
PT6650

Series

5 AMP 24V INPUT INTEGRATED SWITCHING REGULATOR

Application Notes Mechanical Outline Product Selector Guide

- Single Device: 5A Output
- Input Voltage Range: 9V to 28V
- Adjustable Output Voltage
- 80% Efficiency
- Remote Sense Capability

Do Not Connect

STBY*- Standby

 V_{in}

 V_{in}

 V_{in}

10

11

12

13

14

GND GND GND

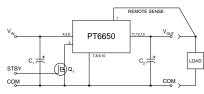
GND

 \overline{V}_{out}

 $\overline{V_{out}}$

 $\overline{V_{out}}$

V_{out} Adjust


Standby Function

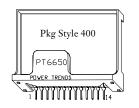
The PT6650 series is a new addition to Power Trends' line of 24V bus **Integrated Switching Regulators**

(ISRs). Designed for general purpose industrial applications requiring as much as 5A of output current, the PT6650 is packaged in a 14-Pin SIP (Single In-line Package) and is available in a surface-mount configuration.

Only two external capacitors are required for proper operation. Please note that this product does not include short circuit protection.

Standard Application

- C₁ = Required 100µF electrolytic C₂ = Required 330µF electrolytic
- Q₁= NFET-or Open Collector Gate


Pin-Out Information Ordering Information Remote Sense

PT6651 = +3.3 Volts **PT6652**□ = +2.5 Volts **PT6653**□ = +5.0 Volts **PT6654**□ = +9.0 Volts

 $PT6655 \square = +15.0 \text{ Volts}$ $PT6656\Box = +12.0 \text{ Volts}$

PT Series Suffix (PT1234X) Case/Pin Heat Spreader Spreader with Side Tabs Configuration Vertical Through-Hole Horizontal Through-Hole G

В

Note: Back surface of product is conducting metal

Horizontal Surface Mount

Specifications

Characteristics			PT6650	PT6650 SERIES		
(T _a = 25°C unless noted)	Symbols	Conditions	Min	Тур	Max	Units
Output Current	I_{o}	$T_a = 60$ °C, 200 LFM, pkg P $T_a = 25$ °C, natural convection	0.1* 0.1*		5.0** 5.0**	A A
Input Voltage Range	V_{in}	$\begin{array}{c} 0.1\mathrm{A} \leq \mathrm{I_o} \leq 5.0\mathrm{A} \\ \mathrm{V_o} > +6 \\ \mathrm{V_o} > +6 \end{array}$			+28V +28V	V V
Output Voltage Tolerance	$\Delta { m V_o}$	Over V_{in} range $T_a = -40^{\circ}\text{C}$ to $+65^{\circ}\text{C}$	Vo-0.1	_	Vo+0.1	V
Output Voltage Adjust Range	$ m V_{oadj}$	Pin 14 to V_o or ground $ \begin{array}{c} V_o = +3 \\ V_o = +2 \\ V_o = +5 \\ V_o = +9 \\ V_o = +1 \\ V_o = +1 \end{array} $	5V 1.8 .0V 3.0 .0V 6.0 2V 9.0		4.7 4.3 6.5 10.2 13.6 17.0	V
Line Regulation	Reg _{line}	$+9V \le V_{in} \le +28V, I_o = 5.0A$	_	±0.5	±1.0	$%V_{o}$
Load Regulation	Reg _{load}	$V_{\text{in}} = +24V, 0.1 \le I_o \le 5.0A$	_	±0.5	±1.0	$%V_{o}$
V _o Ripple/Noise	V _n	$V_{\rm in} = +24 V, \ I_{\rm o} = 5.0 A$ $V_{\rm o} \le +6 V_{\rm o} > +6 V_{\rm$		50 1.0	_	mVpp %Vo
Transient Response with $C_2 = 330 \mu F$	${ m t_{tr} \over V_{os}}$	I _o step between 2.5A and 5.0A V _o over/undershoot	Ξ	100 100	=	μSec mV
Efficiency	η	$V_{\rm in}$ = +24V, $I_{\rm o}$ = 0.5x $I_{\rm o \; max}$ $V_{\rm o}$ = +3 $V_{\rm o}$ = +2 $V_{\rm o}$ = +5	.5V —	81 76 85	=	% % %
		$V_{\rm in}$ = +24V, $I_{\rm o}$ = $I_{\rm o \; max}$.5V —	80 75 84	=	% % %
Switching Frequency	f_{o}	$9V \le V_{in} \le 28V$ Over I_o range	500	550	600	kHz
Recommended Operating Temperature Range	Ta	Free Air Convection (40-60 LFM) Over V _{in} and I _o ranges with heat tab	-40		+65	°C
Storage Temperature	T_s	_	-40		+125	°C
Mechanical Shock	_	Per Mil-STD-883D, Method 2002.3	_	500	_	G's
Mechanical Vibration	_	Per Mil-STD-883D, Method 2007.2, 20-2000 Hz, soldered in a PC board	_	7.5	_	G's
Weight	_	_	_	14	_	grams

^{*} ISR will operate down to no load with reduced specifications. ** See SOA curves.

Note: The PT6650 Series requires a 330µF(output) and 100µF(input) electrolytic capacitors for proper operation in all applications.

SHEETS

PT6650

Series

CHARACTERISTIC DATA

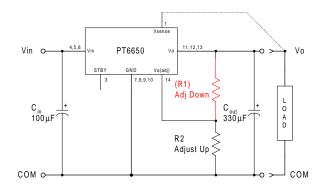
PT6650 Series @Vin=+24V Safe Operating Area Curves @Vin=+24V PT6651P, 3.3V **Efficiency vs Output Current** 100 Ambient Temperature (°C) 70 Recommended Maximum Operating Temperature Airflow Efficiency (%) - PT6652 60 —— Nat con — 60LFM - - PT6653 70 - - - 120LFN 50 - - -200LFM — PT6656 40 20 Output Current (A) Output Current (A) **Ripple vs Output Current** PT6652P, 2.5V 120 100 Ambient Temperature (°C) Recommended Maximum Operating Temperature Airflow Ripple (mVpp) - PT6652 60 - - - PT6653 - - - PT6654 - 60LFM 60 - - PT6655 50 - - 200LFM 20 30 Output Current (A) **Output Current (A)** PT6653P, 5.0V **Power Dissipation vs Output Current** Ambient Temperature (°C) 70 Airflow — PT6652 - PT6653 Pd (Watts) ____ 60LFM — - PT6654 — - PT6655 - - - 120LFM - - - 200LFM 50 ____ PT6656 30 0 Output Current (A) Output Current (A)

More Application Notes

Adjusting the Output Voltage of the PT6650 5Amp 24V Bus Converter Series

The output voltage of the Power Trends PT6650 Series ISRs may be adjusted higher or lower than the factory trimmed preset voltage with the addition of a single external resistor. Table 1 accordingly gives the allowable adjustment range for each model in the series as V_a (min) and V_a (max).

Adjust Up: An increase in the output voltage is obtained by adding a resistor R2, between pin 14 (Vo adjust) and pins 7-10 (GND).


Adjust Down: Add a resistor (R1), between pin 14 (V_o adjust) and pins 11-13 (Vout).

Refer to Figure 1 and Table 2 for both the placement and value of the required resistor, either (R1) or R2 as appropriate.

Notes:

- 1. Use only a single 1% resistorin either the (R1) or R2 location. Place the resistor as close to the ISR as possible.
- 2. Never connect capacitors from Vo adjust to either GND, Vout, or the Remote Sense pin. Any capacitance added to the V_0 adjust pin will affect the stability of the ISR.
- 3. If the Remote Sense feature is being used, connecting the resistor (R1) between pin 14 (Vo adjust) and pin 1 (Remote Sense) can benefit load regulation.
- 4. The minimum input voltage required by the part is $V_{out} + 3$, or 9V, whichever is higher.
- 5. For output voltages above 12.5Vdc, the maximum output current must be limited to 4Adc.

Figure 1

The values of (R1) [adjust down], and R2 [adjust up], can also be calculated using the following formulae.

(R1)
$$= \frac{R_0 (V_0 - 1.25)(V_a - 1.25)}{1.25 (V_0 - V_a)} - R_s \quad k\Omega$$

$$R2 = \frac{R_0 (V_0 - 1.25)}{V_a - V_0} - R_s \qquad k\Omega$$

Where: Vo = Original output voltage

V_a = Adjusted output voltage

 R_0 = The resistance value in Table 1

 R_s = The series resistance from Table 1

Table 1

PT6650 ADJUSTMENT AND FORMULA PARAMETERS							
Vo (nom)	2.5V	3.3V	5.0V	9.0V	12.0V	15.0V	
Va (min)	1.8V	2.2V	3.0V	6.0V	9.0V	10.0V	
Va (max)	4.3V	4.7V	6.5V	10.2V	13.6V	17.0V	
R_0 (k Ω)	4.99	4.22	2.49	2.0	2.0	2.0	
R _S (kΩ)	2.49	4.99	4.99	12.7	12.7	12.7	

Table 2

PT6650 ADJU							
eries Pt #	PT6652	PT6651	PT6653	Series Pt #	PT6654	PT6656	PT6655
urrent	5Adc	5Adc	5Adc	Current	5Adc	5Adc	4Adc
(nom)	2.5Vdc	3.3Vdc	5.0Vdc	V _o (nom)	9.0Vdc	12.0Vdc	15.0Vdc
(req'd)				V _a (req'd)			
1.8	(1.4)kΩ			6.0	(6.9)kΩ		
1.9	(2.9)kΩ			6.2	(9.2)kΩ		
2.0	(5.0) k Ω			6.4	(11.9)kΩ		
2.1	(8.1)kΩ			6.6	(14.0)kΩ		
2.2	(13.3) k Ω	(1.0) k Ω		6.8	(18.6) k Ω		
2.3	(23.7) k Ω	(2.3) k Ω		7.0	(23.0) k Ω		
2.4	(54.9) k Ω	(3.9) k Ω		7.2	(28.3) k Ω		
2.5		(5.8) k Ω		7.4	(35.0) k Ω		
2.6	59.9kΩ	(8.4)kΩ		7.6	(43.5) k Ω		
2.7	28.7kΩ	(11.7)kΩ		7.8	(55.0)kΩ		
2.8	18.3kΩ	(16.5)kΩ		8.0	(71.0)kΩ		
2.9	13.1kΩ	(23.6)kΩ		8.2	(95.0)kΩ		
3.0	10.0kΩ	(35.4)kΩ	(1.6)kΩ	8.4	(135.0)kΩ		
3.1	7.9kΩ	(59.0)kΩ	(2.3)kΩ	8.6	(215.0)kΩ		
3.2	6.4kΩ	(130.0)kΩ	(3.1)kΩ	8.8	(455.0)kΩ		
3.3	5.3kΩ	(150.0)RS2	(4.0)kΩ	9.0	(TJJ.0)K22	(31.7)kΩ	
	4.4kΩ	81.5kΩ	* *	9.2	64.8kΩ	(36.1)kΩ	
3.4	4.4KΩ 3.8kΩ	38.3kΩ	(5.1)kΩ	9.4	26.1kΩ	(30.1)kΩ (41.2)kΩ	
			(6.2)kΩ				
3.6	3.2kΩ	23.8kΩ	(7.6)kΩ	9.6	13.1kΩ	(47.1)kΩ	
3.7	2.7kΩ	16.6kΩ	(9.1)kΩ	9.8	6.7kΩ	(54.1)kΩ	()
3.8	2.3kΩ	12.3kΩ	(10.9)kΩ		2.8kΩ	(62.6)kΩ	(25.8)kΩ
3.9	2.0kΩ	9.4kΩ	(13.0)kΩ		0.2kΩ	(72.8) k Ω	(28.3)kΩ
4.0	1.7kΩ	7.4kΩ	(15.6)kΩ	10.4		(85.7)kΩ	(31.1)kΩ
4.1	1.4kΩ	5.8kΩ	(18.7)kΩ	10.6		(102.0) k Ω	(34.1)kΩ
4.2	1.2kΩ	4.6kΩ	(22.6)kΩ	10.8		(124.0) k Ω	(37.3)kΩ
4.3	1.0kΩ	$3.7 \mathrm{k}\Omega$	(27.6) k Ω	11.0		(155.0) k Ω	(40.9)kΩ
4.4		2.9kΩ	(34.2) k Ω	11.2		(201.0) k Ω	(44.9)kΩ
4.5		2.2kΩ	(43.6) k Ω	11.4		(278.0) k Ω	(49.3)kΩ
4.6		$1.7\mathrm{k}\Omega$	(57.6) k Ω	11.6		(432.0) k Ω	(54.3) k Ω
4.7		1.2kΩ	(80.9)kΩ	11.8		(895.0) k Ω	(59.8)kΩ
4.8			(128.0)kΩ	12.0			(66.1)kΩ
4.9			(268.0)kΩ	12.2		94.8kΩ	(73.3)kΩ
5.0				12.4		41.1kΩ	(81.6)kΩ
5.1			88.4kΩ	12.6		23.1kΩ	(91.3)kΩ
5.2			41.7kΩ	12.8		14.2kΩ	(103.0)kΩ
5.3			26.1kΩ	13.0		8.8kΩ	(117.0)kΩ
5.4			18.4kΩ	13.2		5.2kΩ	(133.0)kΩ
5.5			13.7kΩ	13.4		2.7kΩ	(154.0) k Ω
5.6			10.6kΩ	13.6		0.7kΩ	(134.0) k Ω
5.7			8.4kΩ	13.8		U./ K22	(181.0) k Ω
5.8			6.7kΩ	14.0			(268.0) k Ω
5.9			5.4kΩ	14.2			(343.0)kΩ
6.0			4.4kΩ	14.5			(570.0)kΩ
6.1			3.5kΩ	15.0			
6.2			2.8kΩ				42.3kΩ
6.3			2.2kΩ				14.8kΩ
6.4			$1.7 \mathrm{k}\Omega$	16.5			5.6kΩ

R1 = (Red)R2 = Black

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated