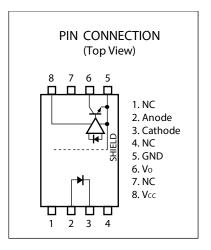


# **PS9924**

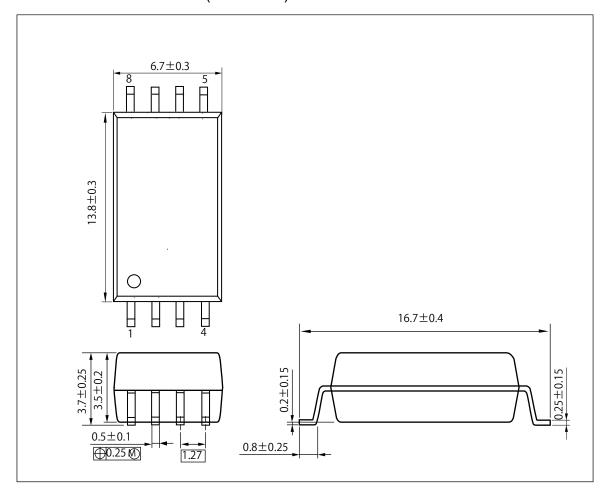
HIGH CMR, 10 Mbps OPEN COLLECTOR OUTPUT TYPE, 8-PIN LSDIP PHOTOCOUPLER FOR CREEPAGE DISTANCE OF 14.5 mm


R08DS0059EJ0200 Rev.2.00 Feb 12, 2020

#### DESCRIPTION

The PS9924 is an optical coupled high-speed, active low type isolator containing an AlGaAs LED on the input side and a photodiode and a signal processing circuit on the output side on one chip.

#### **FEATURES**

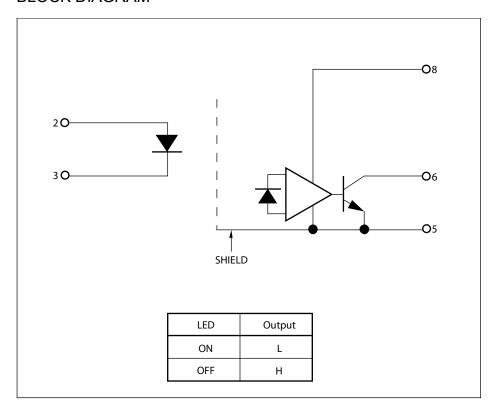

- Long creepage distance (14.5 mm MIN.)
- High common mode transient immunity (CM<sub>H</sub>, CM<sub>L</sub> =  $\pm 15$  kV/ $\mu$ s MIN.)
- High-speed response (tphl = 100 ns MAX., tplh = 100 ns MAX.)
- Low power consumption (V<sub>CC</sub> = 3.3/5V)
- 8-pin LSDIP (Long Creepage SDIP) type
- Embossed tape product: PS9924-F3: 1 000 pcs/reel
- Pb-Free and Halogen Free product
- · Safety standards
  - UL approved: UL1577, Double protection
  - CSA approved: CAN/CSA-C22.2 No.62368-1, Reinforced insulation
  - SEMKO approved: EN 62368-1, IEC 62368-1, Reinforced insulation
  - VDE approved: DIN EN 60747-5-5 (Option)



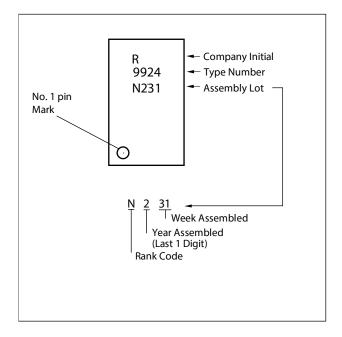
### **APPLICATIONS**

- Industrial inverter
- Solar inverter

# PACKAGE DIMENSIONS (UNIT: mm)




Weight: 0.642g (typ.)


# PHOTOCOUPLER CONSTRUCTION

| Parameter          | MIN.    |
|--------------------|---------|
| Air Distance       | 14.5 mm |
| Creepage Distance  | 14.5 mm |
| Isolation Distance | 0.4 mm  |

# **BLOCK DIAGRAM**



# MARKING EXAMPLE



### ORDERING INFORMATION

| Part Number | Order Number     | Solder Plating<br>Specification | Packing Style            | Safety Standard<br>Approval | Application<br>Part<br>Number <sup>*1</sup> |
|-------------|------------------|---------------------------------|--------------------------|-----------------------------|---------------------------------------------|
| PS9924      | PS9924-Y-AX      | Pb-Free and                     | 10 pcs (Tape 10 pcs cut) | Standard products           | PS9924                                      |
| PS9924-F3   | PS9924-Y-F3-AX   | Halogen Free                    | Embossed Tape 1 000      | (UL, CSA, SEMKO             |                                             |
|             |                  | (Ni/Pd/Au)                      | pcs/reel                 | approved)                   |                                             |
| PS9924-V    | PS9924-Y-V-AX    |                                 | 10 pcs (Tape 10 pcs cut) | UL, CSA, SEMKO,             |                                             |
| PS9924-V-F3 | PS9924-Y-V-F3-AX |                                 | Embossed Tape 1 000      | DIN EN 60747-5-5            |                                             |
|             |                  |                                 | pcs/reel                 | approved                    |                                             |

Note: \*1. For the application of the Safety Standard, following part number should be used.

# ABSOLUTE MAXIMUM RATINGS (T<sub>A</sub> = 25°C, unless otherwise specified)

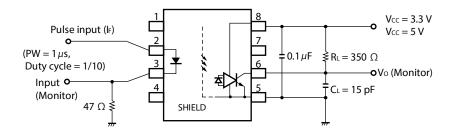
| Parameter                     |                      | Symbol           | Ratings     | Unit    |
|-------------------------------|----------------------|------------------|-------------|---------|
| Diode                         | Forward Current      | l <sub>F</sub>   | 25          | mA      |
|                               | Reverse Voltage      | V <sub>R</sub>   | 5           | V       |
|                               | Power Dissipation*1  | P <sub>D</sub>   | 45          | mW      |
| Detector                      | Supply Voltage       | Vcc              | 7           | V       |
|                               | Output Voltage       | Vo               | 7           | V       |
|                               | Output Current       | lo               | 25          | mA      |
|                               | Power Dissipation *2 | Pc               | 250         | mW      |
| Isolation Voltage*3           |                      | BV               | 7 500       | Vr.m.s. |
| Operating Ambient Temperature |                      | TA               | -40 to +110 | °C      |
| Storage Temperature           |                      | T <sub>stg</sub> | −55 to +125 | °C      |

Notes: \*1. Reduced to 0.8 mW/°C at T<sub>A</sub> = 85°C or more.

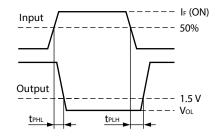
### RECOMMENDED OPERATING CONDITIONS

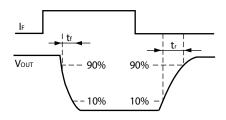
| Parameter                  | Symbol              | MIN. | TYP. | MAX. | Unit |
|----------------------------|---------------------|------|------|------|------|
| Low Level Forward Voltage  | V <sub>F(OFF)</sub> | -2   |      | 0.8  | V    |
| High Level Forward Current | I <sub>F(ON)</sub>  | 8    | 10   | 12   | mA   |
| Supply Voltage             | Vcc                 | 2.7  |      | 5.5  | V    |
| Pull-up Resistor           | R∟                  | 330  |      | 4k   | Ω    |

<sup>\*2.</sup> Reduced to 5.2 mW/°C at T<sub>A</sub> = 85°C or more.

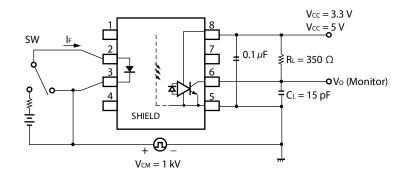

<sup>\*3</sup> AC voltage for 1 minute at  $T_A$  = 25°C, RH = 60% between input and output. Pins 1-4 shorted together, 5-8 shorted together.

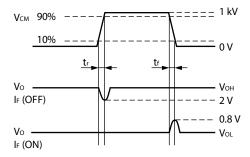
# ELECTRICAL CHARACTERISTICS ( $T_A = -40$ to +110°C, unless otherwise specified)


| $ \begin{array}{ c c c c c } \hline Reverse Current & I_R & V_R = 3 \ V, T_A = 25^\circ C & 30 \\ \hline Terminal Capacitance & C_t & f = 1 \ MHz, \ V_F = 0 \ V, \ T_A = 25^\circ C & 30 \\ \hline \hline Detector & High Level Output Current & I_OH & V_CC = V_O = 3.3 \ V, \ V_F = 0.8 \ V & 1 & 1 & 1 \\ \hline V_CC = V_O = 3.3 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0.2 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0.2 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0.2 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0.2 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0.2 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0.2 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0.2 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0.2 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0.2 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0.2 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0.2 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0.2 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0.2 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & 0.2 & 0.2 \\ \hline V_{CC} = 5.5 \ V, \ I_F = 10 \ mA, & $                                                                                                                                                                                                                                                                                             | X. Unit     | MAX. | TYP.*1 | MIN.             | ditions                      | Cor                                     | Symbol                             | Parameter                 |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|--------|------------------|------------------------------|-----------------------------------------|------------------------------------|---------------------------|-------------|
| $ \begin{array}{ c c c c } \hline \text{Terminal Capacitance} & C_{i} & f = 1  \text{MHz},  V_{F} = 0  \text{V},  T_{A} = 25^{\circ}\text{C} & 30 & 10 & 10 & 10 & 10 & 10 & 10 & 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 V         | 1.8  | 1.56   | 1.3              |                              |                                         | V <sub>F</sub>                     | Forward Voltage           | Diode       |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μΑ          | 10   |        |                  |                              |                                         | I <sub>R</sub>                     | Reverse Current           |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pF          |      | 30     |                  | = 0 V, T <sub>A</sub> = 25°C | f = 1 MHz, V <sub>F</sub>               | Ct                                 | Terminal Capacitance      |             |
| $ \begin{array}{ c c c c } \hline Low Level Output Voltage & V_{OL} & V_{CC} = 3.3 \ V, \  _F = 10 \ mA, \  _{OL} = 13 \ mA \\ \hline Voc = 5.5 \ V, \  _F = 10 \ mA, \  _{OL} = 13 \ mA \\ \hline Voc = 5.5 \ V, \  _F = 0 \ mA, \  _{OL} = 13 \ mA \\ \hline Voc = 5.5 \ V, \  _F = 0 \ mA, \  _{OL} = 13 \ mA \\ \hline Voc = 5.5 \ V, \  _F = 0 \ mA, \  _{OL} = 13 \ mA \\ \hline Voc = 0 \ mA, \  _{OL} = 13 \ mA \\ \hline Voc = 0 \ mA, \  _{OL} = 10 \ mA, \  _{O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μA          | 80   | 1      |                  | $V_{F} = 0.8 V$              |                                         |                                    | High Level Output Current | Detector    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | כ           | 100  | 1      |                  | $V_{F} = 0.8 V$              | $V_{CC} = V_0 = 5.5$                    |                                    |                           |             |
| $ \begin{array}{ c c c c } \hline & Vcc = 5.5 \ V, \   F = 10 \ mA, \\ &  _{OL} = 13 \ mA \\ \hline \\ Vcc = 3.3 \ V, \  _{F} = 0 \ mA, \\ & V_{O} = open \\ \hline \\ Vcc = 5.5 \ V, \  _{F} = 0 \ mA, \\ & V_{O} = open \\ \hline \\ Vcc = 5.5 \ V, \  _{F} = 0 \ mA, \\ & V_{O} = open \\ \hline \\ Vcc = 5.5 \ V, \  _{F} = 10 \ mA, \\ & V_{O} = open \\ \hline \\ Vcc = 5.5 \ V, \  _{F} = 10 \ mA, \\ & V_{O} = open \\ \hline \\ Vcc = 5.5 \ V, \  _{F} = 10 \ mA, \\ & V_{O} = open \\ \hline \\ Vcc = 5.5 \ V, \  _{F} = 10 \ mA, \\ & V_{O} = open \\ \hline \\ Vcc = 5.5 \ V, \  _{F} = 10 \ mA, \\ & V_{O} = open \\ \hline \\ Vcc = 5.5 \ V, \  _{F} = 10 \ mA, \\ & V_{O} = open \\ \hline \\ Vcc = 5.5 \ V, \  _{F} = 10 \ mA, \\ & V_{O} = open \\ \hline \\ Vcc = 5.0 \ V, R_{L} = 350 \ \Omega, \\ & V_{O} = 0.8 \ V \\ \hline \\ Vcc = 5.0 \ V, R_{L} = 350 \ \Omega, \\ & V_{O} = 0.8 \ V \\ \hline \\ Vcc = 5.0 \ V, R_{L} = 350 \ \Omega, \\ & V_{O} = 0.8 \ V \\ \hline \\ Vcc = 5.0 \ V, R_{L} = 350 \ \Omega, \\ & V_{O} = 1 \ MHz, \\ & V_{O} = 1 \ MHz, \\ & V_{O} = 1 \ MHz, \\ & V_{O} = 3.3 \ V, \\ & I_{F} = 10 \ mA, \\ & R_{L} = 350 \ \Omega, \\ & V_{L} = 10 \ mA, \\ & R_{L} = 350 \ \Omega, \\ & V_{L} = 10 \ mA, \\ & R_{L} = 350 \ \Omega, \\ & V_{L} = 10 \ mA, \\ & R_{L} = 350 \ \Omega, \\ & V_{L} = 10 \ mA, \\ & V_{L} = 3.0 \ V, \\ & V_{C} = 3.3 \ $                                                                                                                                                                                                                                                                                                                             | 6 V         | 0.6  | 0.2    |                  | = 10 mA,                     | V <sub>CC</sub> = 3.3 V, I <sub>I</sub> | V <sub>OL</sub>                    | Low Level Output Voltage  |             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |      |        |                  |                              | I <sub>OL</sub> = 13 mA                 |                                    |                           |             |
| $ \begin{array}{ c c c c c } \hline High Level Supply Current & I_{CCH} & V_{CC} = 3.3 \text{ V, } I_F = 0 \text{ mA,} \\ V_O = \text{ open} & V_{CC} = 5.5 \text{ V, } I_F = 0 \text{ mA,} \\ V_O = \text{ open} & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |      |        |                  | = 10 mA,                     |                                         |                                    |                           |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |      |        |                  |                              |                                         |                                    |                           |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mA          | 7    | 2      |                  | = 0 mA,                      |                                         | Іссн                               | High Level Supply Current |             |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _           |      |        |                  |                              |                                         |                                    |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 7    | 3      |                  | = 0 mA,                      |                                         |                                    |                           |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 40   |        |                  | 10 1                         |                                         |                                    |                           |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) mA        | 10   | 4      |                  | = 10 mA,                     |                                         | ICCL                               | Low Level Supply Current  |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del></del> | 10   | E      |                  | - 10 m A                     |                                         |                                    |                           |             |
| $ \begin{array}{ c c c c }\hline \text{Coupled} & \text{Threshold Input Voltage} \\ (H \to L) & & & & & & & & & & & & & & & & & \\ \hline (H \to L) & & & & & & & & & & & & & & & & \\ \hline (H \to L) & & & & & & & & & & & & & & & \\ \hline (H \to L) & & & & & & & & & & & & & & & \\ \hline (H \to L) & & & & & & & & & & & & & & & \\ \hline & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | 10   | 3      |                  | - 10 IIIA,                   |                                         |                                    |                           |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mA          | 5    | 2      |                  | . = 350 O                    |                                         | Icui                               | Threshold Innut Voltage   | Coupled     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 3    |        |                  | L - 330 sz,                  |                                         | IFFIL                              |                           | Ooupicu     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |      |        |                  | ι = 350 Ω.                   |                                         |                                    | (1. / 2)                  |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |      |        |                  | _                            |                                         |                                    |                           |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ω           |      |        | 10 <sup>11</sup> | RH = 40 to 60%               |                                         | R <sub>I-O</sub>                   | Isolation Resistance      |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pF          |      | 1.0    |                  |                              |                                         |                                    | Isolation Capacitance     |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |      |        |                  | ,                            |                                         |                                    | •                         |             |
| $R_{L} = 350 \ \Omega, \\ C_{L} = 15 \ pF \\ V_{CC} = 5 \ V, \\ I_{F} = 10 \ mA, \\ R_{L} = 350 \ \Omega, \\ C_{L} = 15 \ pF \\ T_{A} = -40^{\circ}C \ to \\ T_{A} = 25^{\circ}C \\ 45 \ 7 \\ T_{A} = -40^{\circ}C \ to \\ T_{A} = 25^{\circ}C \\ T_{A} = 25^{\circ}C \\ T_{A} = 25^{\circ}C \\ T_{A} = 25^{\circ}C \\ T_{A} = -40^{\circ}C \ to \\ T_{A} = -40^{\circ}C \ to \\ T_{A} = -40^{\circ}C \ to \\ T_{A} = 25^{\circ}C \\ T_{A$ | ns          | 75   | 45     |                  | T <sub>A</sub> = 25°C        | V <sub>CC</sub> = 3.3 V,                | t <sub>PHL</sub>                   | Propagation Delay Time    |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |      |        |                  |                              | $I_F = 10 \text{ mA},$                  |                                    | $(H \rightarrow L)^{*2}$  |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5           | 100  |        |                  | $T_A = -40^{\circ}C$ to      | $R_L = 350 \Omega$ ,                    |                                    |                           |             |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |      |        |                  | 110°C                        | C <sub>L</sub> = 15 pF                  |                                    |                           |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ;           | 75   | 45     |                  | T <sub>A</sub> = 25°C        | Vcc = 5 V,                              |                                    |                           |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |      |        |                  |                              | $I_F = 10 \text{ mA},$                  |                                    |                           |             |
| Propagation Delay Time $(L \to H)^{*2}$ $t_{PLH}$ $V_{CC} = 3.3 \text{ V}, t_{F} = 10 \text{ mA}, t_{PL} = 350 \Omega, t_{PL} = 100 \text{ mA}, t_{PL} = 350 \Omega, t_{PL} = 100 \text{ mA}, t_{PL} = 350 \Omega, t_{PL} = -400 \text{ C to} t_{PL} = 100 \text{ mA}, t_{PL} = 350 \Omega, t_{PL} = -400 \text{ C to} t_{PL} = 100 \text{ mA}, t_{PL} = 350 \Omega, t_{PL} = -400 \text{ C to} t_{PL} = 100 \text{ mA}, t_{PL} = 100 \text{ mA}, t_{PL} = 350 \Omega, t_{PL} = -400 \text{ C to} t_{PL} = 100 \text{ mA}, t_{PL} = 100 \text{ mA}, t_{PL} = 350 \Omega, t_{PL} = -400 \text{ C to} t_{PL} = 100 \text{ mA}, t_{PL} $                                                                                                                                                       | כ           | 100  |        |                  | $T_A = -40$ °C to            | $R_L = 350 \Omega$ ,                    |                                    |                           |             |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |      |        |                  | 110°C                        | C <sub>L</sub> = 15 pF                  |                                    |                           |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ns          | 75   | 40     |                  | T <sub>A</sub> = 25°C        | $V_{CC} = 3.3 V$ ,                      | tplH                               | Propagation Delay Time    |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |      |        |                  |                              | $I_F = 10 \text{ mA},$                  |                                    | $(L \rightarrow H)^{*2}$  |             |
| $V_{CC} = 5 \text{ V}, \qquad T_A = 25^{\circ}\text{C} \qquad \qquad 40 \qquad 7$ $I_F = 10 \text{ mA}, \qquad \qquad T_A = -40^{\circ}\text{C to} \qquad \qquad 11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5           | 100  |        |                  | $T_A = -40^{\circ}C$ to      | $R_L = 350 \Omega$ ,                    |                                    |                           |             |
| $I_F = 10 \text{ mA},$ $R_L = 350 \Omega,$ $T_A = -40^{\circ}\text{C to}$ 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |      |        |                  | 110°C                        | C <sub>L</sub> = 15 pF                  |                                    |                           |             |
| $R_L = 350 \ \Omega,$ $T_A = -40^{\circ} C \text{ to}$ 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 75   | 40     |                  | T <sub>A</sub> = 25°C        | Vcc = 5 V,                              |                                    |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |      |        |                  |                              | $I_F = 10 \text{ mA},$                  |                                    |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )           | 100  |        |                  |                              |                                         |                                    |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |      |        |                  |                              | ·                                       |                                    |                           |             |
| Pulse Width Distortion $  t_{PHL} - t_{PLH}   V_{CC} = 3.3/5 \text{ V}, I_F = 10 \text{ mA},$ (PWD)*2 $  t_{PHL} - t_{PLH}   V_{CC} = 3.3/5 \text{ V}, I_F = 10 \text{ mA},$ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ns          | 35   | 5      |                  | · ·                          |                                         | t <sub>PHL-</sub> t <sub>PLH</sub> |                           |             |
| Propagation Delay t <sub>psk</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 40   |        |                  | - 1                          |                                         | t <sub>psk</sub>                   | Propagation Delay         |             |
| Skew*2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |      | 0.0    |                  |                              |                                         |                                    |                           |             |
| Rise Time*2 t <sub>r</sub> 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |      |        |                  |                              |                                         |                                    |                           | Fall Time*2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |      | _      |                  |                              |                                         |                                    |                           |             |
| Common Mode $CM_H$ $V_{CC} = 3.3/5 \text{ V}, I_F = 0 \text{ mA}, 15 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kV/μs       |      | 20     | 15               | · ·                          |                                         | СМн                                |                           |             |
| Transient Immunity at $V_0 > 2 \text{ V}, R_L = 350 \Omega,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |      |        |                  | ·                            |                                         |                                    | 1                         |             |
| High Level Output*3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.11       |      |        | 45               |                              |                                         | C                                  |                           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kV/μs       |      | 20     | 15               | •                            |                                         |                                    |                           |             |
| Transient Immunity at $V_0 < 0.8 \text{ V}, R_L = 350 \Omega,$<br>Low Level Output <sup>*3</sup> $V_{CM} = 1 \text{ kV}, T_A = 25^{\circ}\text{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |      |        |                  | · ·                          | · ·                                     |                                    |                           |             |


# Notes: \*1. Typical values at T<sub>A</sub> = 25°C

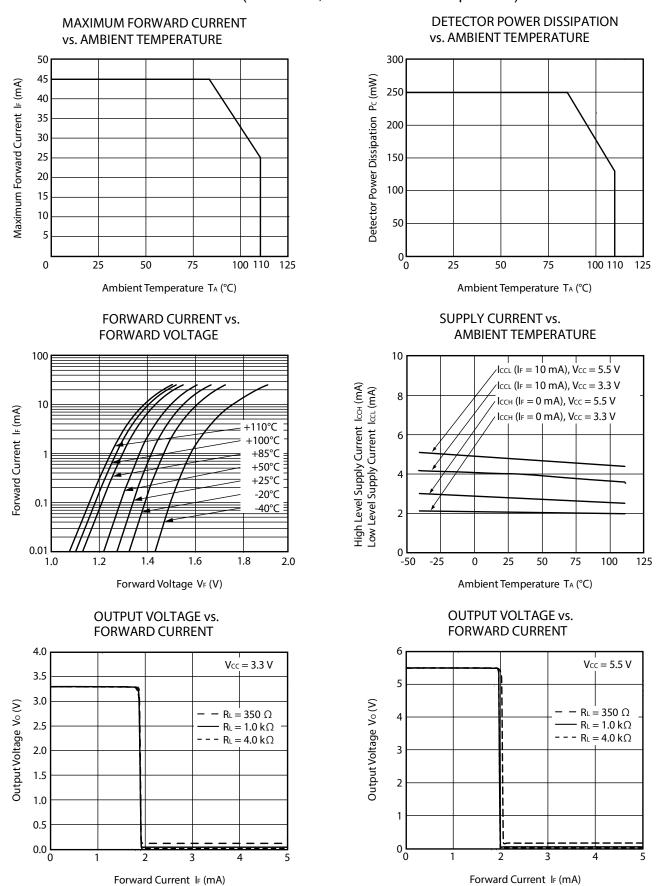
### \*2. Test circuit for propagation delay time





Remark CL includes probe and stray wiring capacitance.

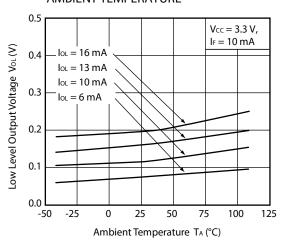




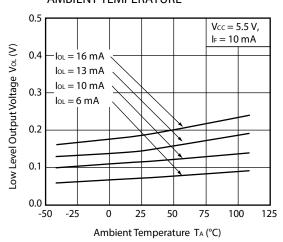

### \*3. Test circuit for common mode transient immunity



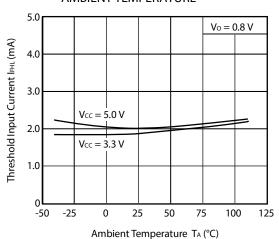



Remark CL includes probe and stray wiring capacitance.

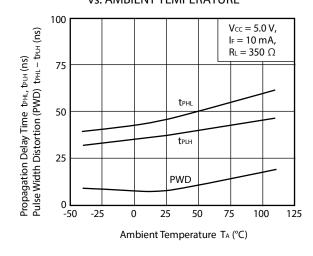
# TYPICAL CHARACTERISTICS (T<sub>A</sub> = 25°C, unless otherwise specified)



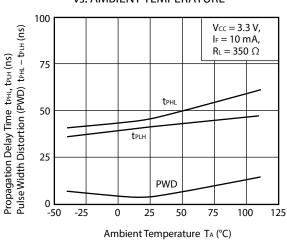

Remark The graphs indicate nominal characteristics.


# LOW LEVEL OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE



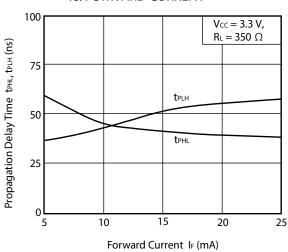

# LOW LEVEL OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE



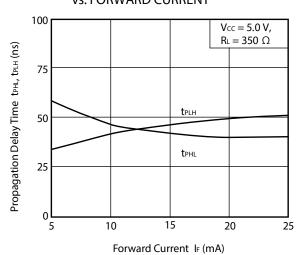

# THRESHOLD INPUT CURRENT vs. AMBIENT TEMPERATURE



### PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. AMBIENT TEMPERATURE

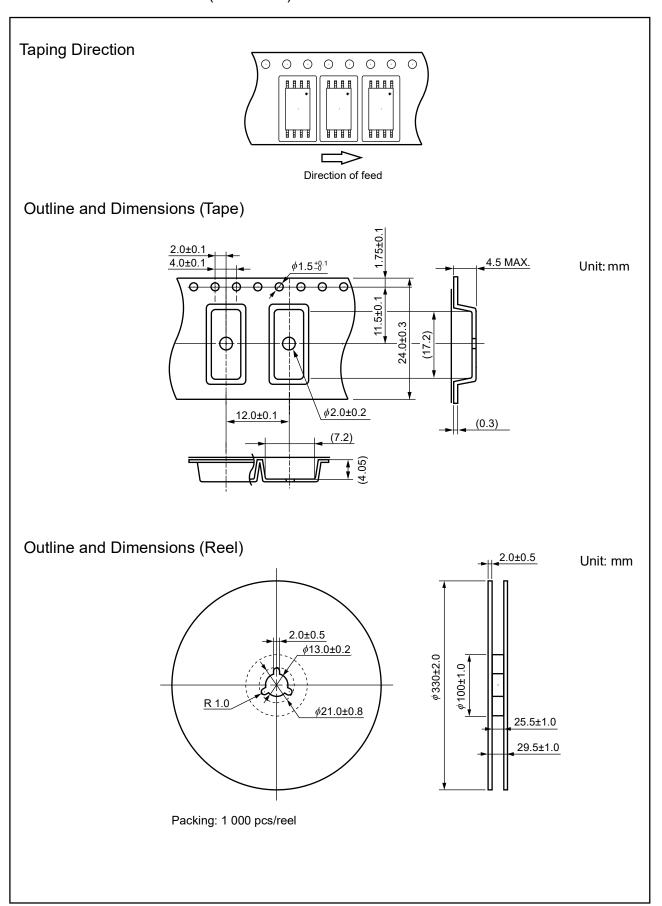



#### PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. AMBIENT TEMPERATURE

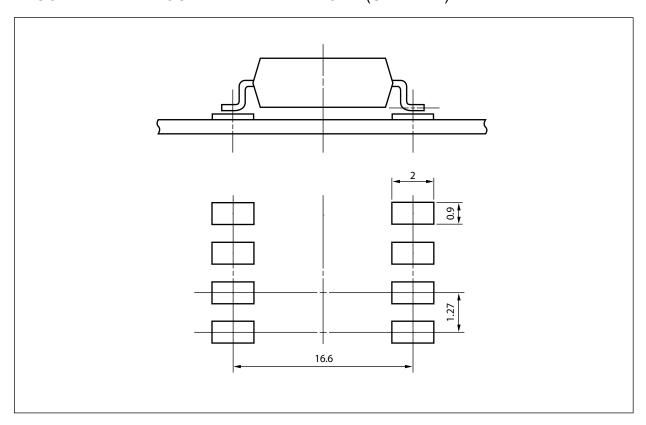



Remark The graphs indicate nominal characteristics.

# PROPAGATION DELAY TIME vs. FORWARD CURRENT




# PROPAGATION DELAY TIME vs. FORWARD CURRENT




Remark The graphs indicate nominal characteristics.

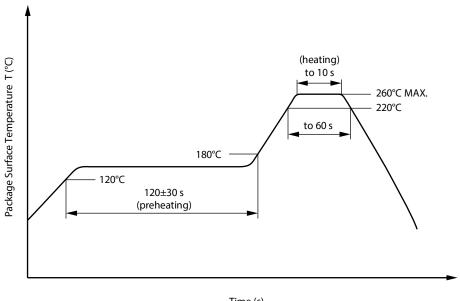
# TAPING SPECIFICATIONS (UNIT: mm)



# RECOMMENDED MOUNT PAD DIMENSIONS (UNIT: mm)



Remark All dimensions in this figure must be evaluated before use.


### NOTES ON HANDLING

- 1. Recommended soldering conditions
  - (1) Infrared reflow soldering
    - Peak reflow temperature 260°C or below (package surface temperature)
    - Time of peak reflow temperature 10 seconds or less Time of temperature higher than 220°C 60 seconds or less
    - Time to preheat temperature from 120 to 180°C 120±30 s
    - Number of reflows Three
    - Flux Rosin flux containing small amount of chlorine (The

flux with a maximum chlorine content of 0.2 Wt% is

recommended.)

### Recommended Temperature Profile of Infrared Reflow



Time (s)

#### (2) Wave soldering

Temperature 260°C or below (molten solder temperature)

10 seconds or less

Preheating conditions 120°C or below (package surface temperature)

Number of times One (Allowed to be dipped in solder including plastic mold portion.) Flux

Rosin flux containing small amount of chlorine (The flux with a maximum

chlorine content of 0.2 Wt% is recommended.)

### (3) Soldering by Soldering Iron

350°C or below Peak Temperature (lead part temperature) Time (each pins) 3 seconds or less

Flux Rosin flux containing small amount of chlorine

(The flux with a maximum chlorine content of 0.2 Wt% is recommended.)

- (a) Soldering of leads should be made at the point 1.5 to 2.0 mm from the root of the lead
- (b) Please be sure that the temperature of the package would not be heated over 100°C

#### (4) Cautions

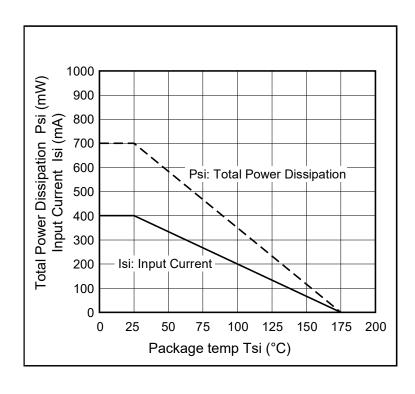
Flux Cleaning

Avoid cleaning with Freon based or halogen-based (chlorinated etc.) solvents.

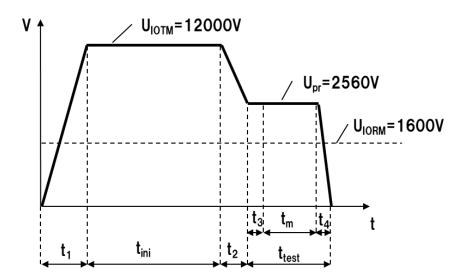
Do not use fixing agents or coatings containing halogen-based substances.

### 2. Cautions regarding noise

Be aware that when voltage is applied suddenly between the photocoupler's input and output at startup, the output transistor may enter the on state, even if the voltage is within the absolute maximum ratings.

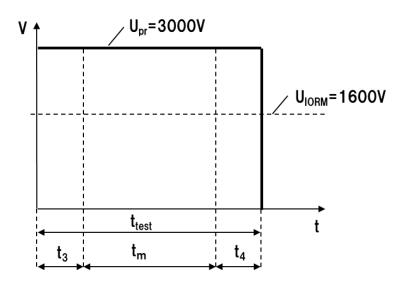

### **USAGE CAUTIONS**

- 1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.
- 2. By-pass capacitor of more than 0.1  $\mu$ F is used between V<sub>CC</sub> and GND near device. Also, ensure that the distance between the leads of the photocoupler and capacitor is no more than 10 mm.
- 3. Pin 1, 4 (which is an NC\*1 pin) can either be connected directly to the GND pin on the LED side or left open.
  - Also, Pin 7 (which is an NC\*1 pin) can either be connected directly to the GND pin on the detector side or left open. Unconnected pins should not be used as a bypass for signals or for any other similar purpose because this may degrade the internal noise environment of the device.
  - Note: \*1. NC: Non-Connection (No Connection).
- 4. Avoid storage at a high temperature and high humidity.


# SPECIFICATION OF VDE MARKS LICENSE DOCUMENT

| Parameter                                                                                                                                                                                                | Symbol                               | Rating                               | Unit                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|
| Climatic test class (IEC 60068-1/DIN EN 60068-1)                                                                                                                                                         |                                      | 40/110/21                            |                                        |
| Dielectric strength maximum operating isolation voltage Test voltage (partial discharge test, procedure a for type test and random test) $U_{pr} = 1.6 \times U_{IORM.},  P_d < 5  pC$                   | U <sub>IORM</sub><br>U <sub>pr</sub> | 1 600<br>2 560                       | V <sub>peak</sub><br>V <sub>peak</sub> |
| Test voltage (partial discharge test, procedure b for all devices) $U_{pr} = 1.875 \times U_{IORM.},  P_d < 5 \; pC$                                                                                     | U <sub>pr</sub>                      | 3 000                                | V <sub>peak</sub>                      |
| Highest permissible overvoltage                                                                                                                                                                          | Uютм                                 | 12 000                               | V <sub>peak</sub>                      |
| Degree of pollution (IEC 60664-1/DIN EN 60664-1 (VDE 0110-1))                                                                                                                                            |                                      | 2                                    |                                        |
| Comparative tracking index (IEC 60112/DIN EN 60112 (VDE 0303-11))                                                                                                                                        | CTI                                  | 175                                  |                                        |
| Material group (IEC 60664-1/DIN EN 60664-1 (VDE 0110-1))                                                                                                                                                 |                                      | III a                                |                                        |
| Storage temperature range                                                                                                                                                                                | $T_{stg}$                            | -55 to +125                          | °C                                     |
| Operating temperature range                                                                                                                                                                              | TA                                   | -40 to +110                          | °C                                     |
| Isolation resistance, minimum value $V_{IO}$ = 500 V dc at $T_A$ = 25°C $V_{IO}$ = 500 V dc at $T_A$ MAX. at least 100°C                                                                                 | Ris MIN.<br>Ris MIN.                 | 10 <sup>12</sup><br>10 <sup>11</sup> | Ω<br>Ω                                 |
| Safety maximum ratings (maximum permissible in case of fault, see thermal derating curve) Package temperature Current (input current I <sub>F</sub> , Psi = 0) Power (output or total power dissipation) | Tsi<br>Isi<br>Psi                    | 175<br>400<br>700                    | °C<br>mA<br>mW                         |
| Isolation resistance V <sub>IO</sub> = 500 V dc at T <sub>A</sub> = Tsi                                                                                                                                  | Ris MIN.                             | 10 <sup>9</sup>                      | Ω                                      |

# Dependence of maximum safety ratings with package temperature




Method A Destructive Test, Type and Sample test



 $t_1,t_2$ =1 to 10 sec  $t_3,t_4$ =1 sec  $t_{m (PARTIAL DISCHARGE)}$ =10 sec  $t_{test}$ =12 sec  $t_{ini}$ =60 sec

# Method b Non-destructive Test, 100% Production Test



 $t_{3}, t_{4} = 0.1 \text{ sec} \\ t_{m \; (PARTIAL \; DISCHARGE)} = 1.0 \text{ sec} \\ t_{test} = 1.2 \text{ sec}$ 

#### Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
  - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
- 2. Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

All trademarks and registered trademarks are the property of their respective owners.

#### Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment: industrial robots: etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)



#### SALES OFFICES

# Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited reet, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3

9251 Yonge Street, St Tel: +1-905-237-2004

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Hong Kong Limited

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia Tel: +60-3-5022-1288, Fax: +60-3-5022-1290

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700

Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338

© 2019 Renesas Electronics Corporation. All rights reserved.