IntellimodTM Module Dual-In-Line Intelligent Power Module 3 Amperes/600 Volts #### **Outline Drawing and Circuit Diagram** | Dimensions | Inches | Millimeters | |------------|------------|-------------| | Α | 1.50±0.02 | 38.0±0.5 | | В | 0.94±0.02 | 24.0±0.5 | | С | 0.14 | 3.5 | | D | 1.40 | 35.56 | | E | 0.57±0.02 | 14.4±0.5 | | F | 0.74±0.02 | 18.9±0.5 | | G | 1.15±0.02 | 29.2±0.5 | | Н | 0.14 | 3.5 | | J | 0.13 | 3.3 | | K | 0.016 | 0.4 | | L | 0.06±0.02 | 1.5±0.05 | | М | 0.031 | 0.8 | | N | 1.38±0.012 | 35.0±0.3 | | 0 | 0.07±0.008 | 1.778±0.2 | | Р | 0.02 | 0.5 | | Q | 0.47 | 12.0 | | Dimensions | Inches | Millimeters | |------------|------------|-------------| | R | 0.011 | 0.28 | | S | 0.12 | 2.8 | | Т | 0.024 | 0.6 | | U | 0.1±0.008 | 2.54±0.2 | | V | 1.33±0.02 | 33.7±0.5 | | W | 0.03 | 0.678 | | X | 0.04 | 1.0 | | Υ | 0.05 | 1.2 | | Z | 1.40 | 35.56 | | AA | 0.55±0.02 | 14.0±0.5 | | BB | 0.37±0.02 | 9.5±0.5 | | CC | 0.22±0.02 | 5.5±0.5 | | DD | 0 ~ 5° | 0 ~ 5° | | EE | 0.06 MIN. | 1.5 Min. | | FF | 0.05 | 1.2 | | GG | 0.063 Rad. | 1.6 Rad. | # **Description:** DIP-IPMs are intelligent power modules that integrate power devices, drivers, and protection circuitry in an ultra compact dual-in-line transfer-mold package for use in driving small three phase motors. Use of 5th generation IGBTs, DIP packaging, and application specific HVICs allow the designer to reduce inverter size and overall design time. #### Features: - □ Compact Packages - ☐ Single Power Supply - □ Integrated HVICs - ☐ Direct Connection to CPU - ☐ Reduced Rth ### **Applications:** - ☐ Refrigerators - ☐ Air Conditioners - ☐ Small Servo Motors - ☐ Small Motor Control # **Ordering Information:** PS21961 is a 600V, 3 Ampere short pin DIP Intelligent Power Module. PS21961-A – long pin type PS21961-C – zigzag pin type PS21961, PS21961-A, PS21961-C Intellimod™ Module Dual-In-Line Intelligent Power Module 3 Amperes/600 Volts # Absolute Maximum Ratings, T_j = 25°C unless otherwise specified | | | PS21961, PS21961-A | | |--|------------------------|--------------------|-------| | Characteristics | Symbol | PS21961-C | Units | | Power Device Junction Temperature* | Тј | -20 to 125 | °C | | Storage Temperature | T _{stg} | -40 to 125 | °C | | Case Operating Temperature (Note 1) | T _C | -20 to 100 | °C | | Mounting Torque, M3 Mounting Screws | _ | 6.9 | in-lb | | Module Weight (Typical) | _ | 10 | Grams | | Heatsink Flatness (Note 2) | _ | -50 to 100 | μm | | Self-protection Supply Voltage Limit (Short Circuit Protection Capability)** | V _{CC(prot.)} | 400 | Volts | | Isolation Voltage, AC 1 minute, 60Hz Sinusoidal, Connection Pins to Heatsink Plate | V _{ISO} | 1500 | Volts | ^{*}The ma ximum junction temperature rating of the power chips integrated within the DIP-IPM is 150° C (@T_C $\leq 100^{\circ}$ C). However, to ensure safe operation of the DIP-IPM, the average junction temperature should be limited to $T_{j(avg)} \leq 125^{\circ}$ C (@T_C $\leq 100^{\circ}$ C). # **IGBT Inverter Sector** | Collector-Emitter Voltage | V _{CES} | 600 | Volts | |---|------------------------|------|---------| | Each Collector Current, ± (T _C = 25°C) | I _C | 3 | Amperes | | Each Peak Collector Current, ± (T _C = 25°C, Less than 1ms) | I _{CP} | 6 | Amperes | | Supply Voltage (Applied between P - N) | V _{CC} | 450 | Volts | | Supply Voltage, Surge (Applied between P - N) | V _{CC(surge)} | 500 | Volts | | Collector Dissipation (T _C = 25°C, per 1 Chip) | P _C | 21.3 | Watts | #### **Control Sector** | Supply Voltage (Applied between V _{P1} -V _{NC} , V _{N1} -V _{NC}) | V _D | 20 | Volts | |--|-----------------|----------------------------|-------| | Supply Voltage (Applied between V _{UFB} -U, V _{VFB} -V, V _{WFB} -W) | V_{DB} | 20 | Volts | | Input Voltage (Applied between U _P , V _P , W _P -V _{NC} , U _N , V _N , W _N -V _{NC}) | V_{IN} | -0.5 ~ V _D +0.5 | Volts | | Fault Output Supply Voltage (Applied between F _O -V _{NC}) | V _{FO} | -0.5 ~ V _D +0.5 | Volts | | Fault Output Current (Sink Current at F _O Terminal) | I _{FO} | 1 | mA | | Current Sensing Input Voltage (Applied between C _{IN} -V _{NC}) | V _{SC} | -0.5 ~ V _D +0.5 | Volts | Note 1 - T_C Measure Point Note 2 - Flatness Measurement Position ^{**} $V_D = 13.5 \sim 16.5 \text{V}$, Inverter Part, $T_j = 125 ^{\circ}\text{C}$, Non-repetitive, Less than $2 \mu \text{s}$ PS21961, PS21961-A, PS21961-C Intellimod™ Module Dual-In-Line Intelligent Power Module 3 Amperes/600 Volts # Electrical and Mechanical Characteristics, T_i = 25°C unless otherwise specified | Characteristics | Sym | bol Test Conditions | Min. | Typ. | Max. | Units | |--------------------------------------|------------------------|--|------|------|------|-------| | IGBT Inverter Sector | | | | | | | | Collector-Emitter Saturation Voltage | v _{CE(sat)} | $V_D = V_{DB} = 15V$, $I_C = 3A$, $V_{IN} = 5V$, $T_i = 25$ °C | _ | 1.60 | 2.15 | Volts | | | · / - | $V_D = V_{DB} = 15V$, $I_C = 3A$, $V_{IN} = 5V$, $T_j = 125$ °C | _ | 1.70 | 2.30 | Volts | | Diode Forward Voltage | V _{EC} | -I _C = 3A, V _{IN} = 0V | _ | 1.55 | 2.10 | Volts | | Inductive Load Switching Times | t _{on} | V _{CC} = 300V, | 0.50 | 0.95 | 1.50 | μS | | | t _{rr} | $V_{D} = V_{DB} = 15V,$ | _ | 0.30 | _ | μS | | | t _{C(on)} | I _C = 3A, T _i = 125°C, | _ | 0.35 | 0.55 | μS | | | t _{off} | $V_{IN} = 0 \Leftrightarrow 5V,$ | _ | 1.40 | 2.00 | μS | | | t _{C(off)} | Inductive Load | _ | 0.50 | 0.80 | μS | | Collector Cutoff Current | I _{CES} | $V_{CE} = V_{CES}, T_i = 25^{\circ}C$ | _ | _ | 1.0 | mA | | | - | V _{CE} = V _{CES} , T _i = 125°C | _ | _ | 10 | mA | | Circuit Current | D V _{IN} = 5V | Total of V _{P1} -V _{NC} , V _{N1} -V _{NC} | | | 2.80 | mA | | Control Sector | - V 5V | Total of Very Very Very Very | | | 0.00 | A | | $V_D = V_{DB} = 15V$ | | V_{UFB} -U, V_{VFB} -V, V_{WFB} -W | _ | | 0.55 | mA | | | $V_{IN} = 0V$ | Total of V _{P1} -V _{NC} , V _{N1} -V _{NC} | _ | _ | 2.80 | mA | | | | V_{UFB} -U, V_{VFB} -V, V_{WFB} -W | | | 0.55 | mA | | Fault Output Voltage | V_{FOH} | V_{SC} = 0V, F_O Terminal Pull-up to 5V by $10k\Omega$ | 4.9 | _ | _ | Volts | | | V_{FOL} | $V_{SC} = 1V$, $I_{FO} = 1mA$ | _ | _ | 0.95 | Volts | | Input Current | I _{IN} | $V_{IN} = 5V$ | 0.70 | 1.00 | 1.50 | mA | | Short Circuit Trip Level* | V _{SC(ref)} | V _D = 15V* | 0.43 | 0.48 | 0.53 | Volts | | Supply Circuit Under-voltage | UV _{DBt} | Trip Level, T _j ≤ 125°C | 10.0 | _ | 12.0 | Volts | | | UV _{DBr} | Reset Level, T _j ≤ 125°C | 10.5 | _ | 12.5 | Volts | | | UV _{Dt} | Trip Level, T _j ≤ 125°C | 10.3 | _ | 12.5 | Volts | | | UV _{Dr} | Reset Level, T _j ≤ 125°C | 10.8 | _ | 13.0 | Volts | | Fault Output Pulse Width** | t _{FO} | | 20 | _ | _ | μs | | ON Threshold Voltage | V _{th(on)} | Applied between | _ | 2.1 | 2.6 | Volts | | OFF Threshold Voltage | V _{th(off)} | U _B V _B W _P -V _{NC,} | 0.8 | 1.3 | _ | Volts | | ON/OFF Threshold Hysteresis Volta | | $U_{N}, V_{N}, W_{N}-V_{NC}$ | 0.35 | 0.65 | _ | Volts | ^{*} Short Circuit protection is functioning only for the low-arms. Please select the value of the external shunt resistor such that the S_C trip level is less than 1.7 times the current rating. **Fault signal is asserted only for a Uy or S_C condition on the low side. On a S_C fault the F_O duration will be 20µsec. On a Uy condition the fault signal will be asserted as long as the Uy condition exists or for 20µsec, whichever is longer. PS21961, PS21961-A, PS21961-C Intellimod™ Module Dual-In-Line Intelligent Power Module 3 Amperes/600 Volts #### **Thermal Characteristics** $V_{\mbox{NC}}$ Voltage Variation | Characteristic | Symbol | Condition | Min. | Тур. | Max. | Units | |---------------------------------|------------------------------------|---|------|------|-------|---------| | Junction to Case | R _{th(j-c)Q} | Inverter RC-IGBT (Per 1/6 Module) | | _ | 4.7 | °C/Watt | | Recommended Conditions | for Use | | | | | | | Characteristic | Symbol | Condition | Min. | Typ. | Value | Units | | Supply Voltage | V _{CC} | Applied between P-N Terminals | 0 | 300 | 400 | Volts | | Control Supply Voltage | V _D | Applied between V _{P1} -V _{NC} , V _{N1} -V _{NC} | 13.5 | 15.0 | 16.5 | Volts | | | V_{DB} | Applied between V _{UFB} -U, | 13.0 | 15.0 | 18.5 | Volts | | | | V _{VFB} -V, V _{WFB} -W | | | | | | Control Supply Variation | dV _D , dV _{DB} | | -1 | _ | 1 | V/µs | | Arm Shoot-through Blocking Time | t _{DEAD} | For Each Input Signal, T _C ≤ 100°C | 1.5 | _ | _ | μs | | Allowable Minimum Input | P _{WIN(on)} | | 0.5 | _ | _ | μs | | Pulse Width* | P _{WIN(off)} | | 0.5 | _ | _ | μs | Between V_{NC}-N (Including Surge) -5.0 5.0 Volts V_{NC} *DIP-IPM might not make response or work properly if the input signal plus width is less than the recommended minimum value. PS21961, PS21961-A, PS21961-C Intellimod™ Module Dual-In-Line Intelligent Power Module 3 Amperes/600 Volts # **Application Circuit** | Component | Selection: | |-----------|------------| | Dsgn. | Typ. Value | Description | |-----------------|------------------|---| | D ₁ | 1A, 600V | Boot strap supply diode - Ultra fast recovery | | DZ ₁ | 16V, 0.25W | Control and boot strap supply over voltage suppression | | C ₁ | 10-100uF, 50V | Boot strap supply reservoir - Electrolytic, long life, low Impedance, 105°C (Note 5) | | C ₂ | 0.22-2.0uF, 50V | Local decoupling/High frequency noise filters - Multilayer ceramic (Note 8) | | C ₃ | 10-100uF, 50V | Control power supply filter - Electrolytic, long life, low Impedance, 105°C | | C ₄ | 100pF, 50V | Optional Input signal noise filter - Multilayer ceramic (Note 1) | | C ₅ | 200-2000uF, 450V | Main DC bus filter capacitor - Electrolytic, long life, high ripple current, 105°C | | C ₆ | 0.1-0.22uF, 450V | Surge voltage suppression capacitor - Polyester/Polypropylene film (Note 9) | | C _{SF} | 1000pF, 50V | Short circuit detection filter capacitor - Multilayer Ceramic (Note 6, Note 7) | | R _{SF} | 1.8k ohm | Short circuit detection filter resistor (Note 6, Note 7) | | RSHUNT | 5-100mohm | Current sensing resistor - Non-inductive, temperature stable, tight tolerance (Note 10) | | R ₁ | 10 ohm | Boot strap supply inrush limiting resistor (Note 5) | | R ₂ | 330 ohm | Optional control input noise filter (Note 1, Note 2) | | R ₃ | 10k ohm | Fault output signal pull-up resistor (Note 3) | - 1) To prevent input signal oscillations minimize wiring length to controller (~2cm). Additional RC filtering (C5 etc.) may be required. If filtering is added be careful to maintain proper dead time and voltage levels. See application notes for details. - 2) Internal HVIC provides high voltage level shifting allowing direct connection of all six driving signals to the controller. 3) FO output is an open collector type. Pull up resistor (R3) should be adjusted to current sink capability of the controller. - 4) Use only one V_{NC} Pin (either 9 or 16) and leave the other open. - 4) Use only one YINC PITH (either 9 or 16) and leave the other open. 5) Boot strap supply component values must be adjusted depending on the PWM frequency and technique. 6) Wiring length associated with R_{SHUNT}, R_{SF}, C_{SF} must be minimized to avoid improper operation of the OC function. 7) R_{SF}, C_{SF} set over current protection trip time. Recommend time constant is 1.5µs-2.0µs. See application notes. 8) Local decoupling/high frequency filter capacitors must be connected as close as possible to the modules pins. - 9) The length of the DC link wiring between C5, C6, the DIP's P terminal and the shunt must be minimized to prevent excessive transient voltages. In particular C6 should be mounted as close to the DIP as possible. - 10) Use high quality, tight tolerance current sensing resistor. Connect resistor as close as possible to the DIP's N terminal. Be careful to check for proper power rating. See application notes for calculation of resistance value. PS21961, PS21961-A, PS21961-C Intellimod™ Module Dual-In-Line Intelligent Power Module 3 Amperes/600 Volts # **Protection Function Timing Diagrams** Short-Circuit Protection (Lower-arms only with the external shunt resistor and RC filter) - A1: Normal operation IGBT turn on and conducting current. - A2: Short-circuit current detected (SC trigger). - A3: IGBT gate hard interrupted. - A4: IGBT turn off. - A5: F_O output with a fixed pulse width of $t_{FO(min)} = 20\mu s$. - A6: Input "L" IGBT off. - A7: Input "H" IGBT on is blocked during the $F_{\mbox{\scriptsize O}}$ output period. - A8: IGBT stays in off state. #### Under-Voltage Protection (Lower-side, UVD) - B1: Control supply voltage rise After the voltage level reaches UV_{Dr}, the drive circuit begins to work at the rising edge of the next input signal. - B2: Normal operation IGBT turn on and conducting current. - B3: Under-voltage trip (UV_{Dt}). - B4: IGBT turn off regardless of the control input level. - B5: F_O output during under-voltage period, however, the minimum pulse width is 20 μ s. - B6: Under-voltage reset (UV_{Dr}). - B7: Normal operation IGBT turn on and conducting current. 6 07/06 PS21961, PS21961-A, PS21961-C Intellimod™ Module Dual-In-Line Intelligent Power Module 3 Amperes/600 Volts # **Protection Function Timing Diagrams** # Under-Voltage Protection (Upper-side, UVDB) - C1: Control supply voltage rises After the voltage level reaches UV_{DBr}, the drive circuit begins to work at the rising edge of the next input signal. - C2: Normal operation IGBT turn on and conducting current. - C3: Under-voltage trip (UV_{DBt}). - C4: IGBT stays off regardless of the control input level, but there is no F_O signal output. - C5: Under-voltage reset (UV_{Dr}). - C6: Normal operation IGBT turn on and conducting current. #### **Typical Interface Circuit** NOTE: RC coupling at each input (parts shown dotted) may change depending on the PWM control scheme used in the application and the wiring impedance of the printed circuit board. The DIP-IPM input signal section integrates a $3.3 \mathrm{k}\Omega$ (min) pull-down resistor. Therefore, when using an external filtering resistor, care must be taken to satisfy the turn-on threshold voltage requirement. #### **Wiring Method Around Shunt Resistor**