System Reset (with battery back-up)

Monolithic IC PST620, 621

Outline

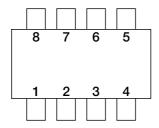
These ICs are part of the regular series of back-up ICs, and use capacitors (super capacitor, large capacity chemical capacitor) as back-up power supply. They control 1-chip microcomputer high-speed, low-speed, and stand-by modes (MNI control).

These ICs also are capable of controlling data save in EPROM and other nonvolatile memories during power outage.

Features

- 1. Low current consumption
- Capacitors (super capacitor, large capacity chemical capacitor) are used for back-up power supply, lowering system cost
- 3. Stable 1-chip microcomputer crystal oscillator rise time maintained with the built-in pulse shaver.
- 4. In addition to power outage detection for main power supply (+5V), there are built-in pins to detect AC power supply and +5V power supply primary side
- 5. Reset signal output by back-up power supply (super capacitor, large capacity chemical capacitor) detection

Package


DIP-8B (PST620DDB, PST621DDB) SOP-8C (PST620DFT, PST621DFT)

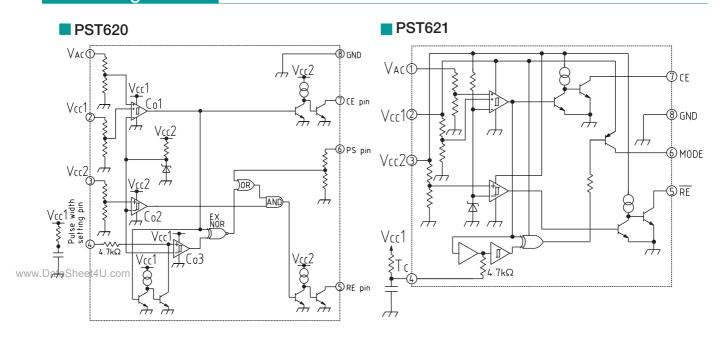
Applications

- 1. VCR
- 2. Audio equipment
- 3. Communications equipment
- 4. Rice cookers, etc.

www.DataSheet4U.com

Pin Assignment

Pin Description


■ PST620

Pin No.	Pin name	Function			
1	Vac	Has +2.0V detection voltage to detect AC power supply and			
		stable power supply primary side, for quick power outage detection			
2	Vcc1	+5V main power supply			
3	Vcc2	Back-up power supply (back-up capacitor connected)			
4	TC	Pulse width setting pin for pulse shaver			
		(capacitor and resistor connected)			
5	RE	Reset output			
6	PScont	Pulse shaver ON/OFF switching High: OFF Low: ON			
7	CE	Chip enable signal output			
8	GND	GND			

■ PST621

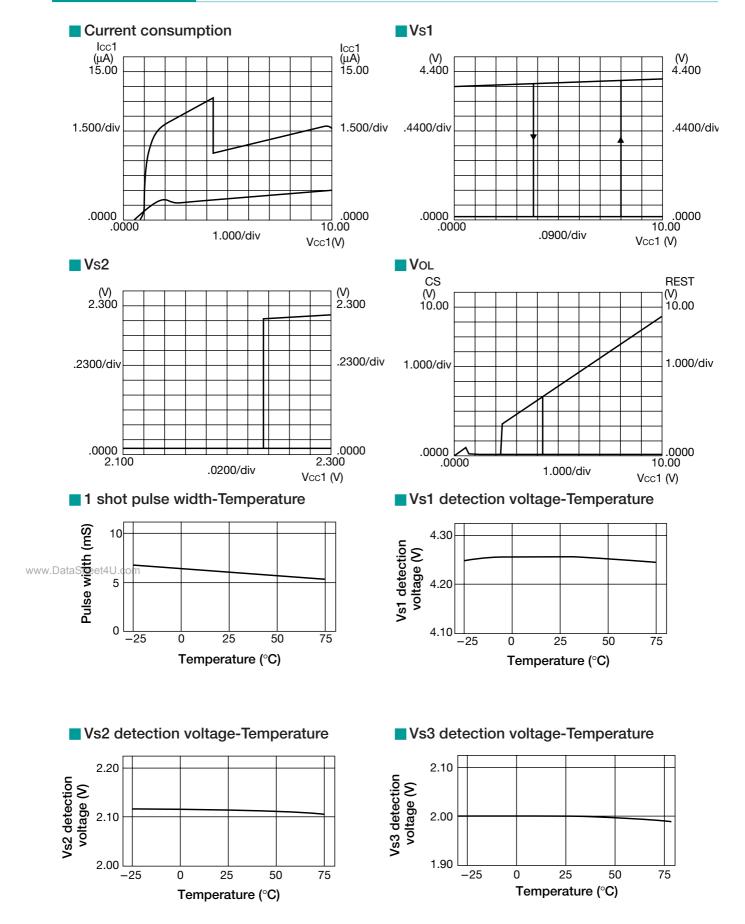
Pin No.	Pin name	Function				
1	Vac	Has +2.0V detection voltage to detect AC power supply and				
		stable power supply primary side, for quick power outage detection.				
2	Vcc1	+5V main power supply				
3	Vcc2	Back-up power supply (back-up capacitor connected)				
4	Tc	Pulse width setting pin for pulse shaver				
		(capacitor and resistor connected)				
5	RE	Reset output				
6	MODE	Switches 1-chip microcomputer mode with pulse				
		shaver output signal				
7	CE	Chip enable signal output (power outage detection signal)				
8	GND	GND				

Block Diagram

Absolute Maximum Ratings (Ta=25℃)

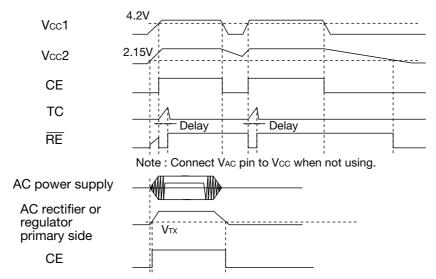
Item	Symbol	Rating
Storage temperature	Tstg	-40~+125℃
Operating temperature	Topr	−20~+70°C
Power supply voltage	Vcc max.	-0.3~+10V
TC input input voltage	Vc max.	Vcc1+0.3V
Allowable loss	Pd	450mW

Electrical Characteristics (Ta=25°C)


Item		Symbol	Measurement conditions	Min.	Тур.	Max.	Units	
Detection voltage 1		Vs1	RL1=47kΩ CE output, Vcc1=L \rightarrow H \star 1	4.00	4.20	4.40		
Detection			$R_1 = 47 k\Omega$, RE output	2.00	2.15	2.30	V	
voltage 2			$Vcc2=H \rightarrow L \star 1$	2.90	3.10	3.30		
Detection voltage 3		Vs3	RL1=47k Ω , CE output, Vac=H \rightarrow L \star 1	1.85	2.00	2.15		
Hysteresis voltage 1		⊿Vs1	R _L 1=47kΩ, CE output, Vcc1=L \rightarrow H \rightarrow L	75	150	300		
Hysteresis voltage 2		∠Vs2	R _L 2=47k Ω , CE output, Vcc2=L \rightarrow H \rightarrow L	25	50	100	mV	
Hysteresis voltage 3		∠Vs3	R _L 1=47kΩCE output, V _A C=L \rightarrow H \rightarrow L	45	90	180		
Detection voltage		Vs/⊿T	$R_L 1=47k\Omega$, CE output		0.01			
temperature co	temperature coefficient 1				±0.01			
Detection v	Detection voltage		R _L 2=47kΩ, RE output		0.00		0/ /00	
temperature coefficient 2		Vs/⊿T		±0.0	±0.02		%/°C	
-	Detection voltage		R _L 1=47k Ω , CE output		0.01			
temperature coefficient 3		Vs/⊿T			±0.01			
Low-level output voltage 1		Vol1	Vcc1=Vs1 min.–0.05V, RL1=47kΩ CE output		0.1	0.2		
-	Low-level output voltage 2		Vcc2=Vs2 min0.05V, Rt2=47kzΩ RE output		0.1	0.4	7.7	
		Vol3	Vcc1=0V, Vcc2=Vs2 typ./0.85		0.2	0.4	V	
Low-level outpu	it voltage 3		$R_L 1=47k\Omega$, CE output		0.2	0.4		
Operation limit voltage 1		Vop1	Rl1=47k Ω , Vol1 ≤ 0.4 V CE output		0.8	1.0	17	
Operation limit	peration limit voltage 2		$R_L 2=47k\Omega$, $V_{OL} 2 \le 0.4V$ RE output		0.8	1.0	V	
Consumption		Icc1	Vcc1=Vcc2=Vs1/0.85		5.0	8.5	- 11 Δ	
	current i	Icc2	Rl1=Rl2=∞		2.0	3.5		
Compounding our	aumant 0	Icc1	Vcc1=Vcc2=Vs1 min0.05V		8.0	14.5		
Consumption current 2		Icc2	RL1=RL2=∞		2.0	3.5	μA	
Consumption current 3		Icc1	Vcc1=Vcc2=Vs2 min0.05V		8.0	14.5	1	
Consumption	Current 3	Icc2	Rl1=Rl2=∞		4.0	7.0		
Concumption	ourropt 1	Icc2	Vcc1=0V Rl1=Rl2=∞,		2.0	3.5		
Consumption	Consumption current 4		Vcc2=Vsit typ./0.85		2.0	0.0	11 Λ	
Congumption	taSh Consumption current 5		Vcc1=0V Rl1=Rl2=∞		4.0	7.0	μA	
atasheoristinption			Vcc2=Vs2 min0.05V		7.0	1.0		
Output current	Output current while on 1		Vcc1=Vs1 min0.05V, Rt1=0 CE output	2			mA	
Output current while on 2		Iol2	Vcc2=Vs2 min0.05V, Rt2=0 RE output	2			ши	
Transport dela	ay time 1	Трін1	Vcc1=Vs1 typ.±0.4V, Rt2=47kΩ CE output		10			
Transport del	Transport delay time 2 Transport delay time 3		$Vcc2=Vs2$ typ. $\pm0.4V$, $RL2=47k\Omega$ RE output		50		μS	
Transport del			Vcc1=Vs1 typ.±0.4V, Rt2=47kΩ CE output		40		μΟ	
Transport dela		Трін4	$Vcc2=Vs2$ typ. $\pm0.4V$, $Rl2=47k\Omega$ RE output		80			
AC pin input re	AC pin input resistance RACIN			0.5	1.0		ΜΩ	
One-shot pul	One-shot pulse width T_{pd}		Cd=0.47µF Rd=100k, Vcc1=Vs1 typ.±0.4V	6	14	21	mS	
One-shot output voltage V _T		Vtol	Vcc1=Vs ₁ typ./0.85, RL1=47kΩ RE output, \star 1		0.1	0.4	V	
TC pin threshold voltage		Vcth	$R_L 1=47k\Omega$, $V_C=L \rightarrow H$		2.0		V	
TC input input current		Icin	Vcc1=Vs1 typ./0.85, VC=5.0V			1	μA	
PS pin input H level voltage		VPSH		2.0			V	
PS pin input L level voltage		V _{PSL}				0.6	V	
PS pin input H le	evel current	IPSH	V _{PSH} =2.0V			10	μA	

Note 1: *1 Connect TC pin to GND.

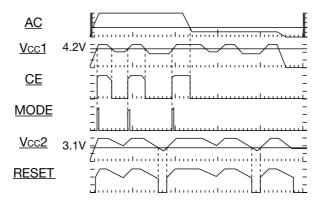
Note 2 : Except where noted otherwise, VAC=5V, Vc=OPEN.


www.Da

Characteristics (PST620, 621 series. However, VS2 in PST620 series only.)

Timing Chart

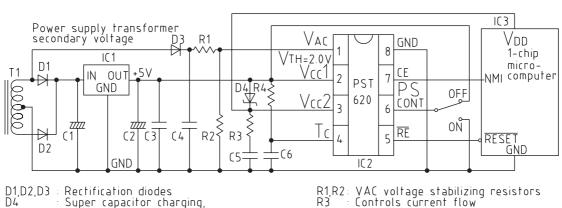
PST620



Note 1: VTH is set at 2.0V and hysteresis voltage at 90mV.

- 1. Use a resistor to divide the detected voltage so that it equals VTH when monitoring regulator primary side power supply.
- 2. When monitoring AC voltage rectified as in the application circuit, set so that it equals V_{TH} by lowering the constant and dividing with a resistor. Refer to application circuit diagram.

Note 2: VAC input and VS1 are OR, so either signal makes CE low when power outage is detected.



www.DataSheet4U.com

Application Circuits

V_{AC} input: Power supply transformer secondary voltage detection

Super capacitor charging, reverse current prevention shot key barrier diode

C1,C2 C3 C4 C5 Power supply capacitors Bypass capacitor Rectification capacitor Super capacitor

Ĉ6 1-shot pulse width setting capacitor

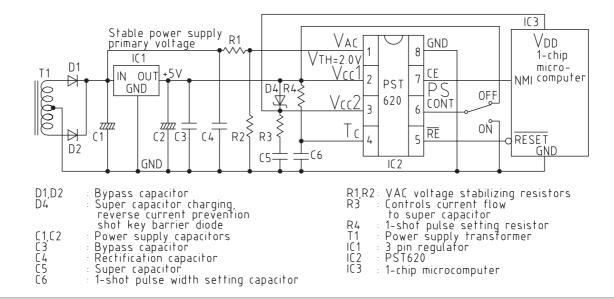
to super capacitor 1-shot pulse setting resistor Power supply transformer 3 pin regulator R4

T1 IC1 PST620

iC 2 IC 3 : 1-chip microcomputer

1. Connection

- 1. +5V power supply to Vcc1 (Pin 2).
- 2. Connect back-up capacitor to Vcc2 (Pin 3).
- 3. Connect a diode between Vcc1 (Pin 2) and Vcc2 (Pin 3).
- 4. Connect pulse width setting resistor and capacitor to PC (Pin 4) when using pulse shaver.
- 5. RE output (Pin 5) is reset signal output and is output when Vcc is less than 2.15V.
- 6. When using pulse shaver, PSCONT (Pin 6) is high level.
- 7. CE output (Pin 7) is for chip enable signal and goes low when power outage is detected.


2. Theory of Operation

- 1. When +5V power is supplied normally, it is charged to the back-up capacitor via a diode.
- 2. The back-up capacitor starts back-up if +5V power supply voltage drops for some reason and Vcc1 goes below 4.2V, and at the same time the $\overline{\text{CE}}$ signal switches the 1-chip microcomputer to standby mode, so that it operates on low current consumption.
- 3. When +5V power supply recovers and goes over 4.2V, an RE output signal of a certain width is output, and this signal resets the 1-chip microcomputer. At the same time normal mode starts and the time until crystal oscillator output stabilizes is reset.
- 4. If +5V power supply does not recover, and back-up capacitor voltage goes below 2.15V, reset is carried out by the RE output signal to prevent the microcomputer from running wild.
- 3. Setting AC power supply power outage detection
 - Theory of operation for detecting AC voltage
 AC voltage is rectified and smoothed by the capacitor. This voltage is divided and set at VAC input
 detection voltage, +2V. At this time the smoothing capacitor and dividing resistor time constants
 are used to set AC voltage missing waveform.
 - VAC voltage setting (R1, R2)
 Set resistor ratio at the midpoint between R1 and R2 so that the voltage to be detected is +2V.
 Impressed AC voltage
 - There is are no limitations on AC voltage as it is divided by R1 and R2 and applied to PST620.
 - 3. Setting time constants to detect AC voltage (C4, R1+R2)
 For impressed AC voltage of 5Vrms, and C4 and R1+R2 time constant of 60mS, set so that AC voltage detects power outage when approximately 2 waveforms are missed. The time constants can be set to detect missing AC waveforms.

www.DataSheet4U.com

Application Circuits

VAC input: Stable power supply primary voltage detection

