

PS398/PS399

Precision 8-Ch, Diff. 4-Ch, 17V Analog Multiplexers

The PS398/PS399 are improved high precision analog multiplex-

ers. The PS398, an 8-channel single-ended mux, selects one of eight inputs to a common output as determined by a 3-bit address

A0-A2. An EN (enable) pin when low disables all switches, use-

ful when stacking several devices. The PS399 is a 4-channel dif-

ferential multiplexer. It selects one of four differential inputs to a

common differential output as determined by a 2-bit address A0,

These multiplexers operate with dual supplies from +3V to +8V.

Single-supply operation is possible from +3V to +15V. With

+5V power supplies, the PS398/PS399 guarantee <100-ohm on-

resistance. On-Resistance matching between channels is within

6-ohm. On-Resistance flatness is less than 11-ohm over the speci-

Each switch conducts current equally well in either direction when on. In the off state each switch blocks voltages up to the

Both devices guarantee low leakage currents (<2.5nA at +85oC)

and fast switching speeds (t_{TRANS} <250ns). Break-before-make

switching action protects against momentary crosstalk between

A1. An EN pin may be driven low to disable all switches.

Features

- → Low On-Resistance (60-ohm typ.) Minimizes Distortion and Error Voltages
- ➔ Low Glitching Reduces Step Errors and Improves Settling Times. Charge Injection: <5pC</p>
- → Split-Supply Operation (+3V to +8V)
- → Improved Second Sources for MAX398/MAX399
- → On-Resistance Matching Between Channels: <60hm
- → On-Resistance Flatness: <11-ohm
- ➔ Low Off-Channel Leakage, I_{NO(OFF)} < 1nA @ +85oC, I_{COM(ON)}, <2.5nA @ +85oC</p>
- → TTL/CMOS Logic Compatible
- ➔ Fast Switching Speed, t_{TRANS} <250ns</p>
- → Break-Before-Make action eliminates momentary crosstalk
- → Rail-to-Rail Analog Signal Range
- → Low Power Consumption, <300µW
- → Packaging (Pb-free & Green):
 - 16-pin SOIC (W)

Applications

- → Data Acquisition Systems
- ➔ Audio Switching and Routing
- → Test Equipment
- ➔ PBX, PABX
- ➔ Telecommunication Systems
- → Battery-Powered Systems

Block Diagrams and Pin Configurations

1

Description

fied signal range.

powersupply rails.

channels.

Truth Tables

		PS39	98	
A2	A1	A0	EN	On Switch
Х	X	X	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

	P\$399											
A1	A0	EN	On Switch									
Х	Х	0	None									
0	0	1	1									
0	1	1	2									
1	0	1	3									
1	1	1	4									

Logic "0", $V_{AL} \le 0.8V$

Logic "1", V_{AH} ≥ 2.4V

Absolute Maximum Ratings

Parameter	Min.	Max.	Units
Voltages Referenced to V-			
V+	-0.3	17	
GND	-0.3	17	17
GND	-0.3	(V+) + 0.3V	
V _{IN} , V _{COM} , V _{NO} ⁽¹⁾	(V-)-2	(V+) +2V	
Current (any terminal)		30	
Peak Current, COM, NO, NC (pulsed at 1ms, 10% duty cycle)		100	mA
ESD per Method 3015.7		>2000	V
Continuous Power Dissipation			
SOIC (derate 8.7mW/ °C above +70°C)		650	mW
Storage Temperature	-65	150	80
Lead Temperature (soldering, 10s)		300	

 $Stress \ beyond \ those \ listed \ under \ ``Absolute \ Maximum \ Ratings'' \ may \ cause \ permanent \ damage \ to \ the \ device.$

Note:

1. Signals on NO, COM, or logic inputs exceeding V+ or V- are clamped by internal diodes. Limit forward diode current to 30mA.

Electrical Specifications - Dual Supplies ($V \pm = \pm 5V \pm 10\%$, GND = 0V, $V_{AH} = V_{ENH} = 2.4V$, $V_{AL} = V_{ENL} = 0.8V$)

Parameters	Symbol	Conditions		Temp (°C)	Min ⁽²⁾	Typ ⁽¹⁾	Max ⁽²⁾	Units
Analog Switch	1			<u> </u>		1		
Analog Signal Range ⁽³⁾	VANALOG			Full	V-		V+	V
		V+ = 4.5V, V- = -4.5V,		25		60	100	
On-Resistance	R _{ON}	$V_{COM} = \pm 3.5V,$ $I_{NO} = 1mA$		Full			125	
On-Resistance Match Be-		V_{COM} or $V_{NC} = \pm$	3.5V,	25			6	ohm
tween Channels ⁽⁴⁾	ΔR _{ON}	$I_{NO} = 1mA,$ V+ = 5V, V- = -5V	V	Full			8	
		V + = 5V, V - = -5V	V,	25			11	
On-Resisatance Flatness ⁽⁵⁾	R _{FLAT(ON)}	$I_{\rm NO} = 1 {\rm mA},$ $V_{\rm COM} = \pm 3 {\rm V}, 0 {\rm V}$		Full			14	
NO Off Leakage		$V_{+} = 5.5V, V_{-} = -5.5V,$ $V_{COM} = \pm 4.5V,$ $V_{NO} = \pm 4.5V$		25	-0.1		0.1	
Current ⁽⁶⁾	I _{NO(OFF)}			Full	-1.0		1.0	
		$V{+} = 5.5V, V{-} = -5.5V$ $V_{COM} = \pm 4.5V,$ $V_{NO} = -/+4.5V$	DC200	25	-0.2		50	nA
	I _{COM} (OFF)		P5398	Full	-2.5		100	
COM OII Leakage Current			DC200	25	-0.1		50	
			P 3399	Full	-1.5		100	
		$\mathbf{V}_{1} = 5.5 \mathbf{V} \cdot \mathbf{V}_{2} =$	DODOC	25	-0.4		0.4	
COM On Lealing Comment ⁽⁷⁾	т	-5.5V	P 5 3 9 8	Full	-5		5	
COM On Leakage Current	ICOM(ON)	$V_{COM} = \pm 4.5 V$	DC200	25	-0.2		0.2	
		$v_{\rm NO} = 4.5 v$	P 3399	Full	-2.5		2.5	
Logic Input								
Logic High Input Voltage	V_{AH}, V_{ENH}				2.4			V
Logic Low Input Voltage	V_{AL}, V_{ENL}						0.8	v
Input Current with Input Voltage High	I_{AH}, I_{ENH}	$V_A = V_{EN} = 2.4 V$		Full	-0.1		0.1	
Input Current with Input Voltage Low	I_{AL}, I_{ENL}	$V_{\rm A}=V_{\rm EN}=0.8V$			-0.1		0.1	μΑ

Dynamic									
Transition Time	t _{RANS}	Figure 1					150		
Break-Before-Make Time Delay	t _{OPEN}	Figure 3			0	40		_	
				25		72	150	ns	
Enable Turn-On Time	ton(EN)	Figure 2		Full			250		
		E: 2		25		55	150		
Enable Turn-Off Time	t _{OFF(EN)}	Figure 2		Full			200		
Charge Injection ⁽³⁾	Q	$C_{L}=1nF, V_{S}=0Ohm,$	0V, R _S =			2.8	5	pC	
Off Isolation ⁽⁷⁾	OIRR	$V_{EN} = 0V, R_{L} =$ $= 100 \text{kHz}$	1kOhm, f			-101		ar	
Crosstalk	X _{TALK}	R _L = 1kOhm, f 100kHz, Figur	f = re 6			-92		ав	
Logic Input Capacitance	C _{IN}	f=1MHz		25		2.5			
NO Off Capacitance	C _(OFF)	$f = 1 MHz, V_{EN}$ $= 0 V$	= V _{NO}	25		3.6			
		f=1MHz,	PS398			31		pF	
COM Off Capacitance	C _{COM} (OFF)	$V_{EN} = V_{COM}$ =0V	PS399			14			
COM Off Come site and		f=1MHz,	PS398			35			
COM On Capacitance	CCOM(ON)	$V_{\rm COM} = 0V$	PS399			20			
Supply									
Power-Supply Range					±3		±8	V	
Positive-Supply Current	I+			T 11	-1		1		
Negative-Supply Current	I-	$V_{EN} = V_A = 0V$ $V_{+} = 5 5V V = 0$	or V+,	Full	-1		1	μΑ	
Ground Current	I _{GND}	, , , , , , , , , , , , , , , , , , ,	- <i>5.5</i> v		-1		1		

Notes:

1. Algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.

2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

3. Guaranteed by design.

4. $\Delta R_{ON} = R_{ON \text{ max}} - R_{ON \text{ min}}$. 5. Flatness is defined as the difference between the maximum and minimum values of on-resistance measured.

6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.

7. Off Isolation = $20\log_{10} V_{COM} / V_{NO}$. See Figure 5.

Electrical Specifications - Single 5V Supply (V+ = + 5V \pm 10%, V- = 0V, GND = 0V, V_{AH} = V_{ENH} = +2.4,

 $V_{AL} = V_{ENL} = +0.8V)$

Parameters	Symbol	Conditions		Temp (°C)	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
Analog Switch				·				
Analog Signal Range ⁽³⁾	V _{COM} , V _{NO}			Full	0		V+	V
On Desistance	D	$I_{NO} = 1mA, V_{COM} =$ 3.5V, V+ = 4.5V		25		100	125	
On-Resistance	RON			Full			280	
Row Matching Between		$I_{NO} = 1mA$, V_{CON}	۲ =	25			11	
Channels ⁽⁴⁾	ΔR_{ON}	3.5V, V+ = 4.5V	1	Full			13	ohm
		$I_{\rm NO} = 1 {\rm mA}, {\rm V}_{\rm COM}$	₁ =	25			18	
On-Resisatance Flatness	R _{FLAT}	1.5V, 2.5V, 3.5V, ⁷ 5V	V+ =	Full			22	
NO-Off Leakage		$I_{NO} = 4.5 V_{\cdot} V_{COM}$	= 0V	25	-0.1		0.1	
Current ⁽⁶⁾	I _{NO(OFF)}	V + = 5.5V	$V_{+} = 5.5V$		-1.0		1.0	
			DC200	25	-0.2		50	nA
COM-Off Leakage Current ⁽⁶⁾	T	$V_{COM} = 4.5V,$	P\$398	Full	-2.5		100	
	I _{COM(OFF)}	$V_{\rm NO} = 0V, V + =$ 5.5V	DC200	25	-0.2		50	
			P5399	Full	-1.5		100	
	I _{COM(ON)}	$V_{COM} = 4.5V,$ $V_{NO} = 4.5V, V+$ = 5.5V	DC209	25	-0.4		0.4	
COM On Lookage Current ⁽⁷⁾			PS399	Full	-5		5	_
				25	-0.2		0.2	
				Full	-2.5		2.5	
Digital Logic Input								
Logic High Input Voltage	V_{AH}, V_{ENH}				2.4			V
Logic Low Input Voltage	V_{AL} , V_{ENL}						0.8	v
Input Current with Input Voltage High	I_{AH}, I_{ENH}	$V_A = V_{EN} = 2.4 V$		Full	-0.1		0.1	
Input Current with Input Voltage Low	I_{AL}, I_{ENL}	$V_{\rm A} = V_{\rm EN} = 0.8 V$			-0.1		0.1	μΑ
Supply	1					1	L	
Power-Supply Range	V+				3		15	V
Positive-Supply Current	I+			E11	-1.0		1.0	
Negative-Supply Current	I-	$V_{EN} = V + \text{ or } 0V, V_{-} = 0$	$V_{\rm A} = 0 V$,	Full	-1.0		1.0	μA
Ground Current	I _{GND}	$\begin{bmatrix} v \\ - & - & - & - & - & - & - & - & - & -$	v		-1.0		1.0]

Dynamic											
Transition Time	t _{RANS}				72	245					
Break-Before-Make Time Delay	t _{OPEN}	$V_{\rm NO} = 3V$	25	10	36						
Enable Turn On Time					110	200	ns				
Enable Turn-On Time	ton(en)		Full			275					
Enchla Turn Off Time			25		65	125					
Enable Turn-Off Time	toff(en)		Full			200					
Charge Injection ⁽³⁾	Q	$C_L = 1nF, V_S = 0V, R_S = 0Ohm,$	25		2.8	5	pC				

Electrical Specifications - Single 3V Supply (V+ = + 5V \pm 10%, V- = 0V, GND = 0V, V_{AH} = V_{ENH} = +2.4,

V _{AL} =	VENL	=	+0.8V)
-------------------	------	---	--------

Parameters	Symbol	Conditions	Temp (°C)	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
Switch							
Analog Signal Range ⁽³⁾	V _{COM} , V _{NO}		Full	0		V+	V
On Desistance	D	$I_{NO} = 1mA, V_{COM} =$	25		160	375	ahm
On-Resistance	KON	1.5V, V = 3V	Full			425	onm
Dynamic							
Transition Time ⁽³⁾	t _{RANS}	Figure 1, V _{IN} = 2.4V V _{NO1} = 1.5V, V _{NO8} = 0V			200	575	
Enable Turn-On Time	t _{ON(EN)}	Figure 2, V _{INH} = 2.4V V _{INL} = 0V, V _{NO1} = 1.5V	25		200	500	ns
Enable Turn-Off Time	t _{OFF(EN)}	Figure 2, V _{INH} = 2.4V V _{INL} = 0V, V _{NO1} = 1.5V			92	400	
Charge Injection ⁽³⁾	Q	C_{L} = 1nF, V_{S} = 0V, R_{S} = 0Ohm,			2	5	pC

Notes:

1. Algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.

2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.

3. Guaranteed by design.

4. $\Delta R_{ON} = R_{ON max} - R_{ON min}$. 5. Flatness is defined as the difference between the maximum and minimum values of on-resistance measured.

6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.

7. Worst-case isolation is on channel 4 because of its proximity to the COM pin. Off isolation = $20\log V_{COM}/V_{NO}$, V_{COM} = output, V_{NO} = input to off switch 8. Off Isolation = $20\log_{10} V_{COM} / V_{NO}$. See Figure 5.

Parameters	Symbol	Conditions	Temp (°C)	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units	
Analog Switch			·		·			
Analog Signal Range ⁽³⁾	VANALOG			0		V+	V	
		V+ = 3V,	25		40	70		
On-Resistance	R _{ON}	$I_{COM} = 1mA$ V _{NO} or V _{NC} = 1.5V Full			50	80	ohm	
Dynamic								
Trans Or Time (3)			25		50	125		
Turn-On Time®	t _{ON}	V_{NO} or $V_{NC} = 1.5V$,	Full		100	250		
Trame Off Time (3)		Figure 2	25		30	75	ns	
Turn-On Time	t _{OFF}		Full		60	150	-	
Charge Inication ⁽³⁾	0	$C_{\rm L} = 1 {\rm nF}, V_{\rm GEN} = 0 {\rm V},$	25		1	F		
	Q	$R_{GEN} = 0$ -ohm, Figure 4	25		1	5	pC	
Supply								
Positive Supply Current	Positive Supply Current I+		Full	-1	0.01	1	μΑ	

Electrical Specifications - Single +3.3V Supply (V+ = 3.3V + 10%, GND = 0V, $V_{INH} = 2.4V$, $V_{INL} = 0.8V$)

Electrical Specifications - Single +12V Supply (V+ = 12V + 10%, GND = 0V, $V_{INH} = 4V$, $V_{INL} = 0.8V$)

Parameters	Symbol	Conditions	Temp (°C)	Min ⁽¹⁾	Typ ⁽²⁾	Max ⁽¹⁾	Units
Analog Switch							
Analog Signal Range ⁽³⁾	VANALOG			0		V+	V
On-Resistance		V+ = 10.8V,	25		15	25	
	R _{ON}	$I_{COM} = 1mA$ V _{NO} or V _{NC} = 110V	Full		20	40	ohm
Dynamic							
Trans On Time (3)			25		25	50	ns
Turn-On Time®	ton	$V_{\rm NO}$ or $V_{\rm NC}$ = 1.5V,	Full		50	100	
Turn Of Time (3)		Figure 2	25		20	40	
Turn-On Time®	toff		Full		40	75	
Charge Injection ⁽³⁾	Q	$C_{L} = 1nF, V_{GEN} = 0V,$ $R_{GEN} = 0$ -ohm, Figure 4	25		1	5	pC
Supply							
Positive Supply Current I+		V+ = 13V, V_{IN} = 0V or V+, all channels on or off	Full	-1	0.01	1	μΑ

PERICOM[®]

Test Circuits/Timing Diagrams

Figure 2. Enable Switching Time

Figure 3. Break-Before-Make Interval

Figure 8. NO/COM Capacitance

Application Information

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings may cause permanent damage to the devices. Always sequence V+ on first, followed by V-, and then logic inputs. If power-supply sequencing is not possible, add two small signal diodes or two current limiting resistors in series with the supply pins for overvoltage protection (Figure 9). Adding diodes reduces the analog signal range, but low switch resistance and low leakage characteristics are unaffected.

Maximum Sampling Rate

From the sampling theorem, the sampling frequency needed to properly recover the original signal should be more than twice its maximum component frequency. In real applications, sampling at three or four times the maximum signal frequency is customary.

The maximum sampling rate of a multiplexer is determined by its transition time (t_{TRANS}), the number of channels being multiplexed, and the settling time ($t_{SETTLING}$) of the sampled signal at the output. The maximum sampling rate is:

(1)

$$f_{S} = 1$$

 $n (t_{TRANS} + t_{SETTLING})$

Where n = number of channels scanned: 8 for PS398, 4 for PS399. tTRANS is given on the specification table: 150 ns max.

Settling time is the time needed for the output to stabilize within the desired accuracy band of +1 LSB (least significant bit).

Other factors determining settling time are: signal source impedance, capacitive load at the output. Figure 10 illustrates the steady state model. To figure out what the settling time due to the multiplexer is, we can assume that $RS = 0\Omega$, and CL = 0. In real life, the effects of R_s and C_L should be taken into account when performing these calculations.

Figure 9. Overvoltage protection is accomplished using two external blocking diodes or two current limiting resistors.

Figure 10. Equivalent model of one multiplexer channel

The tab	le	bel	ow	sł	iows	how	ma	ny i	time	con	star	nts ((mτ)	are	
needed	to	re	ach	a	n acc	urac	y of	f on	e LS	Β. τ	= R	ON 2	x Co	COM(O	N)

Bits	Accuracy (%)	m
8	0.25	6
12	0.012	9
15	0.0017	11

In equation (1) above, n = 8, t_{TRANS} = 150ns, $t_{SETTLING}$ = 9 τ , τ = 100ohm x 54pF

$$f_{S} = \frac{1}{8 [150ns + 9(100ohm x 54pF)]}$$

or fS = 630kHz.

Assuming a x4 oversampling rate, the maximum sampling speed for the PS398 would be $630 \div 4 = 157$ kHz.

Now, let's calculate what the maximum sampling rate for the PS398. Assume a 12-bit accuracy and room temperature operation.

Packaging Mechanical: 16-Pin SOIC (W)

Ordering Information

Ordering Code	Package Code	Package Type
PS398CSEE	W	Pb-free & Green, 16-pin SOIC

1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/