


Dual IGBT HVIGBT Module 400 Amperes/3300 Volts

Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeters
Α	5.11	130.0
В	5.51	140.0
С	4.49	114.0
D	2.24	57.0
E	2.42	61.5
F	M8	M8 Metric
G	0.71	18.0
Н	4.88	124.0
J	1.57	40.0
K	0.27	7.0 Dia.
L	M4	M4 Metric

Inches	Millimeters
0.51	13.0
1.57	39.9
1.71	43.4
1.49	38.0
0.20	5.0
1.10	28.0
1.72	43.8
1.86	47.2
2.39	60.6
0.65	16.5
1.85	47.0
	0.51 1.57 1.71 1.49 0.20 1.10 1.72 1.86 2.39 0.65

Description:

Powerex HVIGBTs feature highly insulating housings that offer enhanced protection by means of greater creepage and strike clearance distance for many demanding applications like medium voltage drives and auxiliary traction applications.

Features:

- ☐ -55 to 150°C Extended Temperature Range
- ☐ 100% Dynamic Tested
- ☐ 100% Partial Discharge Tested
- ☐ Advanced Mitsubishi R-Series Chip Technology
- ☐ AlSiC Baseplate
- ☐ Aluminum Nitride (AIN) Ceramic Substrate for Low Thermal Impedance
- ☐ Complementary Line-up in Expanding Current Ranges to Mitsubishi HVIGBT Power Modules
- ☐ Rugged SWSOA and RRSOA

Applications:

- ☐ High Voltage Power Supplies
- ☐ Medium Voltage Drives
- □ Motor Drives
- ☐ Traction

QID3340001 **Dual IGBT HVIGBT Module** 400 Amperes/3300 Volts

Absolute Maximum Ratings, $T_i = 25$ °C unless otherwise specified

Ratings	Symbol	QID3340001	Units
Collector-Emitter Voltage ($V_{GE} = 0V$, $T_j = -40$ to $+150^{\circ}C$)	V _{CES}	3300	Volts
Collector-Emitter Voltage ($V_{GE} = 0V, T_j = -50^{\circ}C$)	V _{CES}	3200	Volts
Junction Temperature	Tj	-50 to 150	°C
Operating Junction Temperature	T _{jop}	-50 to 150	°C
Storage Temperature	T _{stg}	-55 to 150	°C
Gate-Emitter Voltage (V _{CE} = 0V)	V _{GES}	±20	Volts
Collector Current (T _C = 95°C)	I _C	400	Amperes
Peak Collector Current (Pulse)	I _{CM}	800*	Amperes
Diode Forward Current** (T _C = 99°C)	I _F	400	Amperes
Diode Forward Surge Current** (Pulse)	I _{FM}	800*	Amperes
Maximum Collector Dissipation (T _C = 25°C, IGBT Part, T _{j(max)} ≤ 150°C)	P _C	3560	Watts
Mounting Torque, M4/M8 Terminal Screws	_	2/15	N⋅m
Mounting Torque, M6 Mounting Screws	_	6	N⋅m
Module Weight (Typical)	_	900	Grams
Isolation Voltage (Charged Part to Baseplate, AC 60Hz 1 min.)	V _{iso}	6	kVolts
Partial Discharge	Q _{pd}	10	pC
$(V_1 = 3500 V_{rms}, V_2 = 2600 V_{rms}, f = 60Hz (Acc. to IEC 1287))$	•		
Maximum Short-Circuit Pulse Width,	t _{psc}	10	μs
$(V_{CC} \le 2500V, V_{CE} \le V_{CES}, V_{GE} = +15V/-8V, T_i = 150^{\circ}C)$	·		

Electrical Characteristics, $T_i = 25$ °C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Typ.	Max.	Units
Collector-Cutoff Current	I _{CES}	$V_{CE} = V_{CES}$, $V_{GE} = 0V$, $T_j = 25$ °C	_	_	2.0	mA
	_	$V_{CE} = V_{CES}, V_{GE} = 0V, T_j = 125^{\circ}C$	_	2.0	_	mA
		$V_{CE} = V_{CES}$, $V_{GE} = 0V$, $T_j = 150$ °C	_	10	_	mA
Gate Leakage Current	I _{GES}	$V_{GE} = V_{GES}, V_{CE} = 0V$	_	_	0.5	μΑ
Gate-Emitter Threshold Voltage	V _{GE(th)}	I _C = 30mA, V _{CE} = 10V	5.7	6.2	6.7	Volts
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 400A, V _{GE} = 15V, T _j = 25°C	_	2.7***	3.3	Volts
		I _C = 400A, V _{GE} = 15V, T _j = 125°C	_	3.4	4.0	Volts
		$I_C = 400A, V_{GE} = 15V, T_j = 150^{\circ}C$	_	3.6	_	Volts
Total Gate Charge	Q _G	V _{CC} = 1800V, I _C = 170A, V _{GE} = 15V	_	3.6	_	μC
Emitter-Collector Voltage**	V _{EC}	I _E = 400A, V _{GE} = 0V, T _j = 25°C	_	2.3	3.0	Volts
		$I_E = 400A$, $V_{GE} = 0V$, $T_j = 125$ °C	_	2.45	_	Volts
		$I_E = 400A$, $V_{GE} = 0V$, $T_j = 150$ °C	_	2.40	_	Volts

^{*}Pulse width and repetition rate should be such that device junction temperature (Tj) does not exceed Tj(max) rating.

**Represents characteristics of the anti-parallel, emitter-to-collector free-wheel diode (FWDi).

***Pulse width and repetition rate should be such that device junction temperature rise is negligible.

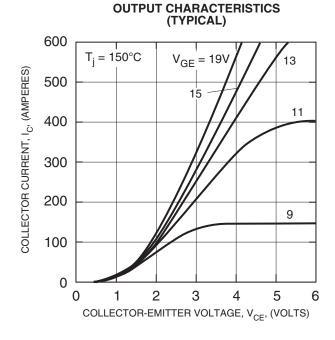
QID3340001 **Dual IGBT HVIGBT Module** 400 Amperes/3300 Volts

Electrical Characteristics, T_i = 25 °C unless otherwise specified

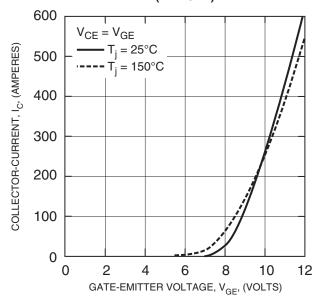
Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Input Capacitance	C _{ies}		_	46	_	nF
Output Capacitance	C _{oes}	V _{GE} = 0V, V _{CE} = 10V	_	3.0	_	nF
Reverse Transfer Capacitance	C _{res}		_	1.3	_	nF
Turn-on Delay Time	t _{d(on)}	V _{CC} = 1800V, I _C = 330A,	_	1.0	_	μs
Rise Time	t _r	$V_{GE} = \pm 15V$,	_	0.28	_	μs
Turn-off Delay Time	t _{d(off)}	$R_{G(on)} = 7.5\Omega, R_{G(off)} = 25\Omega,$	_	2.7	_	μs
Fall Time	t _f	L _S = 100nH, Inductive Load	_	0.3	_	μs
Turn-on Switching Energy	E _{on} (10%)	$T_j = 125$ °C, $I_C = 330$ A, $V_{GE} = \pm 15$ V,	_	610	_	mJ/P
Turn-off Switching Energy	E _{off} (10%)	$R_{G(on)} = 7.5\Omega, R_{G(off)} = 25\Omega,$	_	545	_	mJ/P
		V_{CC} = 1800V, L_S = 100nH, Inductive Load				
Diode Reverse Recovery Time**	t _{rr}	V _{CC} = 1800V, I _E = 330A,	_	700	_	ns
Diode Reverse Recovery Charge**	Q _{rr}	$V_{GE} = \pm 15V, R_{G(on)} = 7.5\Omega,$	_	380*	_	μC
Diode Reverse Recovery Energy	E _{rec} (10%)	L _S = 100nH, Inductive Load, T _j = 125°C	_	390	_	mJ/P
Stray Inductance (C1-E2)	L _{SCE}		_	TBD	_	nH
Lead Resistance Terminal-Chip	R _{CE}		_	TBD		mΩ

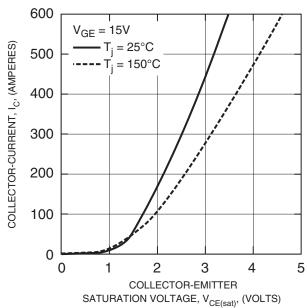
Thermal and Mechanical Characteristics, $T_i = 25$ °C unless otherwise specified

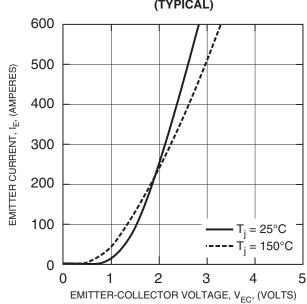
Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case***	R _{th(j-c)} Q	Per IGBT	_	_	0.036	°C/W
Thermal Resistance, Junction to Case***	R _{th(j-c)} D	Per FWDi	_	_	0.0675	°C/W
Contact Thermal Resistance, Case to Fin	R _{th(c-f)}	Per Module,	_	0.010	_	°C/W
		Thermal Grease Applied, $\lambda_{grease} = 1W/mK$				


^{*}Pulse width and repetition rate should be such that device junction temperature rise is negligible.

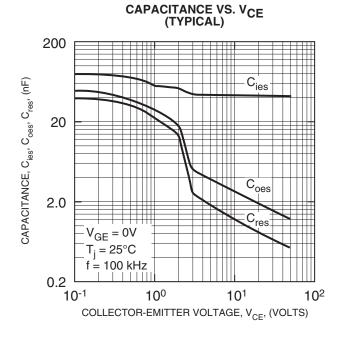
**Represents characteristics of the anti-parallel, emitter-to-collector free-wheel diode (FWDi).

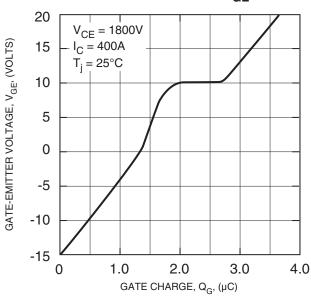

****T_C measurement point is just under the chips.


QID3340001 Dual IGBT HVIGBT Module 400 Amperes/3300 Volts

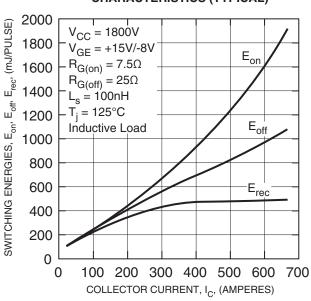

TRANSFER CHARACTERISTICS (TYPICAL)

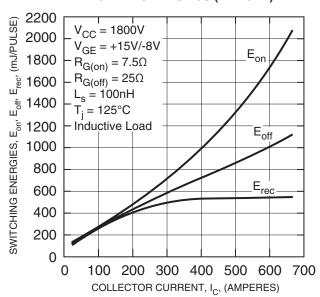
COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL)


FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL)



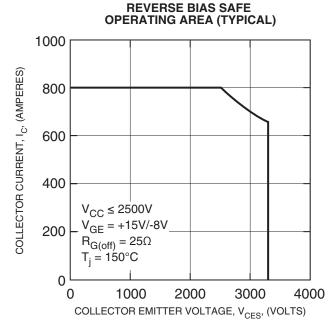
QID3340001 Dual IGBT HVIGBT Module 400 Amperes/3300 Volts



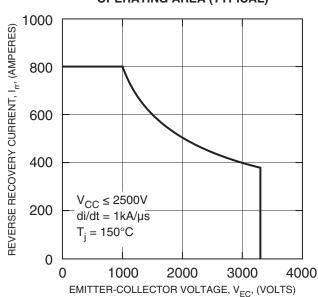

GATE CHARGE VS. $V_{\mbox{\scriptsize GE}}$

SWITCHING ENERGY CHARACTERISTICS (TYPICAL)

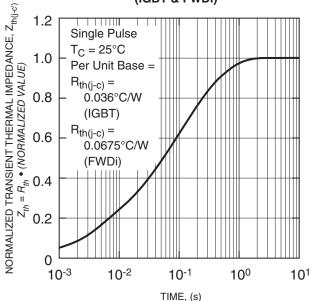
HALF-BRIDGE SWITCHING ENERGY CHARACTERISTICS (TYPICAL)



11/14 Rev. 5



Powerex, Inc., 173 Pavilion Lane, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com


QID3340001 Dual IGBT HVIGBT Module 400 Amperes/3300 Volts

FREE-WHEEL DIODE REVERSE RECOVERY SAFE OPERATING AREA (TYPICAL)

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT & FWDi)

