

Multi-cell Battery Management Front End with I²C Interface

GENERAL DESCRIPTION

The PT6105 is a highly integrated, digitally programmable, charging/discharging management IC for 3 to 7 serially connected Li-Ion or LiFePO₄, batteries used in portable electrical tools or other multi-cell battery powered systems. It contains a multi-channel 10-bit ADC digitizing battery voltages, environment temperature, and battery discharge current. The converted data is transferred to MCU via I²C interface and is used for battery balancing and safety protections against battery over-voltage, under-voltage, discharging over current, and over temperature. The integrated battery balance circuitry could deliver a programmable shunt current as high as 200mA without the need of external transistors. The PT6105 buffers both DC and PWM (Pulse Width Modulation) MOSFET control signals generated from MCU to drive an electrical motor.

Key parameters in the PT6105 are programmable by a microprocessor through an I^2C interfacing port, which features customers to achieve flexible and optimal multi-cell Li-ion/LiFePO₄ battery charging/discharging progress control and safety protection. The package is QFN-24.

PIN ASSIGNMENT

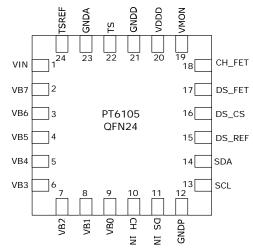


Figure 1. Pin order in QFN-24 package

FEATURES

Charging Control

- 3~7 Li-ion or LiFePO₄ battery cells system
- Cell balancing with programmable shunt currents up to 200mA
- Accurately sensing battery cell voltages and temperature through a 10-bit ADC.
- MCU controlled protection cutoff voltages.

Discharging

- Programmable discharge over-current or short-circuit protection thresholds
- MCU controlled battery under-voltage
 protection thresholds
- 10~15V PWM or DC MOSFET gate driving voltages
- 200mA maximum MOSFET gate driving current
- Load protection to prevent discharging on short-circuit or light load between two terminals connected to the motor

MCU Interfacing

- A 10-bit ADC samples up to 7 individual cell voltages, environmental temperature, and discharge current.
- ADC sampling time <20ms through all channels
- ADC fail bit indicates overflow
- 100 kHz I²C communication port
- 2 seconds watchdog function for MUC.
- 5~3.2V supply voltage to MCU

Other Protections

- 6V under voltage lockout voltage (UVLO)
- Protected from <1.0ms negation glitch toward ground generated from battery pack
- Internal over temperature shutdown (TSD)

Multi-cell Battery Management Front End with I²C Interface

Pin #	Function	Name	Description
1		VIN	Power supply
2	Battery	VB7	Battery cell 7 voltage input
3	voltage input	VB6	Battery cell 6 voltage input
4		VB5	Battery cell 5 voltage input
5		VB4	Battery cell 4 voltage input
6		VB3	Battery cell 3 voltage input
7		VB2	Battery cell 2 voltage input
8		VB1	Battery cell 1 voltage input
9		VB0	This pin connects to the most negative terminal in the battery string
10	Charging/	CH_IN	Charge control signal in
11	discharging control	DS_IN	Discharge control signal in
12		GNDP	Connect to ground
15	Charging/	DS_REF	Discharging current sense reference
16	discharging control	DS_CS	Discharging current sense monitor
17		DS_FET	Discharge MOSFET gate drive
18		CH_FET	Charge MOSFET gate drive
19		VMON	Discharge load monitoring for short circuit protection
13	Interface	SCL	Serial clock
14	with MCU	SDA	Serial date
20	-	VDDD	Regulated 5V supply voltage to MCU and E ² PROM
21		GNDD	Digital ground
22		TS	Temperature monitor input
23	Analog power	TSREF	TS input reference voltage
24	supply	GNDA	Analog ground

PIN DESCRIPTION

TYPICAL APPLICATION EXAMPLE

Q1 and Q2 are MOSFET switches controlled by two gate driving voltages CH_FET and DS_FET. Their functions are described in Table 2.

CH_FET	DS_FET	Operation status
1 (or PWM)	1 (or PWM)	Battery charging or discharging
0	0	 Battery charging/discharging safety protection Battery standby

Please note that Q1 and Q2 could be not only turned on by DC voltage, but also by a PWM sequence. D2 and R1 are added for short circuit loading protection during battery discharging. D3 limits the gate-source voltage of Q1 to be less than 15V. D4 and R2 are used to protect the CH_FET pin from being damaged by the

Multi-cell Battery Management Front End with I²C Interface

flyback voltage from the motor windings, when the CH_FET is opened suddenly for over current or short circuit shut-down.

The only positive power supply voltage terminal of the chip is VIN. D1, C1, and C2 are added to stabilize the chip power supply in case of a positive or negative voltage surge coming from the battery or motor. GNDA and GNDD are internally generated supplies. "VB0" is connected to ground but is only used for the measurements of VB1 and external temperature.

Rt is a thermal resistor to sense the battery pack temperature. R5 and R6 are used for linearization. R4 and C4 filter noise added on the sensed discharge current and provide a certain time delay for over current protection., R8 and D5 are used for the protection of chip DS_CS input from the transient high voltage impulse when the system begins discharging operation.

D1 is suggested to be removed if there are only three batteries.

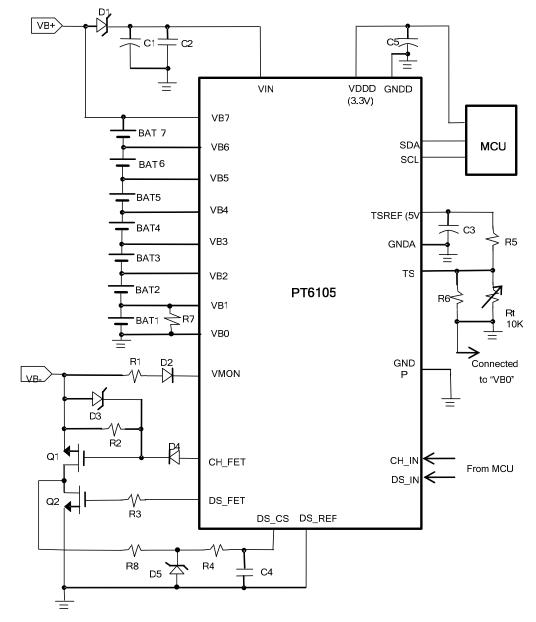


Figure 2. Typical application of PT6105 for 7 Li-ion battery cells

Multi-cell Battery Management Front End with I²C Interface

ABSOLUTE MAXIMUM RATINGS

SYMBOL	ITEMS	VALUE	UNIT
VIN	Power Supply Voltage	$-0.5V \sim 36$	V
VBi(i=1~n)	VBn–VB (n-1) $n=1\sim7$	- 0.5V to 6	V
VMON, CH_FET, DS_FET	Terminal Voltage	- 0.5V to 32	V
All other pins	Terminal Voltage	- 0.5V to 5	V

RECOMMANDED OPERATING RANGE

SYMBOL	ITEMS	VALUE	UNIT
VIN	Power Supply Voltage	6~30.1	V
VBi(i=1~n)	VBn–VB (n-1) $n=1\sim7$	2.0 ~ 4.3	V
V _{TS}		0~2.5V	V
All other pins	Terminal Voltage	< 5	V
	Cell Balance Current	<200	mA
	VDDD Output Current	.<40	mA
	Temperature Range	$-40 \sim +85$	°C

ELECTRICAL CHARACTERISTICS

SYMBOL	ITEMS	CONDITIONS	Min.	Тур.	Max.	UNIT
VIN	Input Voltage	whole function Guaranteed (Note1)	6		32	V
VIIN	input voltage	For correct I2C operation (Note2)	5		32 32 32 12 6 0 3 3.5 2 4 0 35	V
I _{SLEEP}	Supply current in sleep mode	WKUP bit = "0"		8	12	uA
V	Under-voltage lockout	Vin falling	5.4		6	v
V _{UVLO}	UVLO hysteresis	Vin rising	0.1 500	v		
т	Under voltage lock out			500		чS
T _{UVLO}	delay			500		uS
	Chip Wake up Delay	T = -40~85°C		3	3.5	ms
T _{WCHDG}	Watch dog time-out		1.5	2	4	S
TSD	Internal Thermal Shut			150		
15D	Down			150		°C
\triangle TSD	TSD Hysteresis			20		
V	Overload Monitor input	Falling edge, LDMONEN bit = "1"		1.35		v
V _{VMON}	Threshold	(Note3)		1.55		v
т	overLoad Monitor			20		uA
I _{VMON}	Current			20		uA
	overload detection			0.5	1	ma
T _{LDFAIL}	delay			0.5	1	ms

Multi-cell Battery Management Front End with I²C Interface

ELECTRICAL CHARACTERISTICS (CONTINUED)

SYMBOL	ITEMS	CONDITIONS	Min.	Тур.	Max.	UNIT		
Charging/Dis	scharging							
		DSCV<2:0>=000		0.2				
		DSCV<2:0>=001		0.3				
		DSCV<2:0>=010		0.4				
V	Discharge Short Circuit Threshold	DSCV<2:0>=011		0.45		v		
V _{DSC}	Discharge Short Circuit Threshold	DSCV<2:0> = 100		0.55		V		
		DSCV<2:0> = 101		0.65				
		DSCV<2:0> = 110		0.75				
		DSCV<2:0>=111		1.2	Max.			
		DSCT<2:0> = 000		60				
		DSCT<2:0>=010		120		us		
		DSCT<2:0>=010		500				
т	Discharge Chart Circ. it 1:1:	DSCT<2:0>=011		1				
T _{DSC}	Discharge Short Circuit delay	DSCT<2:0> = 100	4		1			
		DSCT<2:0> = 101		8		ms		
		DSCT<2:0> = 110		16				
		DSCT<2:0> = 111		32				
		BC1 bit = "0" BC0 bit = "0"		25				
т	Change Delance Comment	BC1 bit = "0" BC0 bit = "1"		50				
I_{BAL}	Charge Balance Current	BC1 bit = "1" BC0 bit = "0"		100		mA		
		BC1 bit = "1" BC0 bit = "1"	0.2 0.3 0.4 0.45 0.45 0.45 0.55 0.65 0.75 1.2 0.75 1.2 60 1.2 1.2 60 120 500 1 4 8 16 32 "0" 25 "1" 500 "1" 50 "1" 50 "1" 16 32 "0" 110 120 15 10 15 10 15 10 15 0.1	240				
T _R	DS_FET/CH_FET Rising Time	Load=3.3nF		15				
T _F	DFET Falling Time	Load=3.3nF		15		us		
Vh		Vin >15V	10	12	15			
vn	DS_FET, CH_FET	6V <vin<15v< td=""><td>Vin-0.35</td><td></td><td></td><td>V</td></vin<15v<>	Vin-0.35			V		
Vl]			0.1		1		
Analog Regu	lator (TSREF)							
V _{TSREF}	Reference for temperature sensor	T = -40~85°C	4.80	5.0	5.20	v		
I _{MAX}	Output Current		20			mA		

Multi-cell Battery Management Front End with I²C Interface

ELECTRICAL CHARACTERISTICS (CONTINUED)

SYMBOL	ITEMS	CONDITIONS			Тур.	Max.	UNIT	
5V Digital Re	egulator (VDDD)							
VDDD		T 10.05°C	VIN≥7V	4.8	5	5.2		
VDDD	Output voltage	$T = -40 \sim 85 \degree C$	7>VIN≥5V	3.2			V	
		No	VIN≥7V	45				
I _{vddd}	Output Current	Normal operation	7>VIN≥5V		10		mA	
		Sleep mode		4			mA	
I _{SC}	Short circuit current	VDDD=0			10		mA	
ADC								
	Conversion resolution				10		Bits	
	Settling time				2		ms	
Vref	Reference voltage	T = -40∼85°C			2.5		V	
		VIN≥7V	vbn=4.2V(n=1~7)			25		
	Battery voltage measurent Error	$T = -40 \sim 85^{\circ}C$	vbn=2V(n=1~7)			50	mV	
ΔVB		1 – -40~85 C	vbn=4.5V(n=1~7)			35		
		VIN<7V vbn=3V(n=1~7)				75		
		T = -40~85°C	-40~85°C vbn=2V(n=1~7)			100		
ΔV_{TS}	Voltage error at TS pin	$V_{IN} > 6V, V_{TS} = 2.5V$		25		mV		
G _{TEMP}	External temperature Pre-amplifier Gain	T = −40~85°C			1		V/V	
ΔV_{DS_CS}	Voltage error at DS_CS pin	V _{DS_CS} =0.5V				10	%	
G _{IDS}	Discharging Current Sensing Preamplifier gain	T = −40~85°C			5		V/V	
Abnormal b	oattery voltage measurement							
V _{BREV}	Reversed battery polarity	(Note 4)				0.7	V	
V _{BDC}	Battery disconnected	The first battery resistor connecting	needs an external to ground			0.7	V	
I ² C Interfac	e							
f _{CLK}	SCL Clock Frequency				100		KHz	
t _{HD:SDA}	Input Data Setup Time			1			us	
V _{IL}	Digital Input Voltage Low					0.5	v	
V _{IH}	Digital Input Voltage High			2.5			v	
R _P	SDA and SCL Internal Pull-up Resistor				10		kΩ	

Note1: The ADC outputs correct code under such VIN input range;

Note2: I²C communication between chip and MCU is guaranteed under such VIN input voltage range;

Note3: Load monitor is only used to detect whether the load is removed, when light load or short-circuit is taking

Multi-cell Battery Management Front End with I²C Interface

place during discharge;

Note4: There will be a transient negative glitch voltage on a bad battery output terminal for heavy loading;

FUNCTIONAL BLOCK DIAGRAM

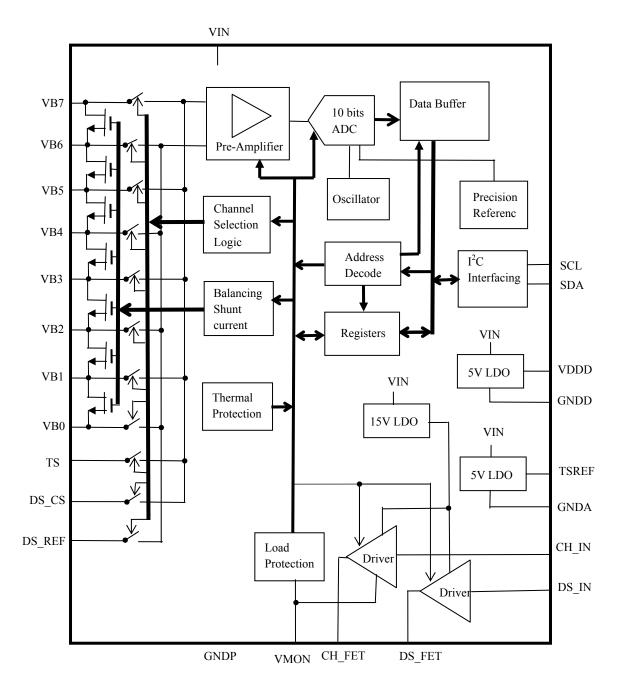


Figure 3. Simplified functional block diagram of PT6105

Multi-cell Battery Management Front End with I²C Interface

REGISTERS

Table 1. Registers

ADDR	REGISTER	READ/WRITE	7	6	5	4	3	2	1	0
00H	Configuration and Status	READ/WRITE	Reserved	Reserved	WKUP	CHSET	DSSET	CELLN2	CELLN1	CELLNO
01H	Operating Status	READ	Reserved	Reserved	Reserved	UVLO	ADCFAIL	LDFAIL	TSD	DSC
02H	Cell Balance	READ/WRITE	CB7ON	CB6ON	CB5ON	CB4ON	CB3ON	CB2ON	CB10N	Reserved
03H	DSC Set	READ/WRITE	DSCV2	DSCV1	DSCV0	DSCT2	DSCT1	DSCT0	DSCEN	LDMONE
04H	Balance Current Set	READ/WRITE	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	BC1	BCO
05H			C1VD[7]	C1VD[6]	C1VD[5]	C1VD[4]	C1VD[3]	C1VD[2]	C1VD[1]	C1VD[0]
06H			0	0	0	0	0	0	C1VD[9]	C1VD[8]
07H			C2VD[7]	C2VD[6]	C2VD[5]	C2VD[4]	C2VD[3]	C2VD[2]	C2VD[1]	C2VD[0]
08H			0	0	0	0	0	0	C2VD[9]	C2VD[8]
09H			C3VD[7]	C3VD[6]	C3VD[5]	C3VD[4]	C3VD[3]	C3VD[2]	C3VD[1]	C3VD[0]
0AH]		0	0	0	0	0	0	C3VD[9]	C3VD[8]
OBH]		C4VD[7]	C4VD[6]	C4VD[5]	C4VD[4]	C4VD[3]	C4VD[2]	C4VD[1]	C4VD[0]
0CH			0	0	0	0	0	0	C4VD[9]	C4VD[8]
0DH	ADC Data	READ	C5VD[7]	C5VD[6]	C5VD[5]	C5VD[4]	C5VD[3]	C5VD[2]	C5VD[1]	C5VD[0]
0EH	ADC Data	READ	0	0	0	0	0	0	C5VD[9]	C5VD[8]
OFH			C6VD[7]	C6VD[6]	C6VD[5]	C6VD[4]	C6VD[3]	C6VD[2]	C6VD[1]	C6VD[0]
10H]		0	0	0	0	0	0	C6VD[9]	C6VD[8]
11H			C7VD[7]	C7VD[6]	C7VD[5]	C7VD[4]	C7VD[3]	C7VD[2]	C7VD[1]	C7VD[0]
12H			0	0	0	0	0	0	C7VD[9]	C7VD[8]
13H			DSCD[7]	DSCD[6]	DSCD[5]	DSCD[4]	DSCD[3]	DSCD[2]	DSCD[1]	DSCD[0]
14H			0	0	0	0	0	0	DSCD[9]	DSCD[8]
15H]		ETMP[7]	ETMP[6]	ETMP[5]	ETMP[4]	ETMP[3]	ETMP[2]	ETMP[1]	ETMP[0]
16H			0	0	0	0	0	0	ETMP[9]	ETMP[8]
17H	Registers Writer Enable	READ/WRITE	Reserved	WR EN						

1. A "1" written to a configuration bit causes the action to be taken. A "1" read from a status bit indicates that the condition exists.

Table 2. Configuration Register (ADDR:00H)

ADDF	REGISTER	READ/WRITE	7	6	5	4	3	2	1	0
00H	Configuration and Status	READ/WRITE	Reserved	Reserved	WKUP	CHSET	DSSET	CELLN2	CELLN1	CELLNO
BIT 7	BIT 7,6: Reserved for future expansion.									
BIT 5	: This bit control the	chip operates	in sleep	mode or	wake up m	node.				
0	= Sleep mode; (Default))								
1	= Wake up mode.									
BIT 4	: This bit prevents or a	allows write	the charg	e set reg	isters(02	2H, 04H).				
0	= Prevent; (Default)									
1	= Allow.									
BIT 3	: This bit prevents or a	allows write	the disch	arge set :	registers	s(03H).				
0	= Prevent; (Default)									
1	= Allow.									
BITS :	2,1,0: The two bits dec	ide the numbe	r of cell	s in 7 ce	lls mode.					
0	$00^{\sim}011 = 3$ cells; (Defau	lt)								
1	$0 \ 0 = 4 \ cells;$									
1	$0 \ 1 = 5 \ cells;$									
1	$1 \ 0 = 6 \ cells;$									
1	$1 \ 1 = 7$ cells.									

Multi-cell Battery Management Front End with I²C Interface

Table 3. Operating Status Register (ADDR:01H)

ADDF	REGISTER	READ/WRITE	7	6	5	4	3	2	1	0	
01H	Operating Status	READ	Reserved	Reserved	Reserved	UVLO	ADCFAIL	LDFAIL	TSD	DSC	
BIT 7,	BIT 7,6,5: Reserved for future expansion.										
BIT 4	BIT 4: This bit indicates an VIN under voltage condition.										
0	= VIN is greater	than the UVLO) threash	old; (Defa	ault)						
1	= VIN is below t	he UVLO threas	hold.								
TI	his bit is reset	if the UVLO co	ndition i	is cleared	1.						
BIT 3	: This bit indica	tes an ADC fai	1 conditi	ion.							
0	= ADC works well	; (Default)									
1	= ADC fail.										
TI	his bit is reset	if ADC fail co	ndition i	is cleared	d or this	bit is :	read.				
BIT 2	: This bit indica	tes a load fai	l conditi	ion.							
0	= Load is discon	nected under d	lischarge	short cir	rcuit cond	ition;	(Default)				
1	= Load is still	connected unde	er dischar	rge short	circuit c	ondition	n.				
	his bit is reset					this bi	t is read.				
BIT 1	: This bit indica	tes an chip th	ermal shu	it down co	ondition.						
0	= Chip tempertur	e is less than	the the	rmal shut	down thre	shold;	(Default)				
1	= Chip tempertur	e is greater t	han or eo	qual to th	ne thermal	shut d	own thresh	old.			
T	his bit is reset	if the TSD con	dition is	s cleared.							
BIT 0	: This bit indica	tes a discharg	e short d	circuit co	ondition.						
0	= Discharge curr	ent is less th	an the sh	nort circu	uit thresh	old; (D	efault)				
1	= Discharge curr	ent is greater	than or	equal to	the short	circui	t threshol	d.			
TI	his bit is reset	<u>after this</u> bit	is read.								
Notor	Neither the PT61	05 nor MCII	on mito	to the sta	tua ragiata	m It oor	only ha	ant has al		anaratin	

Note: Neither the PT6105 nor MCU can write to the status register. It can only be set by abnormal operating conditions, and, of course, can be automatically reset when the abnormal conditions doesn't exist (One except is WDOG which is only reset by MUC).

Table 4. Cell Balancing Control Register (ADDR:02H)

ADDR	REGISTER	READ/WRIT	7	6	5	4	3	2	1	0	
02H	Cell Balance	READ/WRITE	CB7ON	CB6ON	CB5ON	CB4ON	CB3ON	CB2ON	CB10N	Reserved	
BIT 7, 6, 5, 4, 3, 2, 1: The bits control the cell balance on or off.											
0 = Off; (Default)											
1 = 0n.											
BIT 0: Re	BIT 0: Reserved for future expansion.										

Note: The Cell Balancing Control Register is blocked during discharge.

Multi-cell Battery Management Front End with I²C Interface

Table 5. Discharge Short Circuit Register (ADDR:03H)

ADDR	REGISTER	READ/WRITI	7	6	5	4	3	2	1	0
03H	DSC Set	READ/WRITE	DSCV2	DSCV1	DSCV0	DSCT2	DSCT1	DSCT0	DSCEN	LDMONEN
BIT 7,6,	5: The three bits d	efine the discharge s	short cir	cuit thre	shold vol	tage.				
0 0	0 = 0.20V; (Default))								
0 0	1 = 0.30V;									
0 1	0 = 0.40V;									
0 1	1 = 0.45V;									
1 0	0 = 0.55V;									
1 0	1 = 0.65V;									
1 1	0 = 0.75V;									
1 1	1 = 1.2V.									
BIT 4,3,	2: The two bits def	ines the discharge sl	hort circ	uit time	out.					
0 0	0 = 64us; (Default)									
0 0	1 = 128us;									
0 1	0 = 512us;									
0 1	1 = 1 m s;									
1 0	0 = 4ms;									
1 0	1 = 8 m s;									
1 1	0 = 16 ms;									
1 1	1 = 32ms.									
BIT 1: T	his bit enables or	disables the short ca	ircuit pr	otection	in discha	arging mod	le.			
0 =	Disable; (Default)									
1 =	Enable.									
BIT 0: T	his bit enables or	disables the loadmon:	itor func	tion in d	lischargin	ng mode.				
0 =	Disable; (Default)									
1 =	Enable.									

Table 6. Cell Balance set register

04H Balance	Current Set	READ/WRITE	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	BC1	BC0
BIT 7,2: Reserv	ed for futur	re expasion.								
BIT 1,0: The tw 0 0 = 50mA; 0 1 = 100mA 1 0 = 150mA 1 1 = 200mA	(Default) ;	nes the cells	balance o	current tl	nreashold.					

To avoid the PT6105 from over heating, please don't select the 200mA shut current if more than one battery needs balancing operation. If there are more than one "1" bits, then shut current value is the addition of them.

Table 7. ADC data output registers

ADDR	REGISTER	READ/WRITE	7	6	5	4	3	2	1	0
05H			C1VD[7]	C1VD[6]	C1VD[5]	C1VD[4]	C1VD[3]	C1VD[2]	C1VD[1]	C1VD[0]
06H	-		0	0	0	0	0	0	C1VD[9]	C1VD[8]
07H			C2VD[7]	C2VD[6]	C2VD[5]	C2VD[4]	C2VD[3]	C2VD[2]	C2VD[1]	C2VD[0]
08H			0	0	0	0	0	0	C2VD[9]	C2VD[8]
09H			C3VD[7]	C3VD[6]	C3VD[5]	C3VD[4]	C3VD[3]	C3VD[2]	C3VD[1]	C3VD[0]
OAH			0	0	0	0	0	0	C3VD[9]	C3VD[8]
OBH		READ	C4VD[7]	C4VD[6]	C4VD[5]	C4VD[4]	C4VD[3]	C4VD[2]	C4VD[1]	C4VD[0]
0CH			0	0	0	0	0	0	C4VD[9]	C4VD[8]
0DH			C5VD[7]	C5VD[6]	C5VD[5]	C5VD[4]	C5VD[3]	C5VD[2]	C5VD[1]	C5VD[0]
OEH	ADC Data		0	0	0	0	0	0	C5VD[9]	C5VD[8]
OFH			C6VD[7]	C6VD[6]	C6VD[5]	C6VD[4]	C6VD[3]	C6VD[2]	C6VD[1]	C6VD[0]
10H			0	0	0	0	0	0	C6VD[9]	C6VD[8]
11H		1	C7VD[7]	C7VD[6]	C7VD[5]	C7VD[4]	C7VD[3]	C7VD[2]	C7VD[1]	C7VD[0]
12H			0	0	0	0	0	0	C7VD[9]	C7VD[8]
13H			DSCD[7]	DSCD[6]	DSCD[5]	DSCD[4]	DSCD[3]	DSCD[2]	DSCD[1]	DSCD[0]
14H			0	0	0	0	0	0	DSCD[9]	DSCD[8]
15H			ETMP[7]	ETMP[6]	ETMP[5]	ETMP[4]	ETMP[3]	ETMP[2]	ETMP[1]	ETMP[0]
16H			0	0	0	0	0	0	ETMP[9]	ETMP[8]

Multi-cell Battery Management Front End with I²C Interface

Table8 registers write enable

ADDR	REGISTER	READ/WRITE	7	6	5	4	3	2	1	0
17H	Test Mode	READ/WRITE	Reserved	WR EN						
WR EN:										
0 = Data can't be written into the write/read registers if the bit is "0". 1 = Data is written into the write/read registers after the bit is set to "1", this bit is auto reset										

after being set.

DETAILED DESCRIPTION

Charging Management

Battery Balancing

The charging voltage balancing only applies during the charging period. If an unbalanced over-charged battery voltage is detected by ADC, the shunt transistor connected across a battery will be turned on by a command from MCU to lower the battery voltage, Both the shunt current value and on/off of each shunt transistor are programmable via MCU. The shunt current for each battery can be programmable as 200mA, 100mA, 50mA, and 25mA. When more than one battery are detected as over-charged, please carefully the total shunt current to avoid the PT6105 being over heated.

Safety protections

Over-voltage protections for individual battery cells during charging is realized by

- sampling all 7 battery voltages into MCU through the I2C interface,

- comparing digitized voltages with programmed safety thresholds, and

- sending control signal to turn off MOSFETs after a programmed delay, if the voltage is over threshold.

A precision reference voltage source and a 10-bit ADC guarantee that error is less than ± 25 mV for 4.2V battery voltage detection, over the temperature range from -40oC to85oC.

Discharging Management

Safety protections

The same as in the charging protection, individual battery voltage are digitized alternatively, transferred to MCU via I2C interface, and compared with programmed safety thresholds. If any cell voltage is bellow under-voltage protection threshold, Control signal is sent out and MOSFETs are turned off after a certain delay time. The under-voltage protection function works together with the over-current protection to prevent batteries from over discharge.

The MOSFET's discharge current is sampled with the vds of discharge NMOSFET, Similar to the battery under-voltage protection, the over-current protection is performed by comparing the sampled and digitized data with a programmable threshold inside the MCU, and turn off MOSFETs.

Driving the Motor

The discharging wave form could be DC voltage or <20k Hz PWM pulses. The rising and falling times of gate driving voltages are limited by maxim driving currents from CH_FET and DS_FET pins. An external current limiting resistor R3 in Fig.2 could limit the gate driving speed further during discharging.

Over Temperature Management

The battery pack temperature is sensed with a thermal resistor, Rt, in Fig. 2, plus two normal resistors linearizing the sensed voltage. The gain of the preamplifier for sensing external temperature is set at 1. The detected environmental temperature value is converted to digital data and collected by MCU. Within MCU, the data is compared to safety temperature limits on battery charging and discharging.

The PT6105 has an internal over temperature shutdown function if the chip's junction temperature is over 140oC. If the chip enters over temperature protection mode, all functional blocks and external MOSFETs will be shutdown except the 5V LDO supplying MCU, I2C interface, and register blocks. There is a flag bit in the status register is set to "1". After the internal temperature cools down about 20 oC bellow the shutdown threshold, the status register is reset. The MCU could not set or reset this flag bit

Watchdog for MCU

The PT6105 monitors the communication function between the I^2C interface and MCU. If there is no activity observed from the MCU for about 2sec. two external MOSFETs are turned off by MCU.

Discharge Short Circuit Protection

When PT6105 detects a discharge short circuit condition, both power MOSFETs are turned off and the DSC bit is set "1". The DSC bit is reset after this bit is read by MCU. MCU can turn on the MOSFETs at any time but should turn on the load monitor function to detect that the short circuit condition has been removed.

Load Monitor on Short Circuit

The load monitoring and protection function is primarily used to guarantee that the load (mostly the motor) has been removed following an over-current or short circuit protection during discharge. This function will prevent the MOSFET from turning on while the short circuit is still present. As the benefit, the battery is avoided from starting discharge to a short circuit load.

The load protection mechanism could be enabled or disabled by the MCU by setting LDMONEN bit as "1" or "0" in the configuration register. The discharge MOSFET will be switched off if short circuit load is detected during discharge, the LDFAIL bit in the status register will be set to "1" if the short circuit load is still connected under short circuit condition. When MCU detected this bit is "1", both MOSFETs will be tuned off and discharging procedure is terminated. This bit is self-reset after the short circuit condition is removed.

Other Protections

- The PT6105 could sustain a <1ms negative down-to-ground glitch from the battery pack at the start of discharge.

- VIN =5.7V triggers under-voltage lockout (UVLO). The UVLO bit in the status register is set as "1", and MOSFETs are turned off. All analog functions in the PT6105 are also turned off. The UVLO bit will be reset if VIN rises above the UVLO threshold with a hysteresis.

- Power on reset function (POR = $1.5 \sim 2.0$). Right after power on and then VIN above POR, all digital registers are guaranteed to be reset at the default sleep mode, waiting for the wake up signal from the MCU.

Multi-cell Battery Management Front End with I²C Interface

The ADC has 10-bit accuracy, sampling 7 battery voltages and environment temperature alternatively. The setting time of each channel is less than 7ms. All the sampled data is buffered in 9 dada buffers and waits for being collected by MCU via I²C interface. If one data conversion encounters data overflow or saturation, the ADFAIL bit in the status register is set to "1". The ADC could be powered down on three conditions: the sleep mode, internal over temperature protection, and UVLO="1". Each data buffer has a location address.

LDOs

There are two 5V LDO's in the PT6105. One provides the supply voltage to external MCU and internal digital blocks. The other one provides the supply voltage to internal analog blocks, and is also used as a bias on the external thermal resistor.

Under no circumstance the digital LDO can be shutdown.

I²C interface

The I^2C interface in the PT6105 works in the slave mode with the clock frequency of 100 kHz. The interfacing block can not be turned off under any condition.

Sleep Mode and Wake up

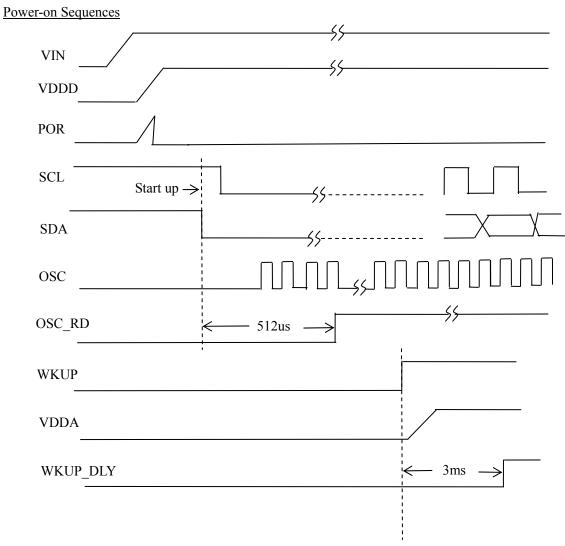
The MCU fully controls the PT6105's entering and out from sleep mode by reset and set the WKUP bit in the configuration register. Right after power up, the PT6105 is set initially at sleep mode. If VIN rises above UVLO threshold and the WAKE bit set as "1", the chip is allowed to wake up and start to work following commends from the MCU, after a short time delay.

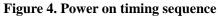
At the sleep mode, digital LDO, I²C interface, and all register could not be powered down.

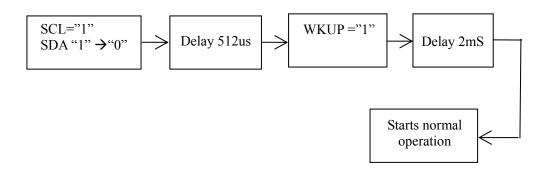
MOSFET driver control

Even though the PT6105 can not directly control the turning on/off of two external MOSFETs, it has the ability to power on/off the two MOSFET drivers. Two drivers will be power down at the following conditions, and will be powered on after these conditions disappear.

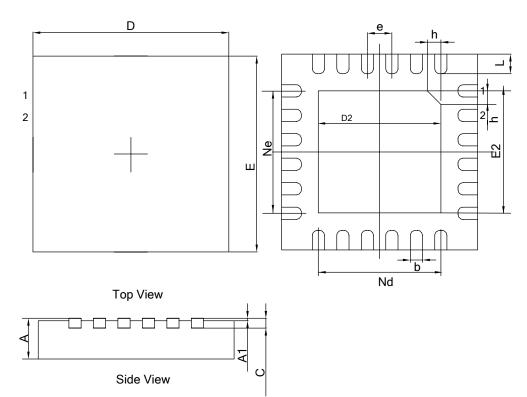
- Sleep mode
- Internal over temperature protection
- Load protection at short circuit condition


- MCU watchdog bit is set to "1", i.e. there has been no activity from the MCU for 2s.


ADC


Multi-cell Battery Management Front End with I²C Interface

TIMING DIAGRAMS


Wake-up from Sleep Mode Flow Chart

Multi-cell Battery Management Front End with I²C Interface

PACKAGE INFORMATION

SYMBOL	MI	LLIME	ГER			
SIMBOL	MIN	NOM	MAX			
А	0.70	0.75	0.80			
A1	-	0.01	0.05			
b	0.18	0.25	0.30			
с	0.18	0.20	0.25 4.10			
D	3.90	4.00				
D2	2.50REF					
e	0.50BSC					
Ne	2.50BSC					
Nd	2.50BSC					
Е	3.90	4.00	4.10			
E2	2.50REF					
L	0.35	0.40	0.45			
h	0.30	0.35	0.40			
L/F 载体尺寸	110×110					