipCarC stop

gotoCarS skipCarS initTDC

gotoEQ skipEQ newcyc

gotoNE skipNE

gotoNeg skipNeg

gotoOvrC skipOvrC

gotoOvrS skipOvrS

gotoPos skipPos

jsub

jsubret

abs Absolute value of register

Syntax: abs p1

Parameters: p1 = ACCU [x, y, z, r]

Calculus: p1 =|p1|

Flags affected: CO0SZ

Bytes: 2

Cycles: 2

Description: Absolute value of register

Category: Simple arithmetic

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

4-23

PICOSTRAIN® PS@9 DSP

add Addition
Syntax: add p1, p2
Parameters: p1 = ACCU [x, vy, z, r]
p2 = ACCU [x, vy, z, r] or 24-Bit number
Calculus: p1=p1+p2
Flags affected: |C0SZ
Bytes: 1 (p2 = ACCU)
4 (p2 = number)
Cycles: 1 (p2 = ACCU)
4 (p2 = number)
Description: Addition of two registers or addition of a constant to a register
Category: Simple arithmetic
addepr
Syntax: addepr x
Parameters: ACCUIx]
Calculus: x = x+Value (EEprom(rampointer])
Flags: ZS5CO0
Bytes: 2
Cycles: 100..200
Description: Adds the value from the content of the EEPROM register, currently addressed
by the ram address pointer, to the X-Accumulator.
Category: EEPROM access
and Logic AND
Syntax: and p1, p2
Parameters: p1 =ACCU [x, vy, z, r]
p2 = ACCU [x, vy, z, r] or 24-Bit number
Calculus: p1 =p1 AND p2
Flags affected: |SZ
Bytes: 2 (p2 = ACCU)
5 (p2 =
number)
Cycles: 3 (p2 = ACCU)
6 (p2 =
number)
Description: Logic AND of 2 registers or Logic AND of register and constant
Category: Logic
4-24 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

PS8 DSP

mess-electronic

bitclr Clear single bit
Syntax: bitclr p1, p2
Parameters: p1 = ACCU [x, vy, z, r]

p2 = number O to 23
Calculus: p1 =p1 and not (1<<p2)
Flags affected: |SZ
Bytes: 2
Cycles: 2
Description: Clear a single bit in the destination register
Category: Bitwise
bitinv Invert single bit
Syntax: bitinv p1, p2
Parameters: p1 = ACCU [x, vy, z, r]

p2 = number O to 23
Calculus: p1 =p1T eor (1<<p2)
Flags affected: [S Z
Bytes: 2
Cycles: 2
Description: Invert a single bit in the destination register
Category: Bitwise
bitset Set single bit
Syntax: bitset p1, p2
Parameters: p1 =ACCU [x, vy, z, r]

p2 = number O to 23
Calculus: p1 =p1 or (1<<p2)
Flags affected: |SZ
Bytes: 2
Cycles: 2
Description: Set a single bit in the destination register
Category: Bitwise
clear Clear register
Syntax: clear p1
Parameters: p1 = ACCU [x, y, z, r]
Calculus: p1 =0
Flags affected: |SZ
Bytes: 1
Cycles: 1

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

4-25

PICOSTRAIN®

PS8 DSP

Description: Clear addressed register to O
Category: RAM access
clk10khz Clock source 10 kHz
Syntax: clk10khz p1
Parameters: p1 = number O or 1
Calculus: -
Flags affected: |-
Bytes: 2
Cycles: 3
Description: Change clock source of processor to 10 kHz. The clock of the processor is
switched to the slower 10 kHz clock instead of the 40 MHz. The 10 kHz clock
is still stable to variations in temperature and supply voltage. If p1 is set to 1
the 10 kHz clock is on, if p1 == 0 the 10 kHz clock is off. With the 10 kHz
clock beeper application at the I0-Port may programmed with the
microcontroller. Do not switch directly between CLK4MHz and CLK10kHz.
Category: Miscellaneous
clrC Clear flags
Syntax: clrC
Parameters: -
Calculus: -
Flags affected: |CO
Bytes: 1
Cycles: 1
Description: Clear Carry and Overflow flags
Category: Shift and Rotate
clrwdt Clear watchdog
Syntax: clrwdt
Parameters: -
Calculus: -
Flags affected: |-
Bytes: 2
Cycles:
Description: Clear watchdog. This opcode is used to clear the watchdog at the end of a
program run. Apply this opcode right before ,stop’.
Category: Miscellaneous
compare Compare two values
4-26 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

PS8 DSP

mess-electronic

Syntax: compare p1, p2
Parameters: p1 = ACCU [x, vy, z, r]
p2 = ACCU [x, vy, z, r] or 24-Bit number
Calculus: — =p2 - p1 only the flags are changed but not the registers

Flags affected:

CO0sZz

Bytes:

1 (p1 = ACCU, p2 = ACCU)
4 (p1 = ACCU, p2 = NUMBER]

Cycles: 1 (p1 = ACCU, p2 = ACCU])

4 (p1 = ACCU, p2 = NUMBER)

Description: Comparison of 2 registers by subtraction. Comparison of a constant with a
register by subtraction The flags are changed according to the subtraction
result, but not the registers contents themselves

Category: Simple arithmetic

compl Complement

Syntax: compl p1

Parameters: p1 = ACCU [x, vy, z, r]

Calculus: p1=-p1=notpl+1

Flags affected: |SZ

Bytes: 2

Cycles: 2

Description: two's complement of register

Category: Simple arithmetic

decr Decrement

Syntax: decr p1

Parameters: p1 = ACCU [x, vy, z, r]

Calculus: p1=p1 -1

Flags affected: |C0SZ

Bytes: 1

Cycles: 1

Description: Decrement register

Category: Simple arithmetic

decramadr Decrement RAM address pointer

Syntax: decramadr

Parameters: -

Calculus: -

Flags affected: |-

Bytes: 1

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

4-27

PICOSTRAIN®

PS8 DSP

Cycles: 1

Description: Decrement RAM address pointer by one

Category: Ram Access

div24 Signed division 24 Bit

Syntax: dive4 p1, p2

Parameters: p1 = ACCU [x, vy, z, r]
p2 = ACCU [x, vy, z, r]

Calculus: p1 =(p1<<24) /p2lif |p1] < |p2/2|)

Flags affected: |S & Z of p1

Bytes: 2

Cycles: 20

Description: Signed division of 2 registers, 24 bits of the division of 2 registers, result is
assigned to p1

Category: Complex arithmetic

divmodSigned | modulo division

Syntax: divmod p1, p2

Parameters: p1 = ACCU [x, vy, z, r]
p2 = ACCU [x, vy, z, r]

Calculus: p1=p1 / p2andp2 =p1 % p2

Flags affected: |SZ

Bytes: 2

Cycles:

Description: Signed modulo division of 2 registers, 24 higher bits of the division of 2
registers, result is assigned to p1, the rest is placed to p2

Category: Complex arithmetic

eor Exclusive OR

Syntax: eor p1, p2

Parameters: p1 = ACCU [x, y, z, r]
p2 = ACCU [x, y, z, r] or 24-Bit number

Calculus: p1 = p1 xor p2, bit combination O / O and 1 / 1 returns O, bit combination O

/ 1and 1 / O returns 1

Flags affected:

SZ

Bytes:

2 (p1 = ACCU, p2 = ACCU)
5 (p1 = ACCU, p2 = NUMBER)

Cycles: 3 (p1 = ACCU, p2 = ACCU)
6 (p1 = ACCU, p2 = NUMBER])
Description: Logic XOR (exclusive OR, antivalence) of the 2 given registers
Logic XOR (exclusive OR, antivalence) of register with constant
4-28 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

PS8 DSP

mess-electronic

Category: | Logic
eorn Exclusive NOR
Syntax: eorn p1, p2
Parameters: p1 = ACCU [x, vy, z, r]
p2 = ACCU [x, vy, z, r] or 24-Bit number
Calculus: p1 = p1 xnor p2, bit combination O / O and 1 / 1 return 1, bit combination O

/ 1and 1 / Oreturn O

Flags affected:

SZ

Bytes: 2 (p1 = ACCU, p2 = ACCU)
5 (p1 = ACCU, p2 = NUMBER]
Cycles: 3 (p1 = ACCU, p2 = ACCU)
6 (p1 = ACCU, p2 = NUMBER]
Description: Logic XNOR (exclusive NOR, equivalence) of the 2 given registers
Logic XNOR (exclusive NOR, equivalence) of register with constant
Category: Logic
equal Write 3 Bytes to the OTP or the external EEPROM
Syntax: equal p1
Parameters: p1 = 24-Bit number
Calculus: -

Flags affected:

Bytes: 3

Cycles:

Description: Write 3 bytes (p1) to configuration register of OTP /external EEPROM. The
equal opcode is used to write 3 bytes of configuration data directly to a
register. Therefore the opcode is simply used 16 times in the beginning of the
assembler listing, fed with the configuration data given through p1. The
configuration of the OTP/ external EEPROM is done in the lower area from
byte 0..47, combined in 16x 24bit registers. From byte 48 upwards, the user
code is written. Use this opcode to provide your own configuration instead of
the standard configuration.

Category: OTP/ External EEPROM access

getepr Get EEPROM content

Syntax: getepr p1

Parameters: p1 = ACCU [x, y, z, r]

Calculus: p1 = EEPROM register content (addressed by RAM address pointer)

Flags affected:

SZ

Bytes: 1
Cycles: 6
Description: Get EEPROM into register. The addressed register p1 gets the EEPROM

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

4-29

Member of the ams Group

PICOSTRAIN®

PS8 DSP

register content which is addressed by the RAM address pointer. This opcode
needs temporarily a place in the program counter stack (explanation see
below).

Category: EEPROM Access
getflag Set S and Z flags
Syntax: getflag p1
Parameters: p1 = ACCU [x, vy, z, r]
Calculus: signum =set if p1 <0

notequalzero = set if p1 <> 0

Flags affected: |S Z

Bytes: 1

Cycles: 1

Description: Set the signum and notequalzero flag according to the addressed register,
content of the register is not affected

Category: Simple arithmetic

goto jump without condition

Syntax: goto p1

Parameters: p1 = JUMPLABEL

Calculus: PC = p1

Flags affected:

Bytes: 2 (relative jump)

3 (absolute

jump)

Cycles: 3 (relative jump)
4 (absolute jump)

Description: Jump without condition. Program counter is set to target address. The target
address is given by using a jump label. Jump range: O< address < 8 kB
See examples section for how to introduce a jump label.

Category: Unconditional jump

gotoBitC Jump on bit clear

Syntax: gotoBitC p1, p2, p3

Parameters: p1 = ACCU [x, vy, z, r]
p2 = NUMBER [O...23]
p3 = JUMPLABEL

Calculus: if (bit p2 of register p1 == 0) PC = p3

Flags affected:

Bytes: 3
Cycles: 4
4-30 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

PS8 DSP

mess-electronic

Description: Jump on bit clear. Program counter will be set to target address if selected bit
in register p1 is clear. The target address is given by using a jump label. See
examples section for how to introduce a jump label.

Category: Bitwise

gotoBitS Jump on bit set

Syntax: gotoBitS p1, p2, p3

Parameters: p1 = ACCU [x, vy, z, r]
p2 = NUMBER [O..23]
p3 = JUMPLABEL

Calculus: if (bit p2 of register p1 == 1)

PC = p3

Flags affected: |-

Bytes: 3

Cycles: 4

Description: Jump on bit set. Program counter will be set to target address if selected bit
in register p1 is set. The target address is given by using a jump label. See
examples section for how to introduce a jump label.

Category: Bitwise

gotoCarC Jump on carry clear

Syntax: gotoCarC p1

Parameters: p1 = JUMPLABEL

Calculus: if (carry == O) PC = p1

Flags affected:

Bytes: 2 (relative jump)
3 (absolute jump])

Cycles: 3 (relative jump)
4 (absolute jump)

Description: Jump on carry clear. Program counter will be set to target address if carry is
clear. The target address is given by using a jump label. See examples section
for how to introduce a jump label.

Category: Goto on flag

gotoCarS Jump on carry set

Syntax: gotoCarS p1

Parameters: p1 = JUMPLABEL

Calculus: if (carry == 1] PC = p1

Flags affected:

Bytes: 2 (relative jump)
3 (absolute jump)
Cycles: 3 (relative jump)

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

4-31

Member of the ams Group

PICOSTRAIN®

PS8 DSP

4 (absolute jump)

Description: Jump on carry set. Program counter will be set to target address if carry is
set. The target address is given by using a jump label. See examples section
for how to introduce a jump label.

Category: Goto on flag

gotoEQ Jump on equal zero

Syntax: gotoEQ p1

Parameters: p1 = JUMPLABEL

Calculus: if (Z ==0) PC = p1

Flags affected:

Bytes: 2 (relative jump)
3 (absolute jump)

Cycles: 3 (relative jump)
4 (absolute jump)

Description: Jump on equal zero. Program counter will be set to target address if the
foregoing result is equal to zero. The target address is given by using a jump
label. See examples section for how to introduce a jump label.

Category: Goto on flag

gotoNE Jump on not equal zero

Syntax: gotoNE p1

Parameters: p1 = JUMPLABEL

Calculus: if (Z==1)PC =p1

Flags affected:

Bytes: 2 (relative jump)
3 (absolute jump)

Cycles: 3 (relative jump)
4 (absolute jump)

Description: Jump on not equal zero. Program counter will be set to target address if the
foregoing result is not equal to zero. The target address is given by using a
jump label. See examples section for how to introduce a jump label.

Category: Goto on flag

gotoNeg Jump on negative

Syntax: gotoNeg p1

Parameters: p1 = JUMPLABEL

Calculus: if (S==1)PC =p1

Flags affected:

Bytes: 2 (relative jump)
3 (absolute jump])
Cycles: 3 (relative jump)
4-32 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

PS8 DSP

mess-electronic

4 (absolute jump)

Description: Jump on negative. Program counter will be set to target address if the
foregoing result is negative. The target address is given by using a jump label.
See examples section for how to introduce a jump label.

Category: Goto on flag

gotoOvrC Jump on overflow clear

Syntax: gotoOvrC p1

Parameters: p1 = JUMPLABEL

Calculus: if (O ==0) PC = p1

Flags affected:

Bytes: 2 (relative jump)
3 (absolute jump])

Cycles: 3 (relative jump)
4 (absolute jump)

Description: Jump on overflow clear. Program counter will be set to target address if the
overflow flag of the foregoing operation is clear. The target address is given by
using a jump label. See examples section for how to introduce a jump label.

Category: Goto on flag

gotoOvrS Jump on overflow set

Syntax: gotoOvrS p1

Parameters: p1 = JUMPLABEL

Calculus: if (0O ==1)PC =p1

Flags affected:

Bytes: 2 (relative jump)
3 (absolute jump)

Cycles: 3 (relative jump)
4 (absolute jump)

Description: Jump on overflow set. Program counter will be set to target address if the
overflow flag of the foregoing operation is set. The target address is given by
using a jump label. See examples section for how to introduce a jump label.

Category: Goto on flag

gotoPos Jump on positive

Syntax: gotoPos p1

Parameters: p1 = JUMPLABEL

Calculus: if (S ==0)PC = p1

Flags affected:

Bytes: 2 (relative jump)
3 (absolute jump])
Cycles: 3 (relative jump)

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

4-33

Member of the ams Group

PICOSTRAIN®

PS8 DSP

4 (absolute jump)
Description: Jump on positive. Program counter will be set to target address if the
foregoing result is positive. The target address is given by using a jump label.
See examples section for how to introduce a jump label.
Category: Goto on flag
incr Increment
Syntax: incr p1
Parameters: p1 = ACCU [x, vy, z, r]
Calculus: p1=p1+1
Flags affected: |CO0SZ
Bytes: 1
Cycles: 1
Description: Increment register
Category: Simple arithmetic
incramadr Increment RAM address
Syntax: incramadr
Parameters: -
Calculus: -
Flags affected: |-
Bytes: 1
Cycles: 1
Description: Increment RAM address pointer by 1
Category: RAM access
initTDC Initialize TDC
Syntax: initTDC
Parameters: -
Calculus: -
Flags affected: |-
Bytes: 2
Cycles: 3
Description: Initialization reset of the TDC (time-to-digital converter). Should be sent after
configuration of registers. The initTDC preserves all configurations.
Category: Miscellaneous
4-34 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

PS8 DSP

mess-electronic

invert Bitwise inversion

Syntax: invert p1

Parameters: p1 = ACCU [x, vy, z, r]

Calculus: p1 = not p1

Flags affected: (S Z

Bytes: 2

Cycles: 2

Description: Bitwise inversion of register

Category: Logic

jsub Unconditional jump

Syntax: jsub p1

Parameters: p1 = JUMPLABEL

Calculus: PC = p1

Flags affected: [CO0SZ

Bytes: 3

Cycles: 4

Description: Jump to subroutine without condition. The program counter is loaded by the
address given through the jump label. The subroutine is processed until the
keyword ,jsubret’ occurs. Then a jump back is performed and the next
command after the jsub-call is executed. This opcode needs temporarily a
place in the program counter stack (explanation see below). Jump range: O<
address < 8 kB

Category: Unconditional Jump

jsubret Return from subroutine

Syntax: jsubret

Parameters: -

Calculus: PC = PC from jsub-call

Flags affected:

Bytes: 1

Cycles: 3

Description: Return from subroutine. A subroutine can be called via ,jsub® and exited by
using jsubret. The program is continued at the next command following the
jsub-call. You have to close a subroutine with jsubret - otherwise there will be
no jump back.

Category: Unconditional Jump

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

4-35

Member of the ams Group

PICOSTRAIN® PS@9 DSP
move Move
Syntax: move p1, p2
Parameters: p1 = ACCU [x, vy, z, r]
p2 = ACCU [x, vy, z, r] or 24-bit number
Calculus: p1 =p2
Flags affected: (S Z

Bytes: 1 (p1 = ACCU, p2 = ACCU)
4 (p1 = ACCU, p2 = NUMBER)
Cycles: 1 (p1 = ACCU, p2 = ACCU])
4 (p1 = ACCU, p2 = NUMBER)
Description: Move content of p2 to p1 (p1 = ACCU, p2 = ACCU)
Move constant to p1 (p1 = ACCU, p2 = NUMBER])
Category: RAM access
mult24 Signed 24-Bit multiplication
Syntax: mult24 p1, p2
Parameters: p1 = ACCU [x, vy, z, r]
p2 = ACCU [x, vy, z, r]
Calculus: p1 =(p1 * p2) >> 24
Flags affected: S & Z of p1
Bytes: 2
Cycles: 30
Description: Signed multiplication of 2 registers like mult48, but only the 24 higher bits of
the multiplication of 2 registers, result is stored in p1
Category: Complex arithmetic
mult48 Signed 48-Bit multiplication
Syntax: mult48 p1, p2
Parameters: p1 = ACCU [x, vy, z, r]
p2 = ACCU [x, vy, z, r]
Calculus: p1, p2 =p1 * p2
Flags affected: |S & Z of p1
Bytes: 2
Cycles: 30
Description: Signed multiplication of 2 registers.
Higher 24 bits of the multiplication is placed to p1
Lower 24 bits of the multiplication is placed to p2
Category: Complex arithmetic
4-36 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

PS8 DSP

mess-electronic

nand Logic NAND
Syntax: nand p1, p2
Parameters: p1 = ACCU [x, vy, z, r]
p1 = ACCU [x, vy, z, r] or 24-Bit number
Calculus: p1 =p1 nand p2

returns only O in case of bit combination 1 / 1

Flags affected:

5Z

Bytes: 2 (p1 = ACCU, p2 = ACCU)
5 (p1 = ACCU, p2 = NUMBER])

Cycles: 3 (p1 = ACCU, p2 = ACCU)
6 (p1 = ACCU, p2 = NUMBER)

Description: Logic NAND (negated AND) of the 2 given registers
Logic NAND (negated AND) of register with constant

Category: Logic

newcyc Start TDC

Syntax: newcyc

Parameters: -

Calculus: -

Flags affected: |-

Bytes: 2

Cycles: 3

Description: Start of TDC. This opcode can be used after configuration and initialization of
the PSK9 to start a new measurement cycle. Normally this is done by the
PSU81 ROM routines itself, but in case of custom-designed reset procedures
this opcode can play a role.

Category: Miscellaneous

nop No operation

Syntax: -

Parameters: -

Calculus: -

Flags affected:

Bytes: 1

Cycles: 1

Description: Placeholder code or timing adjust (no function)
Category: Miscellaneous

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

4-37

Member of the ams Group

®

PICOSTRAIN PSS DSP
nor Logic NOR
Syntax: nor p1, p2
Parameters: p1 = ACCU [x, vy, z, r]

p2 = ACCU [x, vy, z, r] or 24-Bit number
Calculus: p1 =p1 nor p2

returns only 1 in case of bit combination O / O
Flags affected: [SZ

Bytes: 2 (p1 = ACCU, p2 = ACCU)
5 (p1 = ACCU, p2 = NUMBER])
Cycles: 3 (p1 = ACCU, p2 = ACCU)
6 (p1 = ACCU, p2 = NUMBER]
Description: Logic NOR (negated OR] of the 2 given registers
Logic NOR (negated OR)]) of register with constant
Category: Logic
or Logic OR
Syntax: or p1, p2
Parameters: p1 =ACCU [x, vy, z, r]
p2 = ACCU [x, vy, z, r] or 24-Bit number
Calculus: p1 =p1 orp2
returns only O in case of bit combination O / O
Flags affected: (S Z
Bytes: 2 (p1 = ACCU, p2 = ACCU)
5 (p1 = ACCU, p2 = NUMBER)
Cycles: 3 (p1 = ACCU, p2 = ACCU)
6 (p1 = ACCU, p2 = NUMBER)
Description: Logic OR of the 2 given registers
Logic OR of register with constant
Category: Logic
putepr Put lower 8 bits of register to internal EEPROM
Syntax: putepr p1
Parameters: p1 = ACCU [x, vy, z, r]
Calculus: EEPROM register (addressed by RAM address pointer) = p1 [7:0]

Flags affected:

Bytes: 4

Cycles: ~12.5 ms

Description: Put register into EEPROM. The lower 8 bits of the addressed register p1 is
moved to the EEPROM (the EEPROM register address is set by the RAM
address pointer). EEPROM bytes O to 127 are accessible via ,putepr’, bysetting
the RAM address pointer to addresses O to 127 respectively. This opcode
needs temporarily a place in the program counter stack (explanation see

4-38 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

PS8 DSP

mess-electronic

below). It is recommended not to use putepr in combination with the skip
opcodes due to relatively longer execution times (~30ms).

Category: EEPROM access

ramadr Set RAM address pointer
Syntax: ramadr p1

Parameters: p1 = 8-Bit number
Calculus: -

Flags affected:

Bytes: 2
Cycles: 2
Description: Set pointer to RAM address (range: O...255]
Category: RAM access
rotL Rotate left
Syntax: rotL p1(, p2)
Parameters: p1 = ACCU [x, vy, z, r]
p2 = 4-Bit number or none
Calculus: p1 = pl<< 1+ carry; carry = MSB(x) (in case rotL p1, without p2)

p1 = repeat (p2) rotL p1(in case rotL p1, p2]

Flags affected:

C 0 S Z (of the last step)

Bytes: 1 (p1 = ACCU, p2 = none)
2 (p1 = ACCU, p2 = NUMBER]

Cycles: 1 (p1 = ACCU, p2 = none)
1+p2 (p1 = ACCU, p2 = NUMBER)

Description: Rotate p1 left > shift p1 register to the left, fill LSB with carry, MSB is placed
in carry register
Rotate p1 left p2 times with carry = shift p1 register p2 times to the left, in
each step fill LSB with the carry and place the MSB in the carry

Category: Shift and rotate

rotR Rotate right

Syntax: rotR p1(, p2)

Parameters: p1 = ACCU [x, y, z, r]
p2 = 4-Bit number or none

Calculus: p1 =p1>> 1+ carry;

carry: =MSB(x] (in case rotR p1, without p2)
p1 = repeat (p2) rotR p1 (in case rotR p1, p2)

Flags affected:

C O S Z (of the last step)

Bytes: 1 (p1 = ACCU, p2 = none)
2 (p1 = ACCU, p2 = NUMBER])
Cycles: 1 (p1 = ACCU, p2 = none)

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

4-39

Member of the ams Group

PICOSTRAIN®

PS8 DSP

1 +p2 [p1 = ACCU, p2 = NUMBER)

Description: Rotate p1 right = shift p1 register to the right, fill MSB with carry, LSB is
placed in carry register
Rotate p1 right p2 times with carry = shift p1 register p2 times to the right,
in each step fill MSB with the carry and place the LSB in the carry

Category: Shift and rotate

round Rounding

Syntax: round p1, p2

Parameters: p1 = ACCU [x]
p2 = NUMBER [half scale division]

Calculus: p1 =round (p1, p2)

Flags affected:

Bytes: 7

Cycles: subroutine call

Description: Rounds the number in x. Depending on the configured ,half scale division® the
number stored in x will be rounded down or up (down < 5, up >= 5).

Category: Miscellaneous

setC Set carry flag

Syntax: setC

Parameters: -

Calculus: -

Flags affected: [C O

Bytes: 1

Cycles: 1

Description: Set carry flag and clear overflow flag

Category: Shift and Rotate

shiftL Shift Left

Syntax: shiftL p1(, p2)

Parameters: p1 = ACCU [x, y, z, r]
p2 = 4-Bit number or none

Calculus: p1 = pl<< 1; carry = MSB(x] (in case rotL p1, without p2)

p1 = repeat (p2) shiftL p1(in case rotL p1, p2)

Flags affected:

CO0SZz

Bytes: 1 (p1 = ACCU, p2 = none)
2 (p1 = ACCU, p2 = NUMBER])
Cycles: 1 (p1 = ACCU, p2 = none)
1 + p2 (p1 = ACCU, p2 = NUMBER)
Description: Shift p1 left > shift p1 register to the left, fill LSB with O, MSB is placed in
4-40 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

PS8 DSP

mess-electronic

carry register
Shift p1 left p2 times - shift p1 register p2 times to the left, in each step fill
LSB with the O and place the MSB in the carry

Category: Shift and rotate
shiftR Shift right
Syntax: shiftR p1(, p2)
Parameters: p1 = ACCU [x, vy, z, r]
p2 = 4-Bit number or none
Calculus: p1 =p1>> 1; carry = MSB(x] (in case rotL p1, without p2)

p1 = repeat (p2) shiftL p1 (in case rotL p1, p2)

Flags affected:

CO0SZz

Bytes: 1 (p1 = ACCU, p2 = none)
2 (p1 = ACCU, p2 = NUMBER]
Cycles: 1 (p1 = ACCU, p2 = none)
1+ p2 (p1 = ACCU, p2 = NUMBER])
Description: Signed shift right of p1 = shift p1 right, MSB is duplicated according to
whether the number is positive or negative
Signed shift p1 right p2 times - shift p1 register p2 times to the right, MSB
is duplicated according to whether the number is positive or negative
Category: Shift and rotate
sign Sign
Syntax: sign p1
Parameters: p1 = ACCU [x, vy, z, r]
Calculus: p1=p1/|p1|
p1 = 1 = 0Ox000001 if p1 >=0
p1 =-1 =0OxFFFFFF if p1 <0
Flags affected: [S Z
Bytes: 2
Cycles: 2
Description: Sign of addressed register in complement of two notations.
A positive value returns 1, a negative value returns -1
Zero is assumed to be positive
Category: Simple arithmetic
skip Skip
Syntax: skip p1
Parameters: p1 = NUMBER [1, 2, 3]
Calculus: PC = PC + bytes of next p1 lines

Flags affected:

Bytes:

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

4-41

Member of the ams Group

PICOSTRAIN®

PS8 DSP

Cycles: 1 + skipped commands
Description: Skip p1 without conditions
Category: Unconditional jump
skipBitC Conditional skip
Syntax: skipBitC p1, p2,p3
Parameters: p1 = ACCU [x, vy, z, r]

p2 = NUMBERI[O..23]

p2 = NUMBERI[1, 2, 3]
Calculus: if (bit p2 of register p1 == 0)

PC = PC + bytes of next p3 lines

Flags affected:

Bytes: 1
Cycles: 1 + skipped commands
Description: Skip p3 commands if bit p2 of register p1 is clear
Category: Bitwise
skipBitS Conditional skip
Syntax: skipBitS p1, p2,p3
Parameters: p1 = ACCU [x, vy, z, r]
p2 = NUMBER[O..23]
p3 = NUMBERI[1, 2, 3]
Calculus: if (bit p2 of register p1 == 1)

PC = PC + bytes of next p3 lines

Flags affected:

Bytes: 1

Cycles: 1 + skipped commands

Description: Skip p3 commands if bit p2 of register p1 is set
Category: Bitwise

skipCarC Skip carry clear

Syntax: skipCarC p1

Parameters: p1 = NUMBER [1, 2, 3]

Calculus: if (carry == 0)

PC = PC + bytes of next p1 lines

Flags affected:

Bytes: 1
Cycles: 1 + skipped commands
Description: Skip p1 commands if carry clear
Category: Skip on flag
skipCarS Skip carry set
4-42 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

PS8 DSP

mess-electronic

Syntax: skipCarS p1
Parameters: p1 = NUMBER [1, 2, 3]
Calculus: if (carry == 1)

PC = PC + bytes of next p1 lines

Flags affected:

Bytes: 1

Cycles: 1 + skipped commands
Description: Skip p1 commands if carry set
Category: Skip on flag

skipEQ Skip on zero

Syntax: skipEQ p1

Parameters: p1 = NUMBERI[1, 2, 3]
Calculus: if (notequalzero == O)

PC = PC + bytes of next p1 lines

Flags affected:

Bytes: 1

Cycles: 1 + skipped commands

Description: Skip p1 commands if result of previous operation is equal to zero
Category: Skip on flag

skipNE Skip on non-zero

Syntax: skipNE p1

Parameters: p1 = NUMBERI[1, 2, 3]

Calculus: if (notequalzero == 1)

PC = PC + bytes of next p1 lines

Flags affected:

Bytes: 1

Cycles: 1 + skipped commands

Description: Skip p1 commands if result of previous operation is not equal to zero
Category: Skip on flag

skipNeg Skip on negative

Syntax: skipNeg p1

Parameters: p1 = NUMBERI[1, 2, 3]

Calculus: if (signum == 1)

PC = PC + bytes of next p1 lines

Flags affected:

Bytes:

1

Cycles:

1 + skipped commands

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

4-43

PICOSTRAIN®

PS8 DSP

Description: | Skip p1 commands if result of previous operation was smaller than O
Category: | Skip on flag

skipOvrC Skip on overflow

Syntax: skipOvrC p1

Parameters: p1 = NUMBERI[1, 2, 3]

Calculus: if (overflow == 0]

PC = PC + bytes of next p1 lines

Flags affected:

Bytes: 1

Cycles: 1 + skipped commands

Description: Skip p1 commands if overflow is clear
Category: Skip on flag

skipOvrS Skip on overflow

Syntax: skipOvrS p1

Parameters: p1 = NUMBER[1, 2, 3]

Calculus: if (overflow == 1)

PC = PC + bytes of next p1 lines

Flags affected:

Bytes: 1

Cycles: 1 + skipped commands

Description: Skip p1 commands if overflow is set
Category: Skip on flag

skipPos Skip on positive

Syntax: skipPos p1

Parameters: p1 = NUMBER[1, 2, 3]

Calculus: if (signum == 0]

PC = PC + bytes of next p1 lines

Flags affected:

Bytes: 1

Cycles: 1 + skipped commands

Description: Skip p1 commands if result of previous operation was greater or equal to O
Category: Skip on flag

stop Stop
4-44 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

PS8 DSP

mess-electronic

Syntax: stop

Parameters: -

Calculus: -

Flags affected: |-

Bytes: 1

Cycles: 1

Description: The DSP and clock generator are stopped, the converter and the EEPROM go
to standby. A restart of the converter can be achieved by an external event like
,watchdog timer’, ,external switch' or ,new strain measurement results'.
Usually this opcode is the last command in the assembler listing.

Category: Miscellaneous

sub Substraction

Syntax: sub p1, p2

Parameters: p1 = NUMBERI[1, 2, 3]
p2 = NUMBERI[1, 2, 3] or 24-Bit number

Calculus: p1 =p2-p1l

Flags affected: |CO0SZ

Bytes: 1 (p1 = ACCU, p2 = ACCU)
4 (p1 = ACCU, p2 = NUMBER)]
Cycles: 1 (p1 = ACCU, p2 = ACCU)
4 (p1 = ACCU, p2 = NUMBER)]
Description: Subtraction of 2 registers
Subtraction of register from constant
Category: Simple arithmetic
swap Swap
Syntax: swap p1, p2
Parameters: p1 = ACCU [x, vy, r]
p2 = ACCU [x, vy, r]
Calculus: p1 =p2 and p2 = p1

Flags affected:

Bytes: 1

Cycles: 3

Description: Swap of 2 registers
The value of two registers is exchanged between each other.
Not possible with ACCU[Zz]

Category: RAM Access

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

4-45

PICOSTRAIN® PS@9 DSP

S5 Assembly Programs

The PSY9 assembler is a multi-pass assembler that translates assembly language files into HEX
files as they will be downloaded into the device. For convenience, the assembler can include
header files to be then downloaded. The user can write his own header files but also integrate the
library header files as they are provided by acam. The assembly program is made of many
statements which contain instructions and directives. The instructions have been explained in the
former section 4 of this datasheet. In the following we describe the directives and some sample

code.

Each line of the assembly program can contain only one directive or instruction statement.

Statements must be contained in exactly one line.

Symbols
A symbol is a name that represents a value. Symbols are composed of up to 31 characters from
the following list:

A-Z,a-z,0-9,

Symbols are not allowed to start with numbers. The assembler is case sensitive, so care has to

be taken for this.

Numbers
Numbers can be specified in hexadecimal or decimal. Decimal have no additional specifier.

Hexadecimals are specified by leading “Ox”.

Expressions and Operators
An expression is a combination of symbols, numbers and operators. Expressions are evaluated at
assembly time and can be used to calculate values that otherwise would be difficult to be

determined.

The following operators are available with the given precedence:

Level Operator Description

1 0 Brackets, specify order of execution

2 */ Multiplication, Division

3 + — Addition, Subtraction

5-46 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

|
PS@Q DSP mess-electronic
5.1 Directives

The assembler directives define the way the assembly language instructions are processed. They
also provide the possibility to define constants, to reserve memory space and to control the

placement of the code. Directives do not produce executable code.

The following table provides an overview of the assembler directives.

Directive Description Example
CONST Constant definition, CONST [name] [value] | CONST Slope 42
value might be a number, a constant, a CONST Slope constant + 1

sum of both

LABEL: Label for target address of jump jsub LABEL"
instructions. Labels end with a colon. All
rules that apply to symbol names also

apply to labels. jsubret

5 Comment, lines of text that might be ; this is a comment
implemented to explain the code. It begins
with a semicolon character. The
semicolon and all subsequent characters
in this line will be ignored by the
assembler. A comment can appear on a
line itself or follow an instruction.

<comment> Comment, lines of text that might be <comment>
<endcomment> |implemented to explain the code. It begins |this is

with <comments> directive and ends with |9 ve€ry tong ...
<endcomment> directive. All subsequent iggg‘;g;menb
characters between these directives will

be ignored by the assembler.

#include Include the header or library file named in [#include "rdc.h"
the quotation marks "". The code will be
added at the line of the include command.
In the quotation marks there might be just
the file name in case it is in the same
folder as the program, but also the
complete path.

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 5-47

Member of the ams Group

PICOSTRAIN® PS@9 DSP
5.2 Sample Code

The following code shows the basic structure of any PSS9 program:

K File:program_template.asm

N This is a template for a standard user program that shows the various possible flags
that can be

N read to find out what caused the DSP to jump into the user code. Some part of user code
needs

N to be executed on POR, some on External interrupt etc. Those jumps that are relevant to
the user

N can be retained, the rest can be commented.

N Author: VK

#include "config.h"
#tinclude "PS@9_RAM_constants.h"

ramadr 224+22

skipBitC r, 19, 1 ; Checking for power on reset flag, Bit 19 - in Status register

jsub Routine_ POR

goto end

ramadr 224+22

skipBitC r, 18, 1 ; Checking for SSN_RST (S6) Button Pressed : Bit 18 - 1in Status
register

jsub Routine_Button_Press

goto end

ramadr 224+22

skipBitC r, 17, 1 ; Checking for Watchdog reset : Bit 17 - in Status register

jsub Routine_watchdog

goto end

ramadr 224+22

skipBitC r, 16, 1 ; Checking for End of measurement : Bit 16 - 1in Status register

jsub Routine_measurement_end

goto end

ramadr 224+22

skipBitC r, 15, 1 ; Checking for wakeup in Sleep mode : Bit 15 - in Status register

jsub Routine_sleep_mode

goto end

ramadr 224+22

skipBitC r, 08, 1 ; Checking for DSP start due to External Pin Interrupt : Bit 68 -
in Status register

jsub Routine_ext_interrupt

goto end

ramadr 80

skipBitC r, 08, 1 ; Check for jump into user code because of Receive Int from UART:
Bit 68 - Reg.80

jsub Routine_uart_rec_int

goto end

Routine_POR:

e em e e o Insert Power on reset routine here-------------------cc---

nop

jsubret

9-48 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

dESMI

PSZQ DSP mess-electronic

Routine_Button_Press:

S Insert routine to be executed on Pushed button here------------
nop

jsubret

nop

Routine_measurement_end:

S Insert routine to be executed on measurement end here --------------
nop

jsubret

nop

Routine_ext_interrupt:

FEEEE T Insert Interrupt service routine for External Interrupt from Pin here---
nop

jsubret

nop

end:

stop

The following example from the Assembler program shows a simple program to display
results on an LCD:

File: simple_meas_with_LCD.asm

Author: VK / UTG

A TR PR PR

2

;5 Simple program to demonstrate calculation of Initial Offset after POR and after the Initial
Offset 1is taken, it goes to measure mode.

H State 1: Take init offset value (ignore first 4 measurements) Then average over next 5.
H State 2: Take measurement value and substract init offset value, then scale to display
correct weight.

.
)

PICOSTRAIN® PS@9 DSP

#tinclude "config.h"
; The other 1include files are included at the end of the program

S Constants for measurement program ---------------=-------———-------
CONST init_offset_for_measurement 121
CONST count_measurements 122
CONST temp_count 123
CONST init_offset_status 124

; To store the status of init_offset, @ - if offset calculation is not yet complete

; 1 - 1f offset calculation is complete

start:

; On POR configure the PS09 to act as SPI master to communicate with the Holtek driver
ramadr 224+22

skipBitC r, 19, 3 ; Checking for power on reset : flg rstpwr bit

jsub cfg_spi_master; Configures the SPI master Lines on GPI0O®, GPIO1 and GPIO2
; To use other pins for the SPI master, change in this include file accordingly
jsub cfg_ht_driver ; Configure the HT1621 driver for display

jsub init_values

ramadr init_offset_status ; Check status of init offset
skipBitS r, 9, 2

jsub get_init_offset

goto end

;Refresh the displayed value on measurement completion

ramadr 22+224

skipBitS r, 16, 1 ; Check for end of measurement - Bit 16

goto end

e e LT P TP To display measurement values on LCD--------------------
; Reading measurement value HBO into x ARku

ramadr 224+20

move X, r

ramadr init_offset_for_measurement

move y, r

sub X, Yy

abs X

e e L L e TP Mutiplication factor -------=-----------coommeo
shiftL X, 4 ; HBo * 274

move z, Ox8D5E5 ; With 2000 g load and no multiplication factor (& with division

by 10 seen below): Meas.value = 3629

; (2000 / 3629) * 2720 = Ox8D15F

; This factor 1is further corrected with again 500 g lLoad
(500/499) * 0x8D15F = Ox8D5E5

; The above 274 and 2720 factors are multiplied to adjust for the
following mult24 opcode

mult24 X, Z ;5 Implicit to opcode , result is / 2724

move z, 10 ; division by 160 to omit the LSB, only 4 digits needed

divmod X, Z

move y, © 5 Number of digits after the decimal point

jsub notolcd ;5 Routine to convert the display value to LCD format

move z, 0x10 ; 6x10 - Code to display units as gm,Codes for other units are
present in notolcd.h

jsub display_value_on_Holtek ; Displaying the data with the Holtek driver

end:

clrwdt

stop

S----- end of main program---------------—---———————--_-

e T T e TP -Subroutines-------------mmmmm -

init_values:

ramadr count_measurements

5-50 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Member of the ams Group

dESI

PSZQ DSP mess-electronic

clear r

ramadr init_offset_status

clear r

ramadr temp_count , Use a temporary counter
clear r

jsubret

move X, OxFFFFoo ; setting all the segments

move y, OXFFFFFF

move z, 0

jsub display_text_on_Holtek

FEEEEE T Get current measurement value and save it to x for further processing -------
ramadr 224+20 ;HBO value

move X, P

PR Count Loops and dismiss first 4 measurements ---------------

ramadr temp_count , Use a temporary counter

incr r

compare r,4 ; Is it higher than 4? -> Ignore first 4 measurements
gotoNeg apply _roll _avg; From the 5th measurement, perform a rolling average

jsub roll avg init5; Initalize rolling average filter with measurement value in X
goto end_init_offset

2
apply_roll_avg:

PR Use rolling average filter for init offset value ---------------

jsub rolling_avg_ 5 ; 5 times rolling average

et Count Loops for Initial Offset --------------mmmmmo e

ramadr count_measurements

incr r

compare r,5 ; Take 5 measurements

gotoPos end_init_offset; Is it Lesser than 5? , then take more measurements else store
the offset

;---- After 5 valid measurements save filtered value to RAM as initial offset for measurement-

ramadr init_offset_for_measurement ; Init offset value for measurement mode

move r, x

ramadr init_offset_status

incr r ; Set status of init_offset_status to 1 (init offset taken)

end_init_offset:

jsubret

#include "rollavg.h" ; This file is used to calculate the rolling average of the measurement
#include "cfg_spi_master.h"; These include files are used ONLY for using the Holtek LCD driver
#include "cfg_ht_driver.h"

#include "notolcd.h"

#include "display_value_on_Holtek.h"

#include "display_text_on_Holtek.h"

For details on programming with the assembler tool please refer to the PSOS-EVA-KIT
datasheet, which includes a description of the assembler software.

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 5-51

Member of the ams Group

Member of the ams Group

dESMI

PS@Q DSP mess-electronic

6 Miscellaneous
6.1 Bug Report

(See Data Sheet, Volume 1 “General Data and Front-end Description”)

6.2 Document History

05.11.2014 First release of Volume 2, Version 1.0

messe.electronic

acam-messelectronic gmbh
Friedrich-List-Stralie 4
76297 Stutensee-Blankenloch
Germany

Phone +48 7244 7419 - 0O
Fax +49 7244 7419 - 29
E-Mail support@acam.de

WwWw.acam.de

Member of the ams Group

