QDLASER

QLD106D-64D0 series

Preliminary

1064 nm 400mW Pulsed DFB Laser Butterfly Package

C00106-03 September 2014

1. DESCRIPTION

The QLD106D-64D0 is a high power pulsed 1064-nm distributed feedback (DFB) laser for use in seeder for fiber lasers and sensing applications. The laser is assembled into a 14-pin butterfly package with an optical isolator, a monitor PD and a thermo-electric cooler.

2. FEATURES

- Single longitudinal mode operation at 1064 nm
- High peak output power of 400mW under pulsed operation
- 1-10nsec pulse width available
- Fiber-pigtailed 14-pin butterfly package with a TEC
- Optical isolator integration
- Polarization maintaining fiber integration

3. APPLICATION

- Seeder for fiber lasers
- Sensing

4. ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATING	UNIT
Optical Output power (CW)	P_{f}	50	mW
LD Forward Current (CW)	I_{F}	250	mA
Peak Output power (Pulse 10nsec/1MHz)	P_{f_pulse}	600	mW
LD Peak Current (Pulse 10nsec/1MHz)	I_{F_pulse}	2	A
LD Reverse Voltage	V_{RLD}	2	V
TEC Drive Current	I_{TEC}	2	A
TEC Drive Voltage	V_{TEC}	4.3	V
Operation Temperature	$T_{\rm c}$	0 to 60	°C
Storage Temperature	T_{stg}	-40 to 85	°C
Lead Soldering Temperature (5 s)	T_{sld}	230	°C

QLD106D-64D0 C00106-03

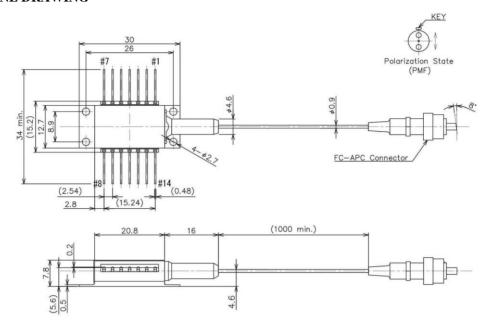
5. OPTICAL AND ELECTRICAL CHARACTERISTICS

 $(T_{LD} = 25^{\circ}C, \text{ unless otherwise specified})$

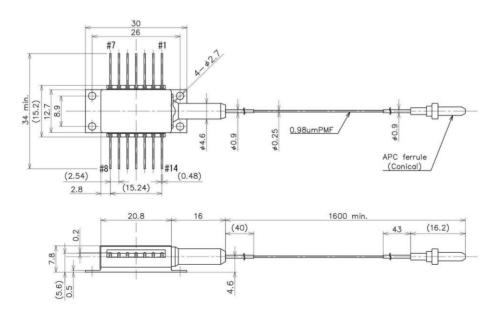
(ILD 20 c, amoss salet wise specimes)						
PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Peak Wavelength	λ_{p}	$CW, P_f = 40 \text{ mW}$	1059*	1064	1069*	nm
Temperature Coefficient of λ_p	$d\lambda_p/dT$	CW / Pulsed	-	0.08	-	nm/K
Threshold Current	I_{th}	CW / Pulsed	-	30	40	mA
CW Fiber Output Power	$P_{\rm f}$	CW, I _f =150 mA	-	40	-	mW
CW Operation Voltage	V_{op}	$CW, P_f = 40 \text{ mW}$	-	1.8		V
Pulsed Peak Output Power	P_{f_peak}	Pulsed, I _{f_peak} =1.6 A	400	500	-	mW
Pulsed Averaged Output Power	P_{f_ave}	Pulsed 2.5ns/100kHz/1.6A	0.1			mW
		Pulsed 20ns/100kHz/1.6A	0.8			mW
Pulse Width	t_{pw}	Pulsed	1		10**	nsec
Duty Cycle	D.C.	Pulsed			1**	%
Sidemode Suppression Ratio	CMCD	$CW, P_f = 40 \text{ mW}$	30	40	-	dB
	SMSR	Pulsed 2ns/100kHz	25	30		dB
Polarization Extinction Ratio	PER	CW	15	20		dB
Monitor PD Current	Im	CW, P _f =40mW		300		μΑ
Thermistor Resistance	Rth	$T_{LD} = 25^{\circ}C, B=3900K$	9.5	10	10.5	kΩ

^(*) Tighter wavelength tolerance is available as an option.

6. PRODUCT PART NUMBER


Part Number	Fiber Type	Fiber Diameter	Connector	
QDL106D-64D0	L106D-64D0 Polarization maintaining 900um		FC/APC	
QLD106D-64D0-11	fiber	250um	Ferrule	

^(**) Longer pulse width or higher duty cycle is available with proper adjustment of a peak current. Please ask QDL for more detail.



QLD106D-64D0 C00106-03

7. OUTLINE DRAWING

(a) 900um fiber diameter and FC/APC connector type (QLD106D-64D0)


(b) 250um fiber diameter and ferrule type (QLD106D-64D0-11)

QLD106D-64D0 C00106-03

8. PIN CONFIGURATION

No.	Description	No.	Description
1	TEC (+)	8	NC
2	Thermistor	9	NC
3	PD Anode	10	Laser Anode
4	PD Cathode	11	Laser Cathode
5	Thermistor	12	NC
6	NC	13	Case Ground
7	NC	14	TEC (-)

9. NOTICE

• Safety Information

This product is classified as Class 3B laser product, and complies with 21 CFR Part 1040.10. Please do not take a look at laser lighting in operations since laser devices may cause troubles to human eyes. Please do not eat, burn, break and make chemical process of the products since they contain GaAs material.

• Handling products

Semiconductor lasers are easily damaged by external stress such as excess temperature and ESD.

Please pay attention to handling products, and use within range of maximum ratings.

QD Laser takes no responsibility for any failure or unusual operation resulting from improper handling, or unusual physical or electrical stress.

RoHS

This product conforms to RoHS compliance related EU Directive 2011/65/EU.

QD Laser, Inc.

Contact: info@qdlaser.com http://www.qdlaser.com

Copyright 2013-2014 All Rights Reserved by QD Laser, Inc.

Keihin Bldg. 1F 1-1 Minamiwatarida-cho, Kawasaki-ku, Kawasaki, Kanagawa Zip 210-0855 Japan

All company or product names mentioned herein are trademarks or registered trademarks of their respective owners. Information provided in this data sheet is accurate at time of publication and is subject to change without advance notice.