


®


5th November 2014
Document-No: DB_PSØ 9_Vol2_en V1.0

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 1-3

The PSØ 9 is a system-on-chip for ultra low-power and high resolution applications. It was
designed especially for weight scales but fits also to any kind of force or torque
measurements based on metal strain gages. It takes full advantage of the digital
measuring principle of PICOSTRAIN. Thus, it combines the performance of a 28-Bit signal
converter with a 24-Bit microprocessor. This volume 2 datasheet describes the PSØ 9 CPU
and the instruction set for programming the CPU. In stand-alone operation it is mandatory
to have a program running in the CPU, but also in front-end mode, when operated as pure
resistance-to-digital converter, the CPU might be used to implement additional data post-
processing on chip.

Ceramic
oscilaltor

External LCD Driver

10 kHz
CLK

SPI / IIC -Interface

T
e
m

p
e
ra

tu
re

M

e
a
s
u
re

m
e
n

t

S
tr

a
in

G

a
g
e

C
o
n
tr

o
l T
D

C
-U

n
it

CPU
24 Bit

EEPROM
128 x 8

Bit

UART

Measurement
Unit

Watchdog Timer
4 Mhz

Ref Osc
Reset

ROM
3K x 8

Bit

Config

RAM
160 x 24

Bit

Load cell

Load cell

Load cell

Load cell
8K x 8
Bit OTP

IO
Pins

up to 4 Capacitive Keys

up to 24 Resistive Keys

8 Digital GPIOs

UART GPIOs

SPI / IIC

Figure 1-1: PSØ 9 block diagram

Member of the ams Group


®
 PSØ9 DSP

2-4 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

acam designed its own proprietary 24-bit central processing unit. It combines calculation
power with ultro-low power operation. Only this special design made it possible to build a
system that runs with a few µ A current only, but offers complex post-processing of the
high-resolution measurement data.

The program itself is stored in an 8k OTP. During development it can be stored
alternatively in an external EEPROM.

For effective programming, acam implemented already some special functions like the
48-bit ultiplication and division in ROM code.

Figure 2-1: Block Diagram

8-bit
7-bit address

16-bit
address

16-bit address

8-bit
address

24-bit

8-bit

ROM

SPI / IIC Serial Interface

C
o
n
tr

o
l
U

n
it

RAM

Flags

ALU

Config
.

RAM Address
Pointer

OTP /
external
EEPROM

Program
Counter

Stack
8 Level User

 EEPROM

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-5

Figure 2-2: PSØ 9 Memory Organization

FFFF h
..........
F000 h

65535
..........
61440

ROM Program memory

4k

EFFF h

..........

2000 h

61439

..........

8192

Reserved

1FFF h

..........

2F h
..........
0000 h

8191

..........

47
..........
0

User program Memory
8192 bytes of OTP / External EEPROM

Configuration, optional (mirrored to RAM)

8k

The user program memory in PSØ 9 available for user programming is 8 kbyte in size. This
8 kB user program memory is implemented by an on-chip one time programmable ROM,
the OTP. As the name suggests, this memory is writable only once. Hence for development
of the user program, the PSØ 9 supports an erasable and re-programmable external
EEPROM, maximum 8 kB in size. Once the application program development is complete
with the external EEPROM, then the same program can be downloaded into the OTP and it
will function in the same manner with the OTP.

(Except prolonged code execution time as described further in 2.2.3).

The first 48 bytes of the OTP from location 0 – 47 are reserved for the configuration data.
In order to enable programming of the OTP, an external programming voltage of 6.5 V
must be available on pin VPP_OTP of the PSØ 9.

The following flow diagram shows how the OTP is generally handled, details follow in
subsequent sections.

Member of the ams Group


®
 PSØ9 DSP

2-6 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Figure 2-3: Using the OTP

The OTP needs an external voltage of 6.5 V on the VPP_OTP pin of the PSØ 9 in order to
enable programming. In addition to enabling the OTP, there are op codes to enable and
disable the PROG (Enable Programming) signal of the OTP.
The following is a flowchart that shows the SPI command sequence to write a byte to the
OTP.

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-7

Figure 2-4: Writing to the OTP

For a list of all op codes pertaining to accessing the OTP through the SPI / IIC interface,
refer to Vol.1, Chapter 4, section 4.5.3.3 OTP Access.

On power on reset, the OTP is by default read protected. An un-programmed OTP content
is all 0s. To enable the OTP, the Address 8143, called the Fuse Address must be read
first. When the content of the Fuse address is all 0s indicating an un-programmed OTP,
then the OTP is enabled for reading, i.e. the OTP is unprotected.
Hence this de-protection is the first step in working with the OTP.

Member of the ams Group


®
 PSØ9 DSP

2-8 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

The following is a flowchart that shows the general sequence of sending SPI commands to
read a byte from the OTP. This is the sequence to be used when controlling the PSØ 9 by
an external microcontroller, through the SPI / IIC interface.

Figure 2-5: Reading the OTP

For a list of values of all op codes for accessing the OTP through the SPI / IIC interface,
refer to Vol.1, Chapter 4, section 4.5.3.3 OTP Access.

Once the OTP has been programmed with the user program and when the code
development is complete, the code can be read protected with the Fuse address. For read
protecting the OTP, the fuse address 8143 must be written with a non -zero value. The
read protection process is completed by reading the address 8143 after writing it with
the non-zero value.

An external EEPROM of up to 8 kB size is supported as user program memory by the
PSØ 9 with the sole purpose of supporting user program development. The final program
will be written to the on-chip OTP. It is to be noted that the program will be executed in

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-9

exactly the same manner, irrespective of whether the user program memory is the OTP or
the external EEPROM.

The programming sequence to write a byte into the external EEPROM and to read a byte
from the external EEPROM through the SPI / IIC interface can be found under Vol.1,
Chapter 4, section 4.5.3.4 External EEPROM Access.

This section describes how the program can be developed by the user using the external
EEPROM as the program memory.

As already stated, basically a user program is executed in the same manner, i rrespective
of whether the user program memory used is the OTP or the external EEPROM. However
the PSØ 9 has to know, which of the two has to be used as the user program memory. For
this purpose, as a standard operation on power-up, the PSØ 9 checks for the presence of
an external EEPROM by reading address 0 of the external EEPROM. When 00 or FF is
read back from address 0 of the EEPROM, then the PSØ 9 takes the internal OTP as the
user program memory and executes the code from the OTP. When a value other than 00
and FF is read from the Address 0 of the external EEPROM, then the EEPROM is
considered to be the user program memory by the chip and user code in the external
EEPROM is executed.

The content of address 00 corresponds to value of the bits 23:16 of Conf iguration
register 0 (tdc_conv_cnt).

Figure 2-6: Program Memory on POR

Once the user program development is completed using the external EEPROM then, the
final program is ready to be written to the OTP. Then the external EEPROM is either
removed physically or it is made inactive to the PSØ 9 by writing the address 00 of the
external EEPROM with 00 or FF. The following flowchart gives an overview of how the user
program is developed using the EEPROM and transferred to the OTP finally.

Member of the ams Group


®
 PSØ9 DSP

2-10 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Figure 2-7: User Programm Development

The PSØ 9 Assembler Software which is used for user program development supports
downloading the developed program to the external EEPROM or to the on chip OTP. The
target for downloading the program can be selected from a drop down list on the
Download page of the assembler.

The lower 48 bytes in the user program memory are reserved for an automatic
configuration of the PSØ 9 during a power-on reset. 3 successive bytes are added to a 24
bit word. So there are 16 words of 24 bit each that are used for configuration register 0
to 15. During a power- on reset they are copied into RAM addresses 48 to 63.

Generally the code execution from the external EEPROM takes longer than from the
internal OTP. This fact needs to be considered when delay routines are realized using
incr/decr opcodes in loops as the delay will be longer when executed from the EEPROM in
comparison with the OTP. The code execution from the external EEPROM is approx. 10 to
15 times slower than from the internal OTP.

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-11

In PSØ 9, 4 kbytes is reserved for the ROM starting at address F000 h. All computation
routines needed for the PICOSTRAIN measuring method reside here. The program can
jump back from the ROM to the OTP/external EEPROM.

The user EEPROM in PSØ 9 is 128 bytes of 8 bits each. This user EEPROM can be used to
store calibration data that can be accessed from the user program. The processor can
write to and read from this EEPROM, byte-wise using the putepr and getepr op-codes. This
EEPROM hangs on the same address bus as the RAM. Hence the RAM address pointer is
used to address both the user EEPROM and the RAM. See section 2.2.7 to get more
details with code snippets on how the RAM address pointer is used to address both the
user EEPROM and the RAM.

Member of the ams Group


®
 PSØ9 DSP

2-12 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Table 2-1: RAM address organization

255 … 240 Status and Result registers in stand-alone mode (same content as 31 – 16)
(e.g. using the DSP Instruction Set)

239 ... 208 System RAM

207
...
96

User RAM 207
...
User RAM 96

95 ... 92 Reserved

91 ... 86 UART Config / status reg

85 ... 81 Internal registers

80 UART Config / status reg

79... 64 Reserved for internal use

63
....
48

Config reg 15
......
Config reg 0

47
.....
32

User RAM 47
.....
User RAM 32

31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16

Modrspan result
Timer
I/O status – falling, rising and pressed status of the 8 GPIO s
Status of the 24 Multi Input keys, Pressed or Released
Status : rising edge on the 24 Multi Input keys
Status : falling edge on the 24 Multi Input keys
UBATT
CAL
HB1+
Status flags
TMP
HB0 = 1/4 * (HB1+HB2+HB3+HB4)
HB4 = (G-H) / (G+H) *
HB3 = (E-F) / (E+F) *
HB2 = (C-D) / (C+D) *
HB1 = (A-B) / (A+B) *

User RAM
31 ... 16

Status and
Result
registers in
front end
mode;
(e.g. using
external µ C)

15
.....
0

User RAM 15
.....
User RAM 0

* Parameters A..H represent the discharging times at the different ports, see section 2.4.1 Result Registers for more details

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-13

The RAM has its own address bus with 256 addresses. The width of 24 bit corresponds
to the register width of the ALU. By means of the RAM address pointer a single RAM
address is mapped into the ALU. It then acts as a fourth accumulator register. Changing
the RAM address pointer does not affect the content of the addressed RAM. The RAM
address pointer itself is modified by separate opcodes (ramadr, incramadr, ...). As
explained in the previous section, the RAM address bus is additionally used to address
128 bytes of user EEPROM with particular op codes.

Figure 2-8: RAM Address Pointer

When the RAM address pointer is set to a value and op codes putepr and getepr are
used, the RAM address pointer points to the respective byte in the user EEPROM. Hence
operations are carried out with the respective user EEPROM byte. All other op codes like
move r, x set the RAM address pointer to point to the RAM, hence the operation is
performed in the RAM.

The following sample code illustrates how the RAM address pointer is used to access the
user EEPROM and the RAM, based on the op code used.

Sample code:

Ramadr 3 // Sets the RAM address pointer to address 3

Move r, x // Moves the content of the X accumulator to the RAM address 3

 // RAM Address Pointer is pointing to the RAM

Member of the ams Group


®
 PSØ9 DSP

2-14 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Ramadr 4 // Sets the RAM address pointer to address 4

Getepr x // Gets the content of the user EEPROM address 4 into the X

 // accumulator

 // RAM Address Pointer is pointing to the user EEPROM

Ramadr 3 // Sets the RAM address pointer to address 3

Putepr x // Moves the content of the X accumulator to the user EEPROM

 // address 3

 // RAM Address Pointer is pointing to the user EEPROM

Clear r // Clears the content of RAM address 3

 // RAM Address Pointer is pointing to the RAM

Figure 2-9: ALU block diagram

Add
Sub
Shift

RAM-
Address

Control
+ ROM

Flags
CEOS

Y

Z

RAM

X

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-15

The ALU has three 24-Bit accumulators, X, Y and Z. The RAM is addressed by the RAM
address pointer and the addressed RAM cell is used as forth accumulator. A single RAM
address is mapped into the ALU by the ram address pointer. So in total there are 4
accumulators. All transfer operations (move, swap) and arithmetic–operations (shift, add,
mult24, …) can be applied to all accumulators.

The processor controls 4 flags with each operation. Not-Equal and Sign flags are set with
each write access to one of the accumulators (incl. RAM). Additionally, the Carry and
Overflow flags are set in case of a calculation (Add / Sub / shiftR). It is possible to query
each flag in a jump instruction.

Shows the carry over in an addition or subtraction. With shift operations (shiftL, rotR,
etc.) it shows the bit that has been shifted out.

This flag is set to zero in case a new result not equal to zero is written into an
accumulator (add, sub, move ,swap, etc.).

The sign is set when a new result is written into an accumulator (add, sub, move, swap,
etc.) and the highest bit (MSB) is 1.

Indicates an overflow during an addition or subtraction of two numbers in two‘s
complement representation.

Content of the RAM result registers at the end of a measurement:

ram = 16 : HB1 = (A-B) / (A+B) HB1 un-compensated

ram = 17 : HB2 = (C-D) / (C+D) HB2 un-compensated

ram = 18 : HB3 = (E-F) / (E+F) HB3 un-compensated

ram = 19 : HB4 = (G-H) / (G+H) HB4 un-compensated

ram = 20 : HB0 = 1/4 * (HB1+HB2+HB3+HB4)

 HB0 compensated sum

ram = 21 : TMP = RTemp / Rsg Temperature measurement value,

 see Vol.1, Chapter 3, Section 3.5.10

 Internal Temp. Measurement

ram = 22 : Status flags See section 2.4.2 Status Register

ram = 23 : HB1+ Time measurement TDC at SG_A1, Pin11

Member of the ams Group


®
 PSØ9 DSP

2-16 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

ram = 24 : CAL Resolution TDC

ram = 25 : UBATT Measured supply voltage

ram = 26 : Status_Multi_F Indicates falling edge occurrence on 24 possible

 Multi Input keys

ram = 27 : Status_Multi_R Indicates rising edge occurrence on 24 possible

 Multi Input keys

ram = 28 : Status_Multi_P Status of the 24 Multi Input keys, Pressed or Released

ram = 29 : Status_IO Falling, Rising and Current Status of 8 GPIO pins

ram = 30 : Timer Status of the timer on measurement completion

ram = 31 : Modrspan Rspan value on measurement completion.

 For load cells with Rspan, the ratio Rspan/Rsg when bit

 mod_rspan = 1 in Config_reg1.

 A : Discharge time measurement at SG_A1

 B : Discharge time measurement at SG_A2

 C : Discharge time measurement at SG_B1

 D : Discharge time measurement at SG_B2

 E : Discharge time measurement at SG_C1

 F : Discharge time measurement at SG_C2

 G : Discharge time measurement at SG_D1

 H : Discharge time measurement at SG_D2

 RTemp : Discharge time measurement through the combination of Integrated Rspan

 and strain gage resistor at SG_D1 and SG_C2

 Rsg : Discharge time measurement at SG_D1 || SG_C2

 HB1 : Result in 1
100⁄ 𝑝𝑝𝑚

 HB2 : Result in 1
100⁄ 𝑝𝑝𝑚

 HB3 : Result in 1
100⁄ 𝑝𝑝𝑚

 HB4 : Result in 1
100⁄ 𝑝𝑝𝑚

 HB0 : Result in 1
100⁄ 𝑝𝑝𝑚

 TMP : current ratio CR by 1 + 𝑇𝑀𝑃
220⁄

 Status : See above

 HB1+ : Result in 250 ∗
𝑆𝐺𝐴1

214⁄ 𝑛𝑠 @ 4 MHz clock

 CAL : Calculation of Resolution by 250,000
𝐶𝐴𝐿⁄ 𝑝𝑠 @ 4 MHz clock

 UBATT : Calculation of Supply Voltage by 2.0 + 1.6 ∗ 𝑈𝐵𝐴𝑇𝑇
64⁄ 𝑉

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 2-17

HB1, HB2, HB3, HB4, HB0 and TMP are given as two’s complement. MSB = 1 indicates a
negative value. To get the positive value calculate 224 – X.

Based on a standard extension of a load cell (2 mV/V) the resistance variation is 0.2 %,
e.g. 2 Ω at a 1000 Ω load cell. The change of 0.2 % corresponds to 2000 ppm. For
reasons of internal calculations and accuracy, the result is given in x100 of 2000 ppm (=
200,000 ppm). Please note that the value in this register depends not only on the load
cell’s sensitivity but also on the Mult_HBx setting in PSØ 9. This explanation is based on
Mult_HBx = 1.

1.5 mV/V load cell, PICOSTRAIN wiring, Mult_HBx = 1:
1.5 mV/V = 1500 ppm  result in PSØ 9 at maximum strain: 150,000 (0x0249F0)

2 mV/V load cell, Wheatstone wiring, Mult_HBx = 1:
2 mV/V means 1.333 mV/V in Wheatstone = 1333 ppm (due to a reduction in strain) 
 result in PSØ 9 at maximum strain: 133,333 (0x0208D5)

1 mV/V load cell, PICOSTRAIN wiring, Mult_HBx = 4:
1 mV/V = 1000 ppm  result in PSØ 9 at maximum strain: 400,000 (0x061A80)

Member of the ams Group


®
 PSØ9 DSP

2-18 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Table 2-2: Status Register (RAM Address 246)

Status[23] = flg_status_cport4 Status flag of capacitive port 4

Status[22] = flg_status_cport3 Status flag of capacitive port 3

Status[21] = flg_status_cport2 Status flag of capacitive port 2

Status[20] = flg_status_cport1 Status flag of capacitive port 1

Status[19] = flg_rstpwr 1 = Power-on reset caused jump into OTP / ext. EEPROM

Status[18] = flg_rstssn 1 = Pushed button caused jump into OTP / ext. EEPROM

Status[17] = flg_wdtalt 1 = Watchdog interrupt caused jump into OTP / ext. EEPROM

Status[16] = flg_endavg 1 = End of measurement caused jump into OTP / ext. EEPROM

Status[15] = flg_intav0 1 = Jump into OTP / ext. EEPROM in sleep mode

Status[14] = flg_ub_low 1 = Low voltage

Status[13] = flg_errtdc 1 = TDC error

Status[12] = reserved 1 = reserved

Status[11] = flg_err_cport 1 = Error at capacitive ports

Status[10] = flg_errprt 1 = Error at strain gauge ports

Status[09] = flg_timout 1 = Timeout TDC

Status[08] = flg_ext_interrupt 1 = DSP start by external interrupt

Status[07] = flg_cport4_r 1 = Rising edge at capacitive port 4, 0 = no edge

Status[06] = flg_cport3_r 1 = Rising edge at capacitive port 3, 0 = no edge

Status[05] = flg_cport2_r 1 = Rising edge at capacitive port 2, 0 = no edge

Status[04] = flg_cport1_r 1 = Rising edge at capacitive port 1, 0 = no edge

Status[03] = flg_cport4_f 1 = Falling edge at capacitive port 4, 0 = no edge

Status[02] = flg_cport3_f 1 = Falling edge at capacitive port 3, 0 = no edge

Status[01] = flg_cport2_f 1 = Falling edge at capacitive port 2, 0 = no edge

Status[00] = flg_cport1_f 1 = Falling edge at capacitive port 1, 0 = no edge

The status of the inputs can be queried from the status registers at RAM address 250 to
252. Please see Vol.1, Chapter 4, Section 4.3.3 Multi-input keys for more details.

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-19

ALU activity is requested by a reset (power-on, watchdog), the end of measurement or in
sleep mode the end of the conversion counter. A reset has priority over the other two
items. First the ALU jumps into the ROM code starting with address F000 h. There a first
check is done whether the ALU was activated after a reset or not.

In case of a reset, the flag otp_pwr_cfg is checked to decide whether the auto -
configuration data from the OTP/external EEPROM have to be copied into the RAM or not.

Subsequently, the flag otp_pwr_prg is checked to decide whether OTP/ external EEPROM
user code (starting at address 48) ought to be executed. In stand-alone operation this is
reasonable and otp_pwr_cfg bit should be 1. In front end operation this is unlikely and with
otp_pwr_cfg = 0 the µ P is stopped.

In case the ALU is started not by a reset the TDC unit starts a measurement or, in sleep
mode, the conversion counter is started without a measurement. Afterwards the flag
otp_usr_prg is checked to decide whether a jump into the user code in OTP/external
EEPROM (address 48) must be performed or not. Again, in stand-alone operation
otp_usr_prg =1 is reasonable, in front-end operation otp_usr_prg = 0 will be more likely.

In the user code in the OTP / external EEPROM first the flag flg_rstpwr should be checked
to see whether the reason for the jump was a reset. If yes, a detailed check is
recommended to see whether the reset comes from a power-on reset, a pushed button,
the watchdog interrupt.

Otherwise a check of flag flg_intav0 will indicate if the chip is still in sleep mode or if an
active strain measurement is running.

At the end the ALU is stopped. This implements a complete reset of the ALU including the
start flags. Also the program stack is reset. Only the RAM data remain unchanged.

When applying the supply voltage to the chip a power-on reset is generated. The whole
chip is reset, only the RAM remains unchanged.

In case otp_pwr_prg = 1 the user code at EEPROM address 48 is started.

A power-on reset can also be triggered by the watchdog timer. This happens in case the
microprocessor is started four times without being reset by the opcode “clrwdt”. Status bit
flg_wdtalt in register 224+22; bit 17 indicates a timeout of the watchdog timer.

In case otp_pwr_prg = 1 the user code at EEPROM address 48 is started.

Member of the ams Group


®
 PSØ9 DSP

3-20 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

In stand-alone mode (if Mode pin is unconnected) it is possible to apply an external power-
on at pin 6 (SPI_CSN_RST). This can be used as a reset button. The status of the button
can be requested from status bit flg_rstssn in register 224+22, bit 18.

In case otp_pwr_prg = 1 the user code at EEPROM address 48 is started.

In sleep mode only the 10 kHz oscillator is running. At regular intervals the
microprocessor is waked up but without doing a measurement. In this phase it can check
the I/Os. A start-up of the microprocessor from sleep mode is indicated by status bit
flg_intav0 in register 224+22, bit 22.

Configuration: tdc_sleepmode Register 1, Bit 17
 tdc_conv_cnt [7:0] Register 0, Bits 23 to 16

Note : The sleep mode works only in combination with Single_conversion = 1 in
Configreg_02

Sleep mode is activated by setting tdc_sleepmode = 1. This is equivalent to set avrate = 0.

In sleep mode the conversion counter tdc_cnv_cnt is running to the end and then
immediately starting the user program beginning at address 48 in the EEPROM.

After running in sleep mode the TDC has to be reinitialized for measurements.

The basic clock for the system is the internal, low-current 10 kHz oscillator. It is used to
trigger measurements in single conversion mode for the TDC unit in measurement range 2
as pre-counter as basis for the cycle time in stretched modes.

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 3-21

Figure 3-1: Clock Generation

The TDC conversion counter starts a measurement in single conversion mode. It is
running continuously. The single conversion rate is given by 10 kHz / 64 / tdc_conv_cnt.

With the beginning of a measurement the watchdog counter is increased. The watchdog
counts the conversions. At the end of a measurement the microprocessor starts to run
the user code. In normal operation the watchdog has to be reset by CLRWDT before the
user code ends. The watchdog causes a power-on reset in case the TDC doesn’t finish its
measurement because of an error or the user code does not run to end.

It is possible to switch off the watchdog when controlling the PSØ 9 by the SPI interface
(Mode pin is connected to 0) sending SPI opcode watch_dog_off. Further the watchdog is
reset by each signal edge at the SPI_CSN_RST pin.

PSØ 9 has a real time counter that counts automatically after a power-on reset in periods
of 12.8 ms. The value of this timer can be read out at address 254, it is updated at the
end of each measurement. The counter rolls over at 224 bit, which corresponds to a
period of 46 hours

Member of the ams Group


®
 PSØ9 DSP

4-22 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

The complete instruction set of the PSØ 9 consists of 69 core instructions that have
unique op-codes decoded by the CPU.

There are 3 principles of jumping within the code:
Jump. Absolute addressing within the whole address space of 8 kB.
Branch. Relative to the actual address, jump within the address range of –128 to +127.
Skip. Jump ahead up to 3 op-codes (3 to 15 bytes).

The assembler puts together jump and branch into goto-instructions.

It is possible to jump into subroutines only by means of absolute jumps and without any
condition.

The RAM is organized in 24 Bit words. All instructions are based on two’s complement
operations. An arithmetic command combines two accumulators and writes back the
result into the first mentioned accumulator. The RAM address pointer points to the RAM
address that is handled in the same way as an accumulator. Each operation on the
accumulator affects the four flags. The status of the flags refers to the last operation.

Table 4-1: Instruction set

abs div24 clrC clear

add divmod rotl decramadr

compare mult24 rotR incramadr

compl mult48 setC move

decr shiftL ramadr

getflag shiftR swap

incr
sign
sub

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-23

and bitclr equal

eor bitinv getepr

nor bitset putepr

invert addepr

nand
nor
or

skip
goto clk10kHz

gotoBitC skipBitC clrwdt

gotoBitS skipBitS nop

gotoCarC skipCarC stop

gotoCarS skipCarS initTDC

gotoEQ skipEQ newcyc

gotoNE skipNE
gotoNeg skipNeg
gotoOvrC skipOvrC
gotoOvrS skipOvrS
gotoPos skipPos
jsub
jsubret

Syntax: abs p1

Parameters: p1 = ACCU [x, y, z, r]

Calculus: p1 = | p1 |

Flags affected: C O S Z

Bytes: 2

Cycles: 2

Description: Absolute value of register

Category: Simple arithmetic

Member of the ams Group


®
 PSØ9 DSP

4-24 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Syntax: add p1, p2

Parameters: p1 = ACCU [x, y, z, r]
p2 = ACCU [x, y, z, r] or 24-Bit number

Calculus: p1 = p1 + p2

Flags affected: C O S Z

Bytes: 1 (p2 = ACCU)
4 (p2 = number)

Cycles: 1 (p2 = ACCU)
4 (p2 = number)

Description: Addition of two registers or addition of a constant to a register

Category: Simple arithmetic

Syntax: addepr x

Parameters: ACCU[x]

Calculus: x = x+Value (EEprom(rampointer))

Flags: Z S C O

Bytes: 2

Cycles: 100..200

Description: Adds the value from the content of the EEPROM register, currently addressed
by the ram address pointer, to the X-Accumulator.

Category: EEPROM access

Syntax: and p1, p2

Parameters: p1 = ACCU [x, y, z, r]
p2 = ACCU [x, y, z, r] or 24-Bit number

Calculus: p1 = p1 AND p2

Flags affected: S Z

Bytes: 2 (p2 = ACCU)

5 (p2 =
number)

Cycles: 3 (p2 = ACCU)

6 (p2 =
number)

Description: Logic AND of 2 registers or Logic AND of register and constant

Category: Logic

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-25

Syntax: bitclr p1, p2

Parameters: p1 = ACCU [x, y, z, r]
p2 = number 0 to 23

Calculus: p1 = p1 and not (1<<p2)

Flags affected: S Z

Bytes: 2

Cycles: 2

Description: Clear a single bit in the destination register

Category: Bitwise

Syntax: bitinv p1, p2

Parameters: p1 = ACCU [x, y, z, r]
p2 = number 0 to 23

Calculus: p1 = p1 eor (1<<p2)

Flags affected: S Z

Bytes: 2

Cycles: 2

Description: Invert a single bit in the destination register

Category: Bitwise

Syntax: bitset p1, p2

Parameters: p1 = ACCU [x, y, z, r]
p2 = number 0 to 23

Calculus: p1 = p1 or (1<<p2)

Flags affected: S Z

Bytes: 2

Cycles: 2

Description: Set a single bit in the destination register

Category: Bitwise

Syntax: clear p1

Parameters: p1 = ACCU [x, y, z, r]

Calculus: p1 = 0

Flags affected: S Z

Bytes: 1

Cycles: 1

Member of the ams Group


®
 PSØ9 DSP

4-26 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Description: Clear addressed register to 0

Category: RAM access

Syntax: clk10khz p1

Parameters: p1 = number 0 or 1

Calculus: -

Flags affected: -

Bytes: 2

Cycles: 3

Description: Change clock source of processor to 10 kHz. The clock of the processor is
switched to the slower 10 kHz clock instead of the 40 MHz. The 10 kHz clock
is still stable to variations in temperature and supply voltage. If p1 is set to 1
the 10 kHz clock is on, if p1 == 0 the 10 kHz clock is off. With the 10 kHz
clock beeper application at the IO-Port may programmed with the
microcontroller. Do not switch directly between CLK4MHz and CLK10kHz.

Category: Miscellaneous

Syntax: clrC

Parameters: -

Calculus: -

Flags affected: C O

Bytes: 1

Cycles: 1

Description: Clear Carry and Overflow flags

Category: Shift and Rotate

Syntax: clrwdt

Parameters: -

Calculus: -

Flags affected: -

Bytes: 2

Cycles:

Description: Clear watchdog. This opcode is used to clear the watchdog at the end of a
program run. Apply this opcode right before ‚stop‘.

Category: Miscellaneous

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-27

Syntax: compare p1, p2

Parameters: p1 = ACCU [x, y, z, r]
p2 = ACCU [x, y, z, r] or 24-Bit number

Calculus: --- = p2 - p1 only the flags are changed but not the registers

Flags affected: C O S Z

Bytes: 1 (p1 = ACCU, p2 = ACCU)
4 (p1 = ACCU, p2 = NUMBER)

Cycles: 1 (p1 = ACCU, p2 = ACCU)
4 (p1 = ACCU, p2 = NUMBER)

Description: Comparison of 2 registers by subtraction. Comparison of a constant with a
register by subtraction The flags are changed according to the subtraction
result, but not the registers contents themselves

Category: Simple arithmetic

Syntax: compl p1

Parameters: p1 = ACCU [x, y, z, r]

Calculus: p1 = - p1 = not p1 + 1

Flags affected: S Z

Bytes: 2

Cycles: 2

Description: two‘s complement of register

Category: Simple arithmetic

Syntax: decr p1

Parameters: p1 = ACCU [x, y, z, r]

Calculus: p1 = p1 – 1

Flags affected: C O S Z

Bytes: 1

Cycles: 1

Description: Decrement register

Category: Simple arithmetic

Syntax: decramadr

Parameters: -

Calculus: -

Flags affected: -

Bytes: 1

Member of the ams Group


®
 PSØ9 DSP

4-28 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Cycles: 1

Description: Decrement RAM address pointer by one

Category: Ram Access

Syntax: div24 p1, p2

Parameters: p1 = ACCU [x, y, z, r]
p2 = ACCU [x, y, z, r]

Calculus: p1 = (p1 << 24) / p2 (if |p1| < |p2/2|)

Flags affected: S & Z of p1

Bytes: 2

Cycles: 20

Description: Signed division of 2 registers, 24 bits of the division of 2 registers, result is
assigned to p1

Category: Complex arithmetic

Syntax: divmod p1, p2

Parameters: p1 = ACCU [x, y, z, r]
p2 = ACCU [x, y, z, r]

Calculus: p1 = p1 / p2 and p2 = p1 % p2

Flags affected: S Z

Bytes: 2

Cycles:

Description: Signed modulo division of 2 registers, 24 higher bits of the division of 2
registers, result is assigned to p1, the rest is placed to p2

Category: Complex arithmetic

Syntax: eor p1, p2

Parameters: p1 = ACCU [x, y, z, r]
p2 = ACCU [x, y, z, r] or 24-Bit number

Calculus: p1 = p1 xor p2, bit combination 0 / 0 and 1 / 1 returns 0, bit combination 0
/ 1and 1 / 0 returns 1

Flags affected: S Z

Bytes: 2 (p1 = ACCU, p2 = ACCU)
5 (p1 = ACCU, p2 = NUMBER)

Cycles: 3 (p1 = ACCU, p2 = ACCU)
6 (p1 = ACCU, p2 = NUMBER)

Description: Logic XOR (exclusive OR, antivalence) of the 2 given registers
Logic XOR (exclusive OR, antivalence) of register with constant

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-29

Category: Logic

Syntax: eorn p1, p2

Parameters: p1 = ACCU [x, y, z, r]
p2 = ACCU [x, y, z, r] or 24-Bit number

Calculus: p1 = p1 xnor p2, bit combination 0 / 0 and 1 / 1 return 1, bit combination 0
/ 1 and 1 / 0 return 0

Flags affected: S Z

Bytes: 2 (p1 = ACCU, p2 = ACCU)
5 (p1 = ACCU, p2 = NUMBER)

Cycles: 3 (p1 = ACCU, p2 = ACCU)
6 (p1 = ACCU, p2 = NUMBER)

Description: Logic XNOR (exclusive NOR, equivalence) of the 2 given registers
Logic XNOR (exclusive NOR, equivalence) of register with constant

Category: Logic

Syntax: equal p1

Parameters: p1 = 24-Bit number

Calculus: -

Flags affected: -

Bytes: 3

Cycles:

Description: Write 3 bytes (p1) to configuration register of OTP/external EEPROM. The
equal opcode is used to write 3 bytes of configuration data directly to a
register. Therefore the opcode is simply used 16 times in the beginning of the
assembler listing, fed with the configuration data given through p1. The
configuration of the OTP/ external EEPROM is done in the lower area from
byte 0..47, combined in 16x 24bit registers. From byte 48 upwards, the user
code is written. Use this opcode to provide your own configuration instead of
the standard configuration.

Category: OTP/ External EEPROM access

Syntax: getepr p1

Parameters: p1 = ACCU [x, y, z, r]

Calculus: p1 = EEPROM register content (addressed by RAM address pointer)

Flags affected: S Z

Bytes: 1

Cycles: 6

Description: Get EEPROM into register. The addressed register p1 gets the EEPROM

Member of the ams Group


®
 PSØ9 DSP

4-30 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

register content which is addressed by the RAM address pointer. This opcode
needs temporarily a place in the program counter stack (explanation see
below).

Category: EEPROM Access

Syntax: getflag p1

Parameters: p1 = ACCU [x, y, z, r]

Calculus: signum = set if p1 < 0
notequalzero = set if p1 <> 0

Flags affected: S Z

Bytes: 1

Cycles: 1

Description: Set the signum and notequalzero flag according to the addressed register,
content of the register is not affected

Category: Simple arithmetic

Syntax: goto p1

Parameters: p1 = JUMPLABEL

Calculus: PC = p1

Flags affected: -

Bytes: 2 (relative jump)

3 (absolute
jump)

Cycles: 3 (relative jump)
4 (absolute jump)

Description: Jump without condition. Program counter is set to target address. The target
address is given by using a jump label. Jump range: 0< address < 8 kB
See examples section for how to introduce a jump label.

Category: Unconditional jump

Syntax: gotoBitC p1, p2, p3

Parameters: p1 = ACCU [x, y, z, r]
p2 = NUMBER [0...23]
p3 = JUMPLABEL

Calculus: if (bit p2 of register p1 == 0) PC = p3

Flags affected: -

Bytes: 3

Cycles: 4

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-31

Description: Jump on bit clear. Program counter will be set to target address if selected bit
in register p1 is clear. The target address is given by using a jump label. See
examples section for how to introduce a jump label.

Category: Bitwise

Syntax: gotoBitS p1, p2, p3

Parameters: p1 = ACCU [x, y, z, r]
p2 = NUMBER [0..23]
p3 = JUMPLABEL

Calculus: if (bit p2 of register p1 == 1)
PC = p3

Flags affected: -

Bytes: 3

Cycles: 4

Description: Jump on bit set. Program counter will be set to target address if selected bit
in register p1 is set. The target address is given by using a jump label. See
examples section for how to introduce a jump label.

Category: Bitwise

Syntax: gotoCarC p1

Parameters: p1 = JUMPLABEL

Calculus: if (carry == 0) PC = p1

Flags affected: -

Bytes: 2 (relative jump)
3 (absolute jump)

Cycles: 3 (relative jump)
4 (absolute jump)

Description: Jump on carry clear. Program counter will be set to target address if carry is
clear. The target address is given by using a jump label. See examples section
for how to introduce a jump label.

Category: Goto on flag

Syntax: gotoCarS p1

Parameters: p1 = JUMPLABEL

Calculus: if (carry == 1) PC = p1

Flags affected: -

Bytes: 2 (relative jump)
3 (absolute jump)

Cycles: 3 (relative jump)

Member of the ams Group


®
 PSØ9 DSP

4-32 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

4 (absolute jump)

Description: Jump on carry set. Program counter will be set to target address if carry is
set. The target address is given by using a jump label. See examples section
for how to introduce a jump label.

Category: Goto on flag

Syntax: gotoEQ p1

Parameters: p1 = JUMPLABEL

Calculus: if (Z == 0) PC = p1

Flags affected: -

Bytes: 2 (relative jump)
3 (absolute jump)

Cycles: 3 (relative jump)
4 (absolute jump)

Description: Jump on equal zero. Program counter will be set to target address if the
foregoing result is equal to zero. The target address is given by using a jump
label. See examples section for how to introduce a jump label.

Category: Goto on flag

Syntax: gotoNE p1

Parameters: p1 = JUMPLABEL

Calculus: if (Z == 1) PC = p1

Flags affected: -

Bytes: 2 (relative jump)
3 (absolute jump)

Cycles: 3 (relative jump)
4 (absolute jump)

Description: Jump on not equal zero. Program counter will be set to target address if the
foregoing result is not equal to zero. The target address is given by using a
jump label. See examples section for how to introduce a jump label.

Category: Goto on flag

Syntax: gotoNeg p1

Parameters: p1 = JUMPLABEL

Calculus: if (S == 1) PC = p1

Flags affected: -

Bytes: 2 (relative jump)
3 (absolute jump)

Cycles: 3 (relative jump)

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-33

4 (absolute jump)

Description: Jump on negative. Program counter will be set to target address if the
foregoing result is negative. The target address is given by using a jump label.
See examples section for how to introduce a jump label.

Category: Goto on flag

Syntax: gotoOvrC p1

Parameters: p1 = JUMPLABEL

Calculus: if (O == 0) PC = p1

Flags affected: -

Bytes: 2 (relative jump)
3 (absolute jump)

Cycles: 3 (relative jump)
4 (absolute jump)

Description: Jump on overflow clear. Program counter will be set to target address if the
overflow flag of the foregoing operation is clear. The target address is given by
using a jump label. See examples section for how to introduce a jump label.

Category: Goto on flag

Syntax: gotoOvrS p1

Parameters: p1 = JUMPLABEL

Calculus: if (O == 1) PC = p1

Flags affected: -

Bytes: 2 (relative jump)
3 (absolute jump)

Cycles: 3 (relative jump)
4 (absolute jump)

Description: Jump on overflow set. Program counter will be set to target address if the
overflow flag of the foregoing operation is set. The target address is given by
using a jump label. See examples section for how to introduce a jump label.

Category: Goto on flag

Syntax: gotoPos p1

Parameters: p1 = JUMPLABEL

Calculus: if (S == 0) PC = p1

Flags affected: -

Bytes: 2 (relative jump)
3 (absolute jump)

Cycles: 3 (relative jump)

Member of the ams Group


®
 PSØ9 DSP

4-34 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

4 (absolute jump)

Description: Jump on positive. Program counter will be set to target address if the
foregoing result is positive. The target address is given by using a jump label.
See examples section for how to introduce a jump label.

Category: Goto on flag

Syntax: incr p1

Parameters: p1 = ACCU [x, y, z, r]

Calculus: p1 = p1 + 1

Flags affected: C O S Z

Bytes: 1

Cycles: 1

Description: Increment register

Category: Simple arithmetic

Syntax: incramadr

Parameters: -

Calculus: -

Flags affected: -

Bytes: 1

Cycles: 1

Description: Increment RAM address pointer by 1

Category: RAM access

Syntax: initTDC

Parameters: -

Calculus: -

Flags affected: -

Bytes: 2

Cycles: 3

Description: Initialization reset of the TDC (time-to-digital converter). Should be sent after
configuration of registers. The initTDC preserves all configurations.

Category: Miscellaneous

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-35

Syntax: invert p1

Parameters: p1 = ACCU [x, y, z, r]

Calculus: p1 = not p1

Flags affected: S Z

Bytes: 2

Cycles: 2

Description: Bitwise inversion of register

Category: Logic

Syntax: jsub p1

Parameters: p1 = JUMPLABEL

Calculus: PC = p1

Flags affected: C O S Z

Bytes: 3

Cycles: 4

Description: Jump to subroutine without condition. The program counter is loaded by the
address given through the jump label. The subroutine is processed until the
keyword ‚jsubret‘ occurs. Then a jump back is performed and the next
command after the jsub-call is executed. This opcode needs temporarily a
place in the program counter stack (explanation see below). Jump range: 0<
address < 8 kB

Category: Unconditional Jump

Syntax: jsubret

Parameters: -

Calculus: PC = PC from jsub-call

Flags affected: -

Bytes: 1

Cycles: 3

Description: Return from subroutine. A subroutine can be called via ‚jsub‘ and exited by
using jsubret. The program is continued at the next command following the
jsub-call. You have to close a subroutine with jsubret - otherwise there will be
no jump back.

Category: Unconditional Jump

Member of the ams Group


®
 PSØ9 DSP

4-36 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Syntax: move p1, p2

Parameters: p1 = ACCU [x, y, z, r]
p2 = ACCU [x, y, z, r] or 24-bit number

Calculus: p1 = p2

Flags affected: S Z

Bytes: 1 (p1 = ACCU, p2 = ACCU)
4 (p1 = ACCU, p2 = NUMBER)

Cycles: 1 (p1 = ACCU, p2 = ACCU)
4 (p1 = ACCU, p2 = NUMBER)

Description: Move content of p2 to p1 (p1 = ACCU, p2 = ACCU)
Move constant to p1 (p1 = ACCU, p2 = NUMBER)

Category: RAM access

Syntax: mult24 p1, p2

Parameters: p1 = ACCU [x, y, z, r]
p2 = ACCU [x, y, z, r]

Calculus: p1 = (p1 * p2) >> 24

Flags affected: S & Z of p1

Bytes: 2

Cycles: 30

Description: Signed multiplication of 2 registers like mult48, but only the 24 higher bits of
the multiplication of 2 registers, result is stored in p1

Category: Complex arithmetic

Syntax: mult48 p1, p2

Parameters: p1 = ACCU [x, y, z, r]
p2 = ACCU [x, y, z, r]

Calculus: p1, p2 = p1 * p2

Flags affected: S & Z of p1

Bytes: 2

Cycles: 30

Description: Signed multiplication of 2 registers.
Higher 24 bits of the multiplication is placed to p1
Lower 24 bits of the multiplication is placed to p2

Category: Complex arithmetic

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-37

Syntax: nand p1, p2

Parameters: p1 = ACCU [x, y, z, r]
p1 = ACCU [x, y, z, r] or 24-Bit number

Calculus: p1 = p1 nand p2
returns only 0 in case of bit combination 1 / 1

Flags affected: S Z

Bytes: 2 (p1 = ACCU, p2 = ACCU)
5 (p1 = ACCU, p2 = NUMBER)

Cycles: 3 (p1 = ACCU, p2 = ACCU)
6 (p1 = ACCU, p2 = NUMBER)

Description: Logic NAND (negated AND) of the 2 given registers
Logic NAND (negated AND) of register with constant

Category: Logic

Syntax: newcyc

Parameters: -

Calculus: -

Flags affected: -

Bytes: 2

Cycles: 3

Description: Start of TDC. This opcode can be used after configuration and initialization of
the PSØ 9 to start a new measurement cycle. Normally this is done by the
PSØ 81 ROM routines itself, but in case of custom-designed reset procedures
this opcode can play a role.

Category: Miscellaneous

Syntax: -

Parameters: -

Calculus: -

Flags affected: -

Bytes: 1

Cycles: 1

Description: Placeholder code or timing adjust (no function)

Category: Miscellaneous

Member of the ams Group


®
 PSØ9 DSP

4-38 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Syntax: nor p1, p2

Parameters: p1 = ACCU [x, y, z, r]
p2 = ACCU [x, y, z, r] or 24-Bit number

Calculus: p1 = p1 nor p2
returns only 1 in case of bit combination 0 / 0

Flags affected: S Z

Bytes: 2 (p1 = ACCU, p2 = ACCU)
5 (p1 = ACCU, p2 = NUMBER)

Cycles: 3 (p1 = ACCU, p2 = ACCU)
6 (p1 = ACCU, p2 = NUMBER)

Description: Logic NOR (negated OR) of the 2 given registers
Logic NOR (negated OR) of register with constant

Category: Logic

Syntax: or p1, p2

Parameters: p1 = ACCU [x, y, z, r]
p2 = ACCU [x, y, z, r] or 24-Bit number

Calculus: p1 = p1 or p2
returns only 0 in case of bit combination 0 / 0

Flags affected: S Z

Bytes: 2 (p1 = ACCU, p2 = ACCU)
5 (p1 = ACCU, p2 = NUMBER)

Cycles: 3 (p1 = ACCU, p2 = ACCU)
6 (p1 = ACCU, p2 = NUMBER)

Description: Logic OR of the 2 given registers
Logic OR of register with constant

Category: Logic

Syntax: putepr p1

Parameters: p1 = ACCU [x, y, z, r]

Calculus: EEPROM register (addressed by RAM address pointer) = p1 [7:0]

Flags affected: -

Bytes: 4

Cycles: ~12.5 ms

Description: Put register into EEPROM. The lower 8 bits of the addressed register p1 is
moved to the EEPROM (the EEPROM register address is set by the RAM
address pointer). EEPROM bytes 0 to 127 are accessible via ‚putepr‘, bysetting
the RAM address pointer to addresses 0 to 127 respectively. This opcode
needs temporarily a place in the program counter stack (explanation see

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-39

below). It is recommended not to use putepr in combination with the skip
opcodes due to relatively longer execution times (~30ms).

Category: EEPROM access

Syntax: ramadr p1

Parameters: p1 = 8-Bit number

Calculus: -

Flags affected: -

Bytes: 2

Cycles: 2

Description: Set pointer to RAM address (range: 0...255)

Category: RAM access

Syntax: rotL p1(, p2)

Parameters: p1 = ACCU [x, y, z, r]
p2 = 4-Bit number or none

Calculus: p1 = p1<< 1+ carry; carry = MSB(x) (in case rotL p1, without p2)
p1 = repeat (p2) rotL p1(in case rotL p1, p2)

Flags affected: C O S Z (of the last step)

Bytes: 1 (p1 = ACCU, p2 = none)
2 (p1 = ACCU, p2 = NUMBER)

Cycles: 1 (p1 = ACCU, p2 = none)
1+p2 (p1 = ACCU, p2 = NUMBER)

Description: Rotate p1 left  shift p1 register to the left, fill LSB with carry, MSB is placed
in carry register
Rotate p1 left p2 times with carry  shift p1 register p2 times to the left, in
each step fill LSB with the carry and place the MSB in the carry

Category: Shift and rotate

Syntax: rotR p1(, p2)

Parameters: p1 = ACCU [x, y, z, r]
p2 = 4-Bit number or none

Calculus: p1 = p1>> 1+ carry;
carry: =MSB(x) (in case rotR p1, without p2)
p1 = repeat (p2) rotR p1 (in case rotR p1, p2)

Flags affected: C O S Z (of the last step)

Bytes: 1 (p1 = ACCU, p2 = none)
2 (p1 = ACCU, p2 = NUMBER)

Cycles: 1 (p1 = ACCU, p2 = none)

Member of the ams Group


®
 PSØ9 DSP

4-40 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

1 + p2 (p1 = ACCU, p2 = NUMBER)

Description: Rotate p1 right  shift p1 register to the right, fill MSB with carry, LSB is
placed in carry register
Rotate p1 right p2 times with carry  shift p1 register p2 times to the right,
in each step fill MSB with the carry and place the LSB in the carry

Category: Shift and rotate

Syntax: round p1, p2

Parameters: p1 = ACCU [x]
p2 = NUMBER [half scale division]

Calculus: p1 = round (p1, p2)

Flags affected:

Bytes: 7

Cycles: subroutine call

Description: Rounds the number in x. Depending on the configured ‚half scale division‘ the
number stored in x will be rounded down or up (down < 5, up >= 5).

Category: Miscellaneous

Syntax: setC

Parameters: -

Calculus: -

Flags affected: C O

Bytes: 1

Cycles: 1

Description: Set carry flag and clear overflow flag

Category: Shift and Rotate

Syntax: shiftL p1(, p2)

Parameters: p1 = ACCU [x, y, z, r]
p2 = 4-Bit number or none

Calculus: p1 = p1<< 1; carry = MSB(x) (in case rotL p1, without p2)
p1 = repeat (p2) shiftL p1(in case rotL p1, p2)

Flags affected: C O S Z

Bytes: 1 (p1 = ACCU, p2 = none)
2 (p1 = ACCU, p2 = NUMBER)

Cycles: 1 (p1 = ACCU, p2 = none)
1 + p2 (p1 = ACCU, p2 = NUMBER)

Description: Shift p1 left  shift p1 register to the left, fill LSB with 0, MSB is placed in

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-41

carry register
Shift p1 left p2 times  shift p1 register p2 times to the left, in each step fill
LSB with the 0 and place the MSB in the carry

Category: Shift and rotate

Syntax: shiftR p1(, p2)

Parameters: p1 = ACCU [x, y, z, r]
p2 = 4-Bit number or none

Calculus: p1 = p1>> 1; carry = MSB(x) (in case rotL p1, without p2)
p1 = repeat (p2) shiftL p1 (in case rotL p1, p2)

Flags affected: C O S Z

Bytes: 1 (p1 = ACCU, p2 = none)
2 (p1 = ACCU, p2 = NUMBER)

Cycles: 1 (p1 = ACCU, p2 = none)
1 + p2 (p1 = ACCU, p2 = NUMBER)

Description: Signed shift right of p1  shift p1 right, MSB is duplicated according to
whether the number is positive or negative
Signed shift p1 right p2 times  shift p1 register p2 times to the right, MSB
is duplicated according to whether the number is positive or negative

Category: Shift and rotate

Syntax: sign p1

Parameters: p1 = ACCU [x, y, z, r]

Calculus: p1 = p1 / | p1 |
p1 = 1 = 0x000001 if p1 >= 0
p1 = -1 = 0xFFFFFF if p1 < 0

Flags affected: S Z

Bytes: 2

Cycles: 2

Description: Sign of addressed register in complement of two notations.
A positive value returns 1, a negative value returns -1
Zero is assumed to be positive

Category: Simple arithmetic

Syntax: skip p1

Parameters: p1 = NUMBER [1, 2, 3]

Calculus: PC = PC + bytes of next p1 lines

Flags affected:

Bytes: 1

Member of the ams Group


®
 PSØ9 DSP

4-42 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Cycles: 1 + skipped commands

Description: Skip p1 without conditions

Category: Unconditional jump

Syntax: skipBitC p1, p2,p3

Parameters: p1 = ACCU [x, y, z, r]
p2 = NUMBER[0..23]
p2 = NUMBER[1, 2, 3]

Calculus: if (bit p2 of register p1 == 0)

 PC = PC + bytes of next p3 lines

Flags affected: -

Bytes: 1

Cycles: 1 + skipped commands

Description: Skip p3 commands if bit p2 of register p1 is clear

Category: Bitwise

Syntax: skipBitS p1, p2,p3

Parameters: p1 = ACCU [x, y, z, r]
p2 = NUMBER[0..23]
p3 = NUMBER[1, 2, 3]

Calculus: if (bit p2 of register p1 == 1)
PC = PC + bytes of next p3 lines

Flags affected: -

Bytes: 1

Cycles: 1 + skipped commands

Description: Skip p3 commands if bit p2 of register p1 is set

Category: Bitwise

Syntax: skipCarC p1

Parameters: p1 = NUMBER [1, 2, 3]

Calculus: if (carry == 0)
PC = PC + bytes of next p1 lines

Flags affected: -

Bytes: 1

Cycles: 1 + skipped commands

Description: Skip p1 commands if carry clear

Category: Skip on flag

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-43

Syntax: skipCarS p1

Parameters: p1 = NUMBER [1, 2, 3]

Calculus: if (carry == 1)
PC = PC + bytes of next p1 lines

Flags affected: -

Bytes: 1

Cycles: 1 + skipped commands

Description: Skip p1 commands if carry set

Category: Skip on flag

Syntax: skipEQ p1

Parameters: p1 = NUMBER[1, 2, 3]

Calculus: if (notequalzero == 0)
PC = PC + bytes of next p1 lines

Flags affected: -

Bytes: 1

Cycles: 1 + skipped commands

Description: Skip p1 commands if result of previous operation is equal to zero

Category: Skip on flag

Syntax: skipNE p1

Parameters: p1 = NUMBER[1, 2, 3]

Calculus: if (notequalzero == 1)

 PC = PC + bytes of next p1 lines

Flags affected: -

Bytes: 1

Cycles: 1 + skipped commands

Description: Skip p1 commands if result of previous operation is not equal to zero

Category: Skip on flag

Syntax: skipNeg p1

Parameters: p1 = NUMBER[1, 2, 3]

Calculus: if (signum == 1)
PC = PC + bytes of next p1 lines

Flags affected: -

Bytes: 1

Cycles: 1 + skipped commands

Member of the ams Group


®
 PSØ9 DSP

4-44 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

Description: Skip p1 commands if result of previous operation was smaller than 0

Category: Skip on flag

Syntax: skipOvrC p1

Parameters: p1 = NUMBER[1, 2, 3]

Calculus: if (overflow == 0)
PC = PC + bytes of next p1 lines

Flags affected: -

Bytes: 1

Cycles: 1 + skipped commands

Description: Skip p1 commands if overflow is clear

Category: Skip on flag

Syntax: skipOvrS p1

Parameters: p1 = NUMBER[1, 2, 3]

Calculus: if (overflow == 1)
PC = PC + bytes of next p1 lines

Flags affected: -

Bytes: 1

Cycles: 1 + skipped commands

Description: Skip p1 commands if overflow is set

Category: Skip on flag

Syntax: skipPos p1

Parameters: p1 = NUMBER[1, 2, 3]

Calculus: if (signum == 0)
PC = PC + bytes of next p1 lines

Flags affected: -

Bytes: 1

Cycles: 1 + skipped commands

Description: Skip p1 commands if result of previous operation was greater or equal to 0

Category: Skip on flag

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 4-45

Syntax: stop

Parameters: -

Calculus: -

Flags affected: -

Bytes: 1

Cycles: 1

Description: The DSP and clock generator are stopped, the converter and the EEPROM go
to standby. A restart of the converter can be achieved by an external event like
‚watchdog timer‘, ‚external switch‘ or ‚new strain measurement results‘.
Usually this opcode is the last command in the assembler listing.

Category: Miscellaneous

Syntax: sub p1, p2

Parameters: p1 = NUMBER[1, 2, 3]
p2 = NUMBER[1, 2, 3] or 24-Bit number

Calculus: p1 = p2 – p1

Flags affected: C O S Z

Bytes: 1 (p1 = ACCU, p2 = ACCU)
4 (p1 = ACCU, p2 = NUMBER)

Cycles: 1 (p1 = ACCU, p2 = ACCU)
4 (p1 = ACCU, p2 = NUMBER)

Description: Subtraction of 2 registers
Subtraction of register from constant

Category: Simple arithmetic

Syntax: swap p1, p2

Parameters: p1 = ACCU [x, y, r]
p2 = ACCU [x, y, r]

Calculus: p1 = p2 and p2 = p1

Flags affected: -

Bytes: 1

Cycles: 3

Description: Swap of 2 registers
The value of two registers is exchanged between each other.
Not possible with ACCU[z]

Category: RAM Access

Member of the ams Group


®
 PSØ9 DSP

5-46 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

The PSØ 9 assembler is a multi-pass assembler that translates assembly language files into HEX

files as they will be downloaded into the device. For convenience, the assembler can include

header files to be then downloaded. The user can write his own header files but also integrate the

library header files as they are provided by acam. The assembly program is made of many

statements which contain instructions and directives. The instructions have been explained in the

former section 4 of this datasheet. In the following we describe the directives and some sample

code.

Each line of the assembly program can contain only one directive or instruction statement.

Statements must be contained in exactly one line.

A symbol is a name that represents a value. Symbols are composed of up to 31 characters from

the following list:

A - Z, a - z, 0 - 9, _

Symbols are not allowed to start with numbers. The assembler is case sensitive, so care has to

be taken for this.

Numbers can be specified in hexadecimal or decimal. Decimal have no additional specifier.

Hexadecimals are specified by leading “0x”.

An expression is a combination of symbols, numbers and operators. Expressions are evaluated at

assembly time and can be used to calculate values that otherwise would be difficult to be

determined.

The following operators are available with the given precedence:

Level Operator Description

1 () Brackets, specify order of execution

2 * / Multiplication, Division

3 + — Addition, Subtraction

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 5-47

The assembler directives define the way the assembly language instructions are processed. They

also provide the possibility to define constants, to reserve memory space and to control the

placement of the code. Directives do not produce executable code.

The following table provides an overview of the assembler directives.

CONST Constant definition, CONST [name] [value]
value might be a number, a constant, a
sum of both

CONST Slope 42

CONST Slope constant + 1

LABEL: Label for target address of jump
instructions. Labels end with a colon. All
rules that apply to symbol names also
apply to labels.

jsub LABEL1
LABEL1:
...
jsubret

; Comment, lines of text that might be
implemented to explain the code. It begins
with a semicolon character. The
semicolon and all subsequent characters
in this line will be ignored by the
assembler. A comment can appear on a
line itself or follow an instruction.

; this is a comment

<comment>
<endcomment>

Comment, lines of text that might be
implemented to explain the code. It begins
with <comment> directive and ends with
<endcomment> directive. All subsequent
characters between these directives will
be ignored by the assembler.

<comment>
this is ...
a very long ...
comment
<endcomment>

#include Include the header or library file named in
the quotation marks "". The code will be
added at the line of the include command.
In the quotation marks there might be just
the file name in case it is in the same
folder as the program, but also the
complete path.

#include "rdc.h"

Member of the ams Group


®
 PSØ9 DSP

5-48 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

The following code shows the basic structure of any PSØ 9 program:

;--
; File:program_template.asm
; This is a template for a standard user program that shows the various possible flags
that can be
; read to find out what caused the DSP to jump into the user code. Some part of user code
needs
; to be executed on POR, some on External interrupt etc. Those jumps that are relevant to
the user
; can be retained, the rest can be commented.
; Author: VK
;--

#include "config.h"
#include "PS09_RAM_constants.h"

ramadr 224+22
skipBitC r, 19, 1 ; Checking for power on reset flag, Bit 19 - in Status register
jsub Routine_POR
goto end

ramadr 224+22
skipBitC r, 18, 1 ; Checking for SSN_RST (S6) Button Pressed : Bit 18 - in Status

register
jsub Routine_Button_Press
goto end

ramadr 224+22
skipBitC r, 17, 1 ; Checking for Watchdog reset : Bit 17 - in Status register
jsub Routine_watchdog
goto end

ramadr 224+22
skipBitC r, 16, 1 ; Checking for End of measurement : Bit 16 - in Status register
jsub Routine_measurement_end
goto end

ramadr 224+22
skipBitC r, 15, 1 ; Checking for wakeup in Sleep mode : Bit 15 - in Status register
jsub Routine_sleep_mode
goto end

ramadr 224+22
skipBitC r, 08, 1 ; Checking for DSP start due to External Pin Interrupt : Bit 08 –

in Status register
jsub Routine_ext_interrupt
goto end

ramadr 80
skipBitC r, 08, 1 ; Check for jump into user code because of Receive Int from UART:

 Bit 08 - Reg.80
jsub Routine_uart_rec_int
goto end

Routine_POR:
;----------------------Insert Power on reset routine here---------------------------
nop
jsubret

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 5-49

;---

Routine_Button_Press:
;----------- Insert routine to be executed on Pushed button here------------
nop
jsubret
;---

Routine_watchdog:
;----------------------Insert reset routine for watchdog reset here-----------------
nop
jsubret
;---

Routine_measurement_end:
;------Insert routine to be executed on measurement end here --------------
nop
jsubret
;---

Routine_sleep_mode:
;----------------------Insert routine for wakeup in Sleep mode here--------------
nop
jsubret
;---

Routine_ext_interrupt:
;------Insert Interrupt service routine for External Interrupt from Pin here---
nop
jsubret
;---

Routine_uart_rec_int:
;-------------Insert interrupt routine for UART receive Interrupt here-----------
nop
jsubret
;---
end:
clrwdt
stop
;-----end of program------------------------------

The following example from the Assembler program shows a simple program to display
results on an LCD:

;--
; File: simple_meas_with_LCD.asm
;
; Author: VK / UTG
;--

;--
; Simple program to demonstrate calculation of Initial Offset after POR and after the Initial
Offset is taken, it goes to measure mode.
; State 1: Take init offset value (ignore first 4 measurements) Then average over next 5.
; State 2: Take measurement value and substract init offset value, then scale to display
correct weight.
;

Member of the ams Group


®
 PSØ9 DSP

5-50 acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de

#include "config.h"
; The other include files are included at the end of the program

;------------- Constants for measurement program ---------------------------------
CONST init_offset_for_measurement 121
CONST count_measurements 122
CONST temp_count 123
CONST init_offset_status 124
; To store the status of init_offset, 0 - if offset calculation is not yet complete
; 1 - if offset calculation is complete
;--
start:
; On POR configure the PS09 to act as SPI master to communicate with the Holtek driver
ramadr 224+22
skipBitC r, 19, 3 ; Checking for power on reset : flg_rstpwr bit
jsub cfg_spi_master ; Configures the SPI master lines on GPIO0, GPIO1 and GPIO2
; To use other pins for the SPI master, change in this include file accordingly
jsub cfg_ht_driver ; Configure the HT1621 driver for display
jsub init_values

ramadr init_offset_status ; Check status of init offset
skipBitS r, 0, 2
jsub get_init_offset
goto end
;Refresh the displayed value on measurement completion
ramadr 22+224
skipBitS r, 16, 1 ; Check for end of measurement - Bit 16
goto end
;----------- -------------- To display measurement values on LCD--------------------
; Reading measurement value HB0 into x Akku
ramadr 224+20
move x, r
ramadr init_offset_for_measurement
move y, r
sub x, y
abs x
;-------------------------- Mutiplication factor -----------------------------------
shiftL x, 4 ; HB0 * 2^4
move z, 0x8D5E5 ; With 2000 g load and no multiplication factor (& with division

by 10 seen below): Meas.value = 3629
 ; (2000 / 3629) * 2^20 = 0x8D15F
 ; This factor is further corrected with again 500 g load

(500/499) * 0x8D15F = 0x8D5E5
 ; The above 2^4 and 2^20 factors are multiplied to adjust for the

following mult24 opcode
mult24 x, z ; Implicit to opcode , result is / 2^24
move z, 10 ; division by 10 to omit the LSB, only 4 digits needed
divmod x, z
move y, 0 ; Number of digits after the decimal point
jsub notolcd ; Routine to convert the display value to LCD format
move z, 0x10 ; 0x10 - Code to display units as gm,Codes for other units are

present in notolcd.h
jsub display_value_on_Holtek ; Displaying the data with the Holtek driver
end:
clrwdt
stop
;-----end of main program------------------------------

;------------------------- -Subroutines---------------------------
init_values:
ramadr count_measurements

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 5-51

clear r

ramadr init_offset_status
clear r
ramadr temp_count ; Use a temporary counter
clear r
jsubret
;==
get_init_offset:
move x, 0xFFFF00 ; setting all the segments
move y, 0xFFFFFF
move z, 0
jsub display_text_on_Holtek
;--------- Get current measurement value and save it to x for further processing -------
ramadr 224+20 ;HB0 value
move x, r
;--------- Count Loops and dismiss first 4 measurements ---------------
ramadr temp_count ; Use a temporary counter
incr r
compare r,4 ; Is it higher than 4? -> Ignore first 4 measurements
gotoNeg apply_roll_avg ; From the 5th measurement, perform a rolling average
jsub roll_avg_init5 ; Initalize rolling average filter with measurement value in X
goto end_init_offset
;==
apply_roll_avg:
;--------- Use rolling average filter for init offset value ---------------
jsub rolling_avg_5 ; 5 times rolling average
;------------- Count Loops for Initial Offset ----------------------------------
ramadr count_measurements
incr r
compare r,5 ; Take 5 measurements
gotoPos end_init_offset; Is it lesser than 5? , then take more measurements else store

the offset
;---- After 5 valid measurements save filtered value to RAM as initial offset for measurement-
ramadr init_offset_for_measurement ; Init offset value for measurement mode
move r, x
ramadr init_offset_status
incr r ; Set status of init_offset_status to 1 (init offset taken)
end_init_offset:
jsubret
;==
#include "rollavg.h" ; This file is used to calculate the rolling average of the measurement
#include "cfg_spi_master.h"; These include files are used ONLY for using the Holtek LCD driver
#include "cfg_ht_driver.h"
#include "notolcd.h"
#include "display_value_on_Holtek.h"
#include "display_text_on_Holtek.h"

For details on programming with the assembler tool please refer to the PS09-EVA-KIT
datasheet, which includes a description of the assembler software.

Member of the ams Group

Member of the ams Group

PSØ9 DSP

acam messelectronic gmbh - Friedrich-List-Str.4 - 76297 Stutensee - Germany - www.acam.de 6-1

(See Data Sheet, Volume 1 “General Data and Front-end Description”)

05.11.2014 First release of Volume 2, Version 1.0

Member of the ams Group

acam-messelectronic gmbh

Friedrich-List-Straß e 4

76297 Stutensee-Blankenloch

Germany

Phone +49 7244 7419 – 0

Fax +49 7244 7419 – 29

E-Mail support@acam.de

www.acam.de

Member of the ams Group

