Low Noise, High IP3

Monolithic Amplifier

PSA-5453+

0.05 to 4 GHz 50Ω

The Big Deal

- Ultra Low Noise Figure, 0.7 dB
- High IP3/Low Current, 60mA, at 3V
- Wideband, up to 4 GHz

CASE STYLE: CA1389

Product Overview

Mini-Circuits PSA-5453+ is a E-PHEMT based Ultra-Low Noise MMIC Amplifier operating from 50 MHz to 4 GHz with a unique combination of low noise and high IP3 making this amplifier ideal for sensitive receiver applications. This design operates on a single 3V supply at only 60 mA and is internally matched to 50 ohms.

Key Features

Feature	Advantages		
Ultra Low Noise, 0.7 dB	Outstanding Noise Figure, measured in a 50 Ohm environment without any external matching		
High IP3, 35 dBm	Combining Low Noise and High IP3 makes this MMIC amplifier ideal for Low Noise Receiver Front End (RFE) because it gives the user advantages at both ends of the dynamic range: sensitivity & two-tone spur-free dynamic range		
Low Current, 60mA	At only 60mA, the PSA-5453+ is ideal for remote applications with limited available power or densely packed applications where thermal management is critical.		
Broad Band	Operating over a broadband the PSA-5453+ covers the primary wireless communications bands Cellular, PCS, LTE, WiMAX		
Internally Matched	No external matching elements required to achieve the advertised noise and output power over the full band		
SOT-363 Package	Small size, industry standard package		
Max Input Power, +15dBm	Ruggedized design operates up to input powers of +15dBm without the need of an external limiter		
High Reliability Low, small signal operating current of 30 mA nominal maintains junction temperated below 115°C at 85°C ground lead temperature			

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuits tapplicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"). Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits website at www.minicircuits.com/MCLStore/terms.jsp

Monolithic Amplifier

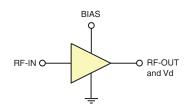
0.05-4 GHz

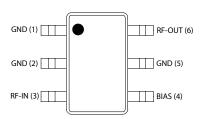
Product Features

- Single Positive Supply Voltage, +3V, Id=60mA
- Ultra Low Noise Figure, 0.7 dB typ. at 0.5GHz
- High IP3, 35 dBm typ. 1GHz
- Gain, 19.6dB typ. at 1GHz
- Output Power, up to +19.5 dBm typ.
- Micro-miniature size SOT-363 package
- · Aqueous washable

Typical Applications

- Cellular
- ISM
- GSM
- WCDMA
- LTE
- WiMAX
- WLAN
- UNII and HIPERLAN




+RoHS Compliant The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

General Description

PSA-5453+ is an advanced wideband, high dynamic range, low noise, high IP3, high output power, monolithic amplifier. Manufactured using E-PHEMT* technology enables it to work with a single positive supply voltage.

simplified schematic and pin description

Function	Pin Number	Description (See Application Circuit, Fig. 3)	
RF IN	3	RF input pin (connect to RF-IN via blocking cap C1 and Pin 4 via L2)	
RF-OUT & Vd	6	RF output pin (connected to RF-out via blocking cap C2 and supply voltage Vovia RF Choke L1)	
BIAS	4	Connected to Vs via Rbias. (Connect to ground via C4 & R1)	
GND	1,2,5	Connections to ground	

^{*} Enhancement mode pseudomorphic High Electron Mobility Transistor.

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"). Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits website at www.minicircuits.com/MCLStore/terms.jsp

Electrical Specifications⁽¹⁾ at 25°C, Zo=50Ω, (refer to characterization circuit, Fig. 1)

Parameter	Condition (GHz)	Min.	Тур.	Max.	Units	
Frequency Range		0.05		4.0	GHz	
DC Voltage (V _d)			3.0		V	
DC Current (I _d) ⁽⁶⁾		40	60	71	mA	
DC Current (I _{Rbias})			4.0		mA	
	0.05		2.0	_	dB	
	0.5		0.7	_		
Noise Figure	1.0		0.8	_		
Noise Figure	2.0		1.0	1.3		
	3.0		1.3	—		
	4.0		1.6	_		
	0.05	_	24.4	_	dB	
	0.5	_	23.3	_		
Gain	1.0	_	19.6	_		
Gain	2.0	13.2	14.7	16.2		
	3.0	_	11.9	_		
	4.0	_	10.2	-		
Innut Deturn Leas	0.05-0.5		10.0		dB	
Input Return Loss	0.5-4.0		7.0			
	0.05-0.5		10.0		dB	
Output Return Loss	0.5-4.0		20.0			
	0.05		32.1		dBm	
	0.5		33.8			
	1.0		35.2			
Output IP3	2.0		36.8			
	3.0		37.1			
	4.0		37.3			
	0.05		19.0		dBm	
	0.5		19.3			
Output Dawar @ 1 dD compression (D1-ID) (2)	1.0		19.4			
Output Power @ 1 dB compression (P1dB) (2)	2.0		19.8			
	3.0		19.9			
	4.0		20.1			
DC Current Variation vs. Temperature (3)			-0.066		mA/°C	
Thermal Resistance			165		°C/W	

Absolute Maximum Ratings(4)

7 1.5 0 0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5					
Parameter	Ratings				
Operating Temperature (5)	-40°C to 85°C				
Storage Temperature	-65°C to 150°C				
Channel Temperature	150°C				
DC Voltage (Pin 6)	5V				
Power Dissipation	390 mW				
DC Current (Pin 6)	130mA				
Bias Current (Pin 4)	10mA				
Input Power (CW) (7)	15dBm				

⁽¹⁾ Measured on Mini-Circuits Characterization test board TB-533+

See Characterization Test Circuit (Fig. 1)

(5) Defined with reference to ground pad temperature.

⁽²⁾ Specified with external current limiting of 70 mA. Capable of higher P1dB at higher currents (see Fig. 2)

(3) Current at 85°C - Current at -45°C)/130

⁽⁴⁾ Permanent damage may occur if any of these limits are exceeded. These maximum ratings are not intended for continuous normal operation.

⁽⁶⁾ Specified DC current consumption is under small signal conditions. Current will increase with input RF Power. To maintain maximum current consumption, external DC current limiting circuits are required on Vd line.

⁽⁷⁾ Maximum input power is specified based upon external Vd current limiting of 80 mA. Maximum input power will degrade without external current limiting.

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Firms"); Puchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

Characterization Test Circuit

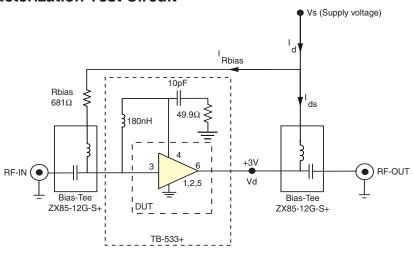
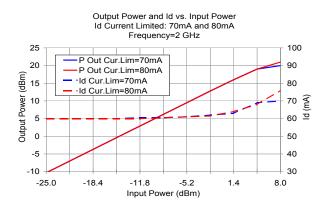



Fig 1. Block Diagram of Test Circuit used for characterization. (DUT soldered on Mini-Circuits Characterization Test Board TB-533+) Gain, Output power at 1dB compression (P1 dB), output IP3 (OIP3) and Noise Figure measured using Agilent's N5242A PNA-X microwave network analyzer.

Conditions:

- 1. Gain: Pin= -25dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, 0 dBm/tone at output.
- 3. Vs adjusted for 5V at device (Vd), compensating loss of bias tee.

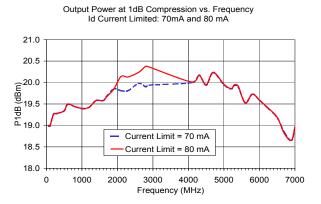


Fig 2. Output Power and Id vs. Input Power and Frequency.

Performance measured on Mini-Circuits Characterization test board TB-533+. See Characterization Test Circuit (Fig. 1) Measurements performed with current (Id) limited as noted.

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Ferms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp

Recommended Application Circuit

(refer to evaluation board for PCB Layout and component values)

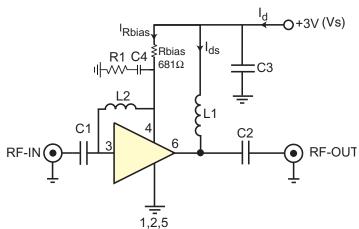


Fig 3. Recommended Application Circuit Note: Resistance of L1, 0.1-0.2Ω typically

Typical Current (Id) as a function of Rbias (Vs = 3V)

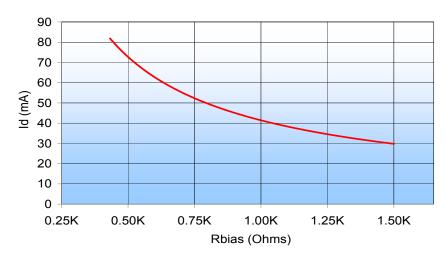
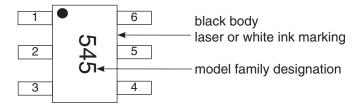


Fig 4. Id varies as a function of Rbias. The Id current range is defined based upon the specific Rbias value noted in the Application Circuit (Fig 3). Rbias may be adjusted to optimize Id for a customers' application. RF performance will vary accordingly.

Fig 2. Recommended Application Circuit


Note: Resistance of L1, 0.1- 0.2Ω typically

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"). Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits website at www.minicircuits.com/WCLStore/terms.jsp

Product Marking

Additional Detailed Technical Information

Additional information is available on our web site www.minicircuits.com. To access this information enter the model number on our web site home page.

Performance data, graphs, s-parameter data set (.zip file)

Case Style: CA1389

Plastic molded SOT-363 package, lead finish: matte tin

Tape & Reel: F101

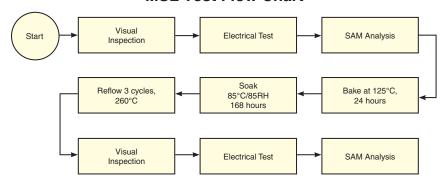
Standard quantities availabe on reel: 7" reels with 20, 50, 100, 200, 500, 1K, or 2K devices.

Suggested Layout for PCB Design: PL-311

Evaluation Board: TB-534-3+

Environmental Ratings: ENV08T2

ESD Rating


Human Body Model (HBM): Class 1A (250 to <500V) in accordance with ANSI/ESD STM 5.1 - 2001

Machine Model (MM): Class M1 (<100V) in accordance with ANSI/ESD STM5.2-1999; passes 40V

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL Test Flow Chart

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitle to the rights and benefits contained therein. For a full statement of the Standard Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.