# System Reset IC with delay

# Monolithic IC PST89XB Series

## **Outline**

This IC is a reset IC for turning on/off power supply and power flicker in CPU or logic systems.

This IC can change delay time by an external capacitor.

Charging method of the capacitor, is current source type.

Current source type can reduce temperature fluctuations in the delay time. td typ. ±6% (Ta=-40°C to 105°C), It is ideal for a wide set the operating temperature range.

### **Features**

1. Maximum supply voltage

2. Detecting voltage accuracy

3. Low supply current

4. Operating supply voltage

5. Operating temperature

6. Reset voltage rank

7. Reset temperature coefficient

8. Current source

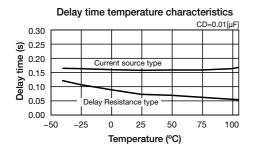
9. Output type

7V

±1.0%

0.35µA typ.

0.95 to 6.5V


-40 to +105°C

1.6 to 5.2V (0.1Vstep)

±100ppm/°C typ.

100nA typ.

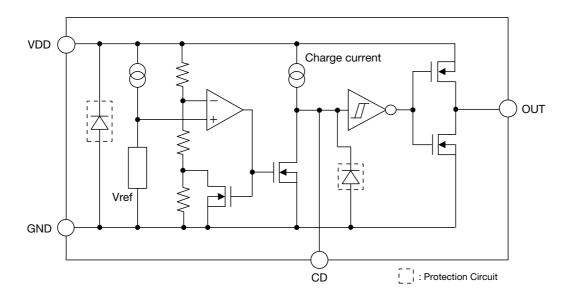
Open drain, CMOS



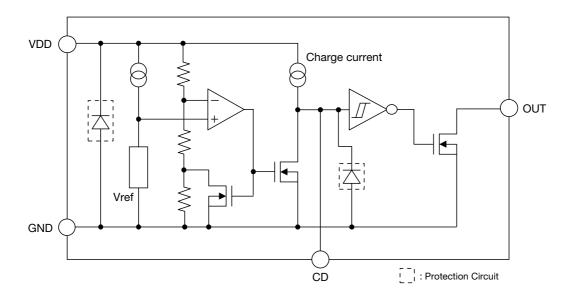
## **Packages**

SC-82ABB SOT-25A

## **Applications**

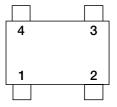

- 1. The reset of CPU and MPU and logic circuit
- 2. Battery voltage check
- 3. Back-up circuit
- 4. Level detector

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.


The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications

## Block Diagram

### PST893Bxxx




### PST894Bxxx



Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

## Pin Assignment



| 1 | GND |
|---|-----|
| 2 | VDD |
| 3 | CD  |
| 4 | OUT |

SC-82ABB (TOP VIEW)

|   | 4               |
|---|-----------------|
|   |                 |
| 0 | 3               |
|   | _ <b>&gt;</b> _ |
|   |                 |
|   | 2               |

| S   | OT-25 | iΑ |
|-----|-------|----|
| (TC | P VIE | W) |

| 1 | OUT |
|---|-----|
| 2 | VDD |
| 3 | GND |
| 4 | NC  |
| 5 | CD  |

## Pin Description

### SC-82ABB

| Pin No. | Pin name | Functions                        |
|---------|----------|----------------------------------|
| 1       | GND      | GND Pin                          |
| 2       | VDD      | VDD Pin / Voltage Detect Pin     |
| 3       | CD       | Capacitor Connect Pin with Delay |
| 4       | OUT      | Reset Signal Output Pin          |

#### SOT-25A

| Pin No. | Pin name | Functions                        |
|---------|----------|----------------------------------|
| 1       | OUT      | Reset Signal Output Pin          |
| 2       | VDD      | VDD Pin / Voltage Detect Pin     |
| 3       | GND      | GND Pin                          |
| 4       | NC       | No Connection                    |
| 5       | CD       | Capacitor Connect Pin with Delay |

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

## Absolute Maximum Ratings (Except where noted otherwise Ta=25°C)

| Item                  | Symbol   | Ra            | atings                     | Units |  |
|-----------------------|----------|---------------|----------------------------|-------|--|
| Supply Voltage        | VDD max. | -0.           | 3~+7.0                     | V     |  |
| Output Voltage        | OUT      | PST893 Series | GND-0.3 ~<br>VDD max. +0.3 | V     |  |
| Output Voltago        | 001      | PST894 Series | GND-0.3~+7.0               | •     |  |
| Input Current (VDD)   | Idd      | (             | mA                         |       |  |
| Output Current (OUT)  | Iout     |               | 0~20                       |       |  |
| CD Pin Input Voltage  | Vcd      | GND-0.3~      | GND-0.3~ VDD max. +0.3     |       |  |
| Power dissipation     | Pd       | 150           |                            | mW    |  |
| Operating temperature | Topr     | -40           | °C                         |       |  |
| Storage temperature   | Tstg     | -69           | 5~+125                     | °C    |  |

## **Recommended Operating Conditions**

| Item                          | Symbol      | Ratings  | Units |
|-------------------------------|-------------|----------|-------|
| Operating Ambient temperature | Topr        | -40~+105 | °C    |
| Operating voltage             | $ m V_{DD}$ | 0.95~6.5 | V     |

## **Model Name**

|    | а                       |       | b              |         | С                                                     | _ | d        |                          | е                                 |  |
|----|-------------------------|-------|----------------|---------|-------------------------------------------------------|---|----------|--------------------------|-----------------------------------|--|
| Ou | tput Type               | CD pi | n charge Type  | Detecti | ng Voltage Rank                                       | P | ackage   | ge Packing Specification |                                   |  |
| 3  | CMOS<br>Output          | В     | Current source | 160     | Setting of                                            | U | SC-82ABB | M                        | R HOUSING<br>Halogen-free Product |  |
| 4  | Open<br>drain<br>Output |       |                | ì       | the detection<br>voltage<br>from 1.6V<br>to 5.2V,0.1V | N | SOT-25A  | Н                        | L HOUSING<br>Halogen-free Product |  |
|    |                         |       |                | 520     | step.                                                 |   |          |                          |                                   |  |

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

## **Electrical Characteristics**

(Except where noted otherwise Ta=25°C)

| Item            | Symbol          | Measurement conditions   | Rank | Min.   | Тур.   | Max.   | Units       | Circuit |
|-----------------|-----------------|--------------------------|------|--------|--------|--------|-------------|---------|
|                 |                 |                          | 160  | 1.5840 | 1.6000 | 1.6160 |             |         |
|                 |                 |                          | 160  | 1.5600 |        | 1.6400 | 1           |         |
|                 |                 |                          | 170  | 1.6830 | 1.7000 | 1.7170 |             |         |
|                 |                 |                          | 170  | 1.6575 |        | 1.7425 |             |         |
|                 |                 |                          | 100  | 1.7820 | 1.8000 | 1.8180 |             |         |
|                 |                 |                          | 180  | 1.7550 |        | 1.8450 | 1           |         |
|                 |                 |                          | 100  | 1.8810 | 1.9000 | 1.9190 | 1           |         |
|                 |                 |                          | 190  | 1.8525 |        | 1.9475 | 1           |         |
|                 |                 |                          | 000  | 1.9800 | 2.0000 | 2.0200 | 1           |         |
|                 |                 |                          | 200  | 1.9500 |        | 2.0500 | 1           |         |
|                 |                 |                          | 010  | 2.0790 | 2.1000 | 2.1210 |             |         |
|                 |                 |                          | 210  | 2.0475 |        | 2.1525 |             |         |
|                 |                 |                          | 000  | 2.1780 | 2.2000 | 2.2220 |             |         |
|                 |                 |                          | 220  | 2.1450 |        | 2.2550 |             |         |
|                 |                 |                          | 000  | 2.2770 | 2.3000 | 2.3230 |             |         |
|                 |                 |                          | 230  | 2.2425 |        | 2.3575 |             |         |
|                 |                 |                          | 0.10 | 2.3760 | 2.4000 | 2.4240 |             |         |
|                 |                 |                          | 240  | 2.3400 |        | 2.4600 |             |         |
|                 |                 |                          | 050  | 2.4750 | 2.5000 | 2.5250 |             |         |
|                 |                 |                          | 250  | 2.4375 |        | 2.5625 |             | 2       |
|                 |                 | Ta=+25°C<br>Ta=-40~+85°C | 0.00 | 2.5740 | 2.6000 | 2.6260 |             |         |
|                 |                 |                          | 260  | 2.5350 |        | 2.6650 |             |         |
|                 |                 |                          | 070  | 2.6730 | 2.7000 | 2.7270 | 1           |         |
|                 |                 |                          | 270  | 2.6325 |        | 2.7675 |             |         |
| Reset threshold | 7.7             |                          | 280  | 2.7720 | 2.8000 | 2.8280 | V           |         |
| (Note1)         | V <sub>TH</sub> |                          |      | 2.7300 |        | 2.8700 |             |         |
| , ,             |                 |                          | 200  | 2.8710 | 2.9000 | 2.9290 |             |         |
|                 |                 |                          | 290  | 2.8275 |        | 2.9725 |             |         |
|                 |                 |                          | 200  | 2.9700 | 3.0000 | 3.0300 |             |         |
|                 |                 |                          | 300  | 2.9250 |        | 3.0750 |             |         |
|                 |                 |                          | 210  | 3.0690 | 3.1000 | 3.1310 |             |         |
|                 |                 |                          | 310  | 3.0225 |        | 3.1775 |             |         |
|                 |                 |                          | 320  | 3.1680 | 3.2000 | 3.2320 |             |         |
|                 |                 |                          | 320  | 3.1200 |        | 3.2800 | -<br>-<br>- |         |
|                 |                 |                          | 330  | 3.2670 | 3.3000 | 3.3330 |             |         |
|                 |                 |                          | 330  | 3.2175 |        | 3.3825 |             |         |
|                 |                 |                          | 340  | 3.3660 | 3.4000 | 3.4340 |             |         |
|                 |                 |                          | 340  | 3.3150 |        | 3.4850 |             |         |
|                 |                 |                          | 350  | 3.4650 | 3.5000 | 3.5350 |             |         |
|                 |                 |                          | 550  | 3.4125 |        | 3.5875 |             |         |
|                 |                 |                          | 360  | 3.5640 | 3.6000 | 3.6360 | ]           |         |
|                 |                 |                          | 300  | 3.5100 |        | 3.6900 |             |         |
|                 |                 |                          | 370  | 3.6630 | 3.7000 | 3.7370 |             |         |
|                 |                 |                          | 370  | 3.6075 |        | 3.7925 |             |         |
|                 |                 |                          | 370  | 3.7620 | 3.8000 | 3.8380 |             |         |
|                 |                 |                          | 370  | 3.7050 |        | 3.8950 |             |         |
|                 |                 |                          | 390  | 3.8610 | 3.9000 | 3.9390 |             |         |
|                 |                 |                          | 390  | 3.8025 |        | 3.9975 |             |         |
|                 |                 |                          |      | 3.9600 | 4.0000 | 4.0400 | ]           |         |
|                 |                 |                          | 400  | 3.9000 |        | 4.1000 |             |         |

Note1 : This device is tested at Ta=25℃, over temperature limits guaranteed by desigh only.

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

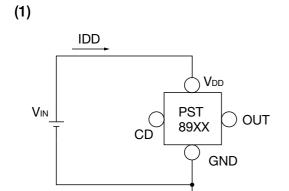
| Item            | Symbol          | Measurement conditions   | Rank | Min.   | Тур.   | Max.   | Units      | Circuit |
|-----------------|-----------------|--------------------------|------|--------|--------|--------|------------|---------|
|                 |                 |                          | 410  | 4.0590 | 4.1000 | 4.1410 |            |         |
|                 |                 |                          | 410  | 3.9975 |        | 4.2025 | ]          |         |
|                 |                 |                          | 420  | 4.1580 | 4.2000 | 4.2420 |            |         |
|                 |                 |                          | 420  | 4.0950 |        | 4.3050 |            |         |
|                 |                 |                          | 430  | 4.2570 | 4.3000 | 4.3430 |            |         |
|                 |                 |                          | 430  | 4.1925 |        | 4.4075 |            |         |
|                 |                 |                          | 440  | 4.3560 | 4.4000 | 4.4440 |            |         |
|                 |                 |                          | 440  | 4.2900 |        | 4.5100 |            | 2       |
|                 |                 |                          | 450  | 4.4550 | 4.5000 | 4.5450 |            |         |
|                 |                 | Ta=+25°C<br>Ta=-40~+85°C | 430  | 4.3875 |        | 4.6125 | V          |         |
|                 |                 |                          | 460  | 4.5540 | 4.6000 | 4.6460 |            |         |
| Reset threshold | V <sub>TH</sub> |                          |      | 4.4850 |        | 4.7150 |            |         |
| (Note1)         | VIH             |                          | 470  | 4.6530 | 4.7000 | 4.7470 | _ <b>'</b> | 2       |
|                 |                 |                          | 470  | 4.5825 |        | 4.8175 |            |         |
|                 |                 |                          | 480  | 4.7520 | 4.8000 | 4.8480 |            |         |
|                 |                 |                          |      | 4.6800 |        | 4.9200 |            |         |
|                 |                 |                          | 490  | 4.8510 | 4.9000 | 4.9490 |            |         |
|                 |                 |                          | 430  | 4.7775 |        | 5.0225 |            |         |
|                 |                 |                          | 500  | 4.9500 | 5.0000 | 5.0500 | .          |         |
|                 |                 |                          |      | 4.8750 |        | 5.1250 |            |         |
|                 |                 |                          | 510  | 5.0490 | 5.1000 | 5.1510 |            |         |
|                 |                 |                          | J10  | 4.9725 |        | 5.2275 |            |         |
|                 |                 |                          | 520  | 5.1480 | 5.2000 | 5.2520 |            |         |
|                 |                 |                          | 520  | 5.0700 |        | 5.3300 |            |         |

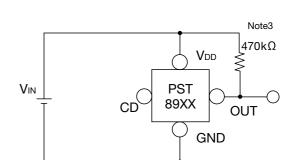
Note1 : This device is tested at Ta=25°C, over temperature limits guaranteed by desigh only.

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

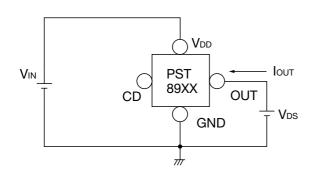
| Item            | Symbol | Measurement conditions                           | Rank | Min.  | Тур.  | Max.  | Units | Circuit |
|-----------------|--------|--------------------------------------------------|------|-------|-------|-------|-------|---------|
|                 |        |                                                  | 160  | 0.048 | 0.080 | 0.128 |       |         |
|                 |        |                                                  | 170  | 0.051 | 0.085 | 0.136 |       |         |
|                 |        |                                                  | 180  | 0.054 | 0.090 | 0.144 |       |         |
|                 |        |                                                  | 190  | 0.057 | 0.095 | 0.152 |       |         |
|                 |        |                                                  | 200  | 0.060 | 0.100 | 0.160 |       |         |
|                 |        |                                                  | 210  | 0.063 | 0.105 | 0.168 |       |         |
|                 |        |                                                  | 220  | 0.066 | 0.110 | 0.176 |       |         |
|                 |        |                                                  | 230  | 0.069 | 0.115 | 0.184 |       |         |
|                 |        |                                                  | 240  | 0.072 | 0.120 | 0.192 |       |         |
|                 |        |                                                  | 250  | 0.075 | 0.125 | 0.200 |       |         |
|                 |        |                                                  | 260  | 0.078 | 0.130 | 0.208 |       | 2       |
|                 |        |                                                  | 270  | 0.081 | 0.135 | 0.216 |       |         |
|                 |        |                                                  | 280  | 0.084 | 0.140 | 0.224 | .     |         |
|                 |        |                                                  | 290  | 0.087 | 0.145 | 0.232 | .     |         |
|                 |        |                                                  | 300  | 0.090 | 0.150 | 0.240 | .     |         |
|                 |        |                                                  | 310  | 0.093 | 0.155 | 0.248 | .     |         |
|                 |        |                                                  | 320  | 0.096 | 0.160 | 0.256 | .     |         |
| Reset threshold |        |                                                  | 330  | 0.099 | 0.165 | 0.264 | v     |         |
| hysteresis      | ∠VTH   | $V_{DD}=0V \rightarrow V_{TH}+1V \rightarrow 0V$ | 340  | 0.102 | 0.170 | 0.272 |       |         |
| Hydrorddia      |        |                                                  | 350  | 0.105 | 0.175 | 0.280 |       |         |
|                 |        |                                                  | 360  | 0.108 | 0.180 | 0.288 | .     |         |
|                 |        |                                                  | 370  | 0.111 | 0.185 | 0.296 | .     |         |
|                 |        |                                                  | 380  | 0.114 | 0.190 | 0.304 | .     |         |
|                 |        |                                                  | 390  | 0.117 | 0.195 | 0.312 | .     |         |
|                 |        |                                                  | 400  | 0.120 | 0.200 | 0.320 | .     |         |
|                 |        |                                                  | 410  | 0.123 | 0.205 | 0.328 | .     |         |
|                 |        |                                                  | 420  | 0.126 | 0.210 | 0.336 | .     |         |
|                 |        |                                                  | 430  | 0.129 | 0.215 | 0.344 | .     |         |
|                 |        |                                                  | 440  | 0.132 | 0.220 | 0.352 | .     |         |
|                 |        |                                                  | 450  | 0.135 | 0.225 | 0.360 | .     |         |
|                 |        |                                                  | 460  | 0.138 | 0.230 | 0.368 | .     |         |
|                 |        |                                                  | 470  | 0.141 | 0.235 | 0.376 | .     |         |
|                 |        |                                                  | 480  | 0.144 | 0.240 | 0.384 | .     |         |
|                 |        |                                                  | 490  | 0.147 | 0.245 | 0.392 | .     |         |
|                 |        |                                                  | 500  | 0.150 | 0.250 | 0.400 | .     |         |
|                 |        |                                                  | 510  | 0.153 | 0.255 | 0.408 | .     |         |
|                 |        |                                                  | 520  | 0.156 | 0.260 | 0.416 |       |         |

Note1 : This device is tested at Ta=25℃, over temperature limits guaranteed by desigh only.


Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

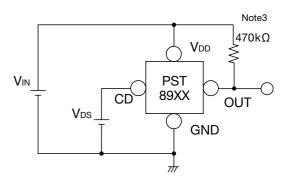

| Item                                      | Symbol               | Measurement conditions                                                                      | Rank         | Min.    | Тур.    | Max.    | Units  | Circuit |
|-------------------------------------------|----------------------|---------------------------------------------------------------------------------------------|--------------|---------|---------|---------|--------|---------|
| Supply Current                            | Idd                  | $V_{\rm DD} \!\!=\!\! V_{\rm TH} \!\!+\! 1V$                                                | 160<br>~ 520 |         | 0.35    | 1.0     | μА     | 1       |
| Reset threshold temp. coefficient (Note1) | ∠V <sub>TH</sub> /°C | Ta=-40~+85°C                                                                                | 160<br>~ 520 |         | ±100    |         | ppm/°C | 2       |
| L transfer delay time<br>(Note2)          | <b>t</b> PHL         | V <sub>DD</sub> =V <sub>TH</sub> +0.4V<br>→V <sub>TH</sub> -0.4V                            | 160<br>~ 520 | 2       | 15      | 100     | μs     | 6       |
| H transfer delay time (Note2)             | tрlн                 | $V_{\rm DD} = V_{\rm TH} + 0.4 V$ $\rightarrow V_{\rm TH} - 0.4 V$                          | 160<br>~ 520 | 2       | 15      | 100     | μs     | 6       |
| "L" Output Current                        | I <sub>OL1</sub>     | $V_{\rm DD}$ =0.95V, $V_{\rm DS}$ =0.05V                                                    | 160<br>~ 520 | 0.01    | 0.10    |         | - mA   | 3       |
|                                           | Iol2                 | Vdd=1.2V, Vds=0.5V                                                                          | 160<br>~ 520 | 0.23    | 2.00    |         |        |         |
|                                           | Іогз                 | $V_{\rm DD}$ =2.4V, $V_{\rm DS}$ =0.5V $V_{\rm TH}$ $\geq$ 2.5V                             | 250<br>~ 520 | 1.60    | 8.00    |         |        |         |
|                                           | Iol4                 | V <sub>DD</sub> =3.6V, V <sub>DS</sub> =0.5V<br>V <sub>TH</sub> ≥3.7V                       | 370<br>~ 520 | 3.20    | 12.0    |         |        |         |
| "H" Output Current                        | Іон1                 | V <sub>DD</sub> =4.8V, V <sub>DS</sub> =0.5V<br>V <sub>TH</sub> ≤4.7V<br>PST893 series only | 160<br>~ 470 | 0.36    | 0.62    |         | - mA   | 3       |
|                                           | Іон2                 | V <sub>DD</sub> =6.1V, V <sub>DS</sub> =0.5V<br>PST893 series only                          | 160<br>~ 520 | 0.46    | 0.75    |         |        |         |
| Output Leakage<br>Current                 | Ileak                | V <sub>DD</sub> =6.5V, OUT=6.5V<br>PST894 series only                                       | 160<br>~ 520 |         |         | 0.1     | μА     | 3       |
| CD Pin charge<br>Current                  | ID                   | $V_{\rm DD} = V_{\rm TH} + 1V$ $V_{\rm DS} = 0V$                                            | 160<br>~ 520 | 90      | 100     | 110     | nA     | 5       |
| CD Pin Threshold<br>Voltage               | V <sub>TCD</sub>     | V <sub>DD</sub> =V <sub>TH</sub> ×1.1V                                                      | 160<br>~ 520 | VDD×0.3 | VDD×0.5 | VDD×0.7 | V      | 4       |
| CD Pin Output<br>Current1                 | Icd1                 | V <sub>DD</sub> =0.95V<br>V <sub>DS</sub> =0.1V                                             | 160<br>~ 520 | 2.0     | 30.0    |         | μА     | 5       |
| CD Pin Output<br>Current2                 | Icd2                 | V <sub>DD</sub> =1.5V<br>V <sub>DS</sub> =0.5V                                              | 160<br>~ 520 | 200     | 800     |         | μА     | 5       |

Note1 : This device is tested at Ta=25°C, over temperature limits guaranteed by desigh only.

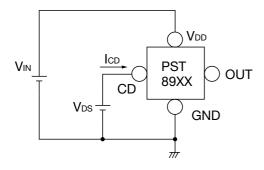

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

## **Test Circuit**

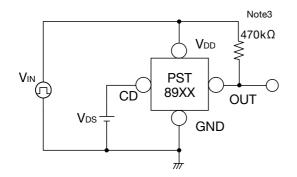


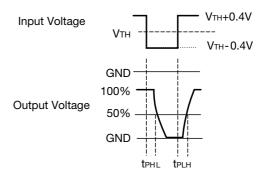





(4)

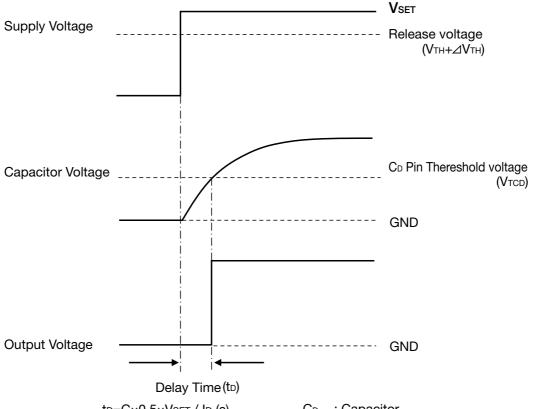

(2)




(5)



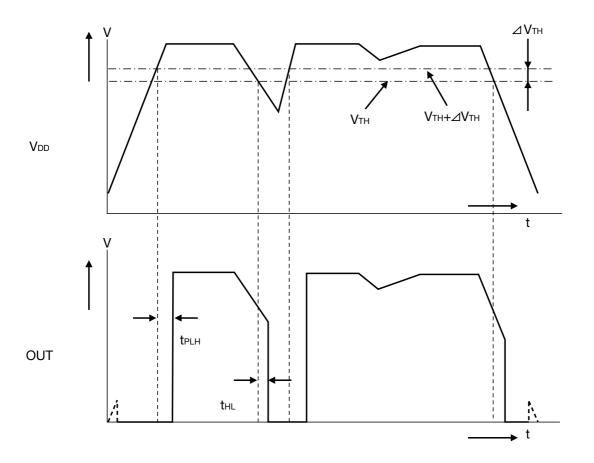
(6)






Note3: PST894series only

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.


## **Timing Chart**



CD: Capacitor tD=C×0.5×VSET / ID (s)

VSET: Supply voltage

: CD Pin Charge current 100nA. typ



Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

### Operation Explanation

#### · Detection Voltage

Refers to the VDD voltage when the voltage of the OUT terminal voltage switches from H level to L level when reducing the VDD voltage.

#### · Release Voltage

Refers to the VDD voltage when the voltage of the OUT terminal voltage switches from L level to H level when raising the VDD voltage.

#### · Hysteresis Voltage

Hysteresis voltage = release voltage - detection voltage, and refers to the difference in voltage.

#### · L Propagation Delay Time

Refers to the time from when the VDD voltage decreases below the detection voltage to when the OUT terminal voltage switches from H level to L level, and is the response time within the reset IC when a reduction in the supply voltage is detected.

#### · H Propagation Delay Time

Refers to the time from when the VDD voltage decreases below the release voltage to when the OUT terminal voltage switches from L level to H level, and is the response time within the reset IC when the power supply starts up.

#### · Release Delay Time

Refers to the delay time for switching the OUT terminal during the condenser charging time due to the CD terminal condenser and charging current within the reset IC.

Configured with the time or delay until voltage stabilizes when the set power supply starts up.

#### · "L" Output Current

Drain current of the OUT terminal NMOS. The synchronization current that turns the NMOS ON and sets the OUT terminal voltage to L level when VDD < detection voltage. Select the appropriate pull-up resistance for the synchronization capability for open drain output parts. If the pull-up resistance value is too low, VDS is generated so that L level voltage  $\doteqdot$  0.3V, and may not reach  $\doteqdot$  0V.

#### · "H" Output Current

The drain current of the OUT terminal PMOS for CMOS output parts. The synchronization current that turns the PMOS ON and sets the OUT terminal voltage to H level when VDD > release voltage.

#### Delay Terminal Charging Current

Refers to the current for charging the condenser connected to the CD terminal to generate the release delay time.

#### · Delay Terminal Threshold Value Voltage

Refers to the CD terminal voltage refers to the threshold voltage that is input into subsequent inverters to reverse the inverter output.

#### · Delay Terminal Output Current

The drain current of the CD terminal NMOS. Refers to the current for charging the condenser connected to the CD terminal.

As the discharge current capability is small at around several 100 µA, a delay is generated for the OUT terminal response time corresponding to the discharge time as the CD terminal capacity value increases. Check operation when the delay is 1µF or more in particular.

#### · Delay Terminal

The delay terminal is the current source and has a high impedance. If board leakage, condensation or other leakages occur at the CD terminal, logical inversion occurs at subsequent inverters and logical inversion also occurs at the OUT terminal.

The delay terminal has a high impedance and logical inversion may occur due to factors such as external noise, so using the terminal while OPEN is not recommended.

Use the delay terminal by connecting it with 100 pF or more.

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.

The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications

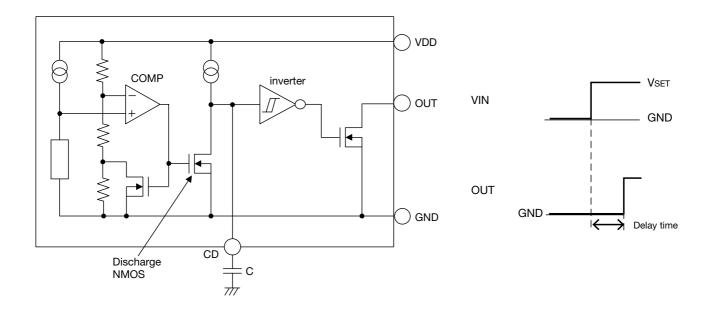
### For the setting of the release delay time

#### · Operation of the power supply start-up

- 1 It raised to VDD =  $0V \rightarrow VSET$ .
- 2 Comparator to detect release voltage (detection voltage + hysteresis voltage) or more.
- 3 Discharge NMOS of the CD pin : ON → OFF. It is charged the capacitor of the CD pin from delay pincharge current.
- 4 Capacitor of the CD pin is charged, the inverter detects the above "0.5×VDD". The threshold voltage of the inverter is the following. CD Pin Threshold Voltage VDD×0.3min. -VDD×0.5typ. -VDD×0.7max
- 5 OUT:  $L \rightarrow H$ , it is released from the reset.

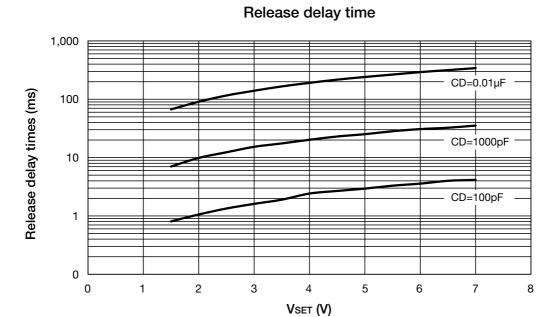
#### • For the setting of the release delay time PST89xB series

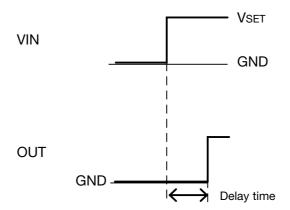
A constant current source, relationship charging time of the capacitor  $Q=I\times t=C\times V$ 


Release delay time, it is time to be "CD Pin Voltage" = "the threshold voltage of the inverter" VTCD typ =  $0.5 \times VSET$  ".

It will be prompted by the following equation.

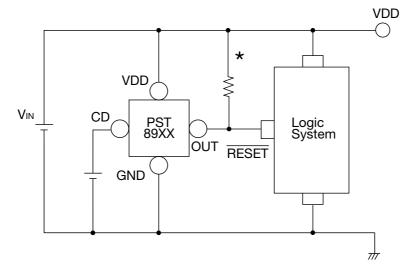
 $t_{D typ} = C \times V_{TCD typ} / I_{D} = C \times 0.5 \times V_{SET} / I_{D}$  (s)


CD: Capacitor VSET: Supply voltage


 $\ensuremath{\text{I}}_{\ensuremath{\text{D}}}$  : CD pin charge current 100nA typ.



Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification. The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.


### • PST89xB series release delay time TYPICAL PERFORMANCE CHARACTERISTICS





Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

## **Application Circuits**

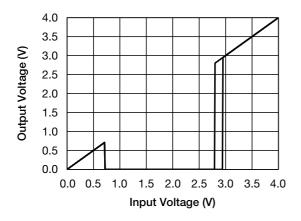


\* PST894 Series only

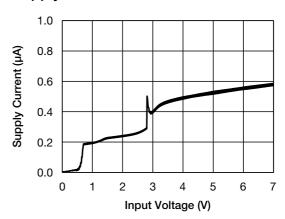


- · We shall not be liable for any trouble or damage caused by using this circuit.
- In the event a problem which may affect industrial property or any other rights of us or a third party is encountered during the use of information described in these circuit, Mitsumi Electric Co., Ltd. shall not be liable for any such problem, nor grant a license therefore.
- · Please note that there is any possibility of circuit oscillation when resistance put in the line VIN. Recommend 15k ohm or less for PST894. Please do not put resistance for PST893.
- TYP hysteresis voltage of PST89 series is a detecting voltage × 0.05. During power-up, and to release reset, it is time that it has become more than the release voltage (= detection voltage + hysteresis voltage). By calculating the variation of the power supply and the detection voltage and the release voltage, please select the detecting voltage rank.
- In CD pin, please do not use from the external voltage, and current source.
- · Between CD pin ~ GND pin, please use by connecting more than capacitor 100pF.
- · When the CD terminal capacitance value is greater than or more 1µF, time of the charge and discharge, the response of the OUT waveform is delayed.

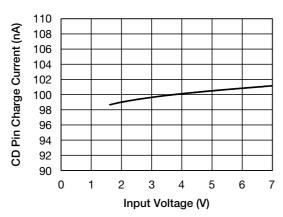
To power reduction of short-pulse, and less likely to respond.


By the power supply voltage drop due to instantaneous interruption, the ack of discharge current capability of CD terminal, is not completely discharge, increasing again power-than release delay time of setting, it will be shorter.

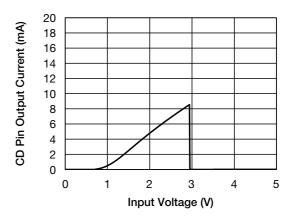
Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.


The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications

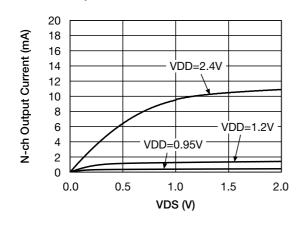
## Characteristics (2.8V) (Except where noted otherwise Ta=25°C)


### Detecting Voltage

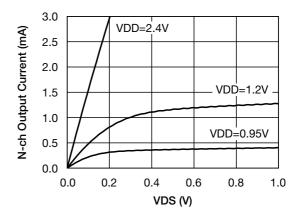



### Supply Current




## CD Pin Charge Current

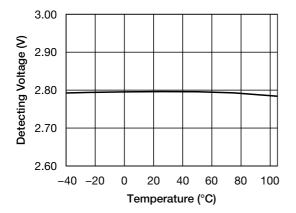



### CD Pin Output Current

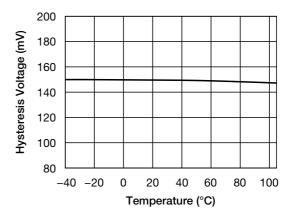


### N-ch Output Current

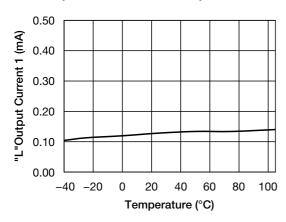



## N-ch Output Current

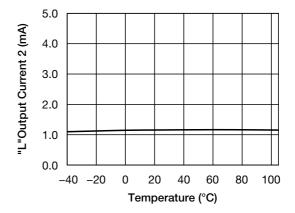



Note: \* These are typical characteristics.

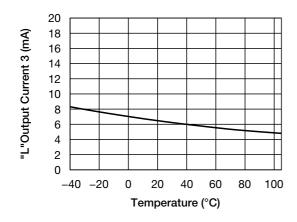
Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.


### Detecting Voltage - Temperature




## Hysteresis Voltage - Temperature

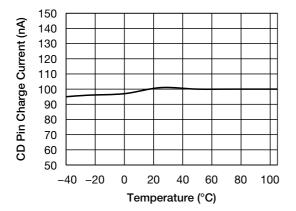



## "L"Output Current 1 - Temperature



## "L"Output Current 2 - Temperature

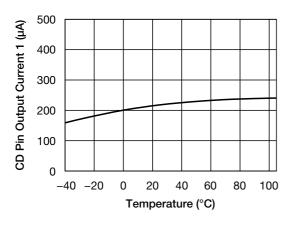



## "L"Output Current 3 - Temperature

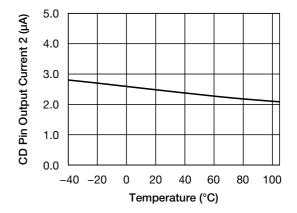


Note: \* These are typical characteristics.

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.


## CD Pin Charge Current - Temperature




## CD Pin Threshold Voltage - Temperature



CD Pin Output Current 1 - Temperature



## CD Pin Output Current 2 - Temperature



Note: \* These are typical characteristics.

Any products mentioned in this catalog are subject to any modification in their appearance and others for improvements without prior notification.
 The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.