3-Axis Single Chip Magnetic Sensor QMC6310

QSI CORPORATION

The QMC6310 is a three-axis magnetic sensor, which integrates magnetic sensors and signal condition ASIC into one silicon chip. This Land Grid Array package (LGA) is targeted for applications such as e-compass, map rotation, gaming and personal navigation in mobile and wearable devices.

The QMC6310 is based on state-of-the-art, high resolution, magneto-resistive technology. Along with the custom-designed 16-bit ADC ASIC, it offers the advantages of low noise, high accuracy, low power consumption, offset cancellation and temperature compensations. QMC6310 enables 1° to 2° compass heading accuracy. The I²C serial bus allows for easy interface.

The QMC6310 is in a 1.2x1.2x0.53mm³ surface mount 8-pin LGA package.

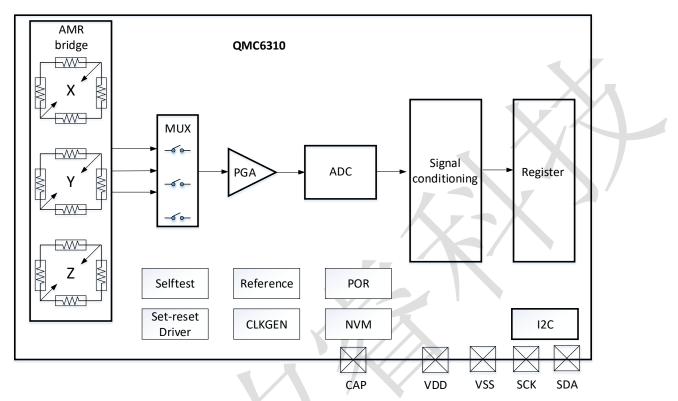
FEATURES

- 3-Axis Magneto-Resistive Sensors in a 1.2x1.2x0.5 3mm³ LGA, Guaranteed to Operate Over an Extended Temperature Range of -40 °C to +85 °C.
- 16 Bit ADC With Low Noise AMR Sensors Achieves 2 milli-Gauss Field Resolution
- Wide Magnetic Field Range (±30 Gauss)
- Temperature Compensated Data Output
- I²C Interface with Standard and Fast Modes
- Built-In Self-Test
- Wide Range Operation Voltage (2.5V to 3.6V) and Low Power Consumption (35μA)
- Lead Free Package Construction
- Software and Algorithm Support Available

BENEFIT

- Small Size for Highly Integrated Products. Signals Have Been Digitized and Calibrated.
- Enables 1° To 2° Degree Compass Heading Accuracy, Allows for Pedestrian Navigation and LBS Applications
- Maximizes Sensor's Full Dynamic Range and Resolution
- Automatically Maintains Sensor's Sensitivity Under Wide Operating Temperature Range
- High-Speed Interfaces for Fast Data Communications. Maximum 1.5KHz Data Output Rate
- Enables Low-Cost Functionality Test After Assembly in Production
- Compatible with Battery Powered Applications
- RoHS Compliance
- Compassing Heading, Hard Iron, Soft Iron, and Auto Calibration Libraries Available

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST. 1/17


CONTENTS

CO	NTENTS		2
1	INTERN	AL SCHEMATIC DIAGRAM	3
	1.1	Internal Schematic Diagram	3
2	SPECIFI	CATIONS AND I/O CHARACTERISTICS	4
	2.1	Product Specifications	4
	2.2	Absolute Maximum Ratings	5
	2.3	I/O Characteristics	5
3	PACKAC	GE PIN CONFIGURATIONS	5
	3.1	Package 3-D View	5
	3.2	Package Outlines	6
4	EXTERN	VAL CONNECTION	7
	4.1	Recommended External Connection	7
	4.2	Mounting Considerations	7
	4.3	Layout Considerations	8
5	BASIC D	DEVICE OPERATION	8
	5.1	Anisotropic Magneto-Resistive Sensors Power Management	8
	5.2	Power Management	8
	5.3	Power On/Off Time	9
	5.4	Communication Bus Interface I ² C and Its Addresses	.10
	5.5	Internal Clock	.10
	5.6	Temperature Compensation	.10
6	MODES	OF OPERATION	.10
	6.1	Modes Transition Description of Modes ATION EXAMPLES	.10
	6.2	Description of Modes	.11
7	APPLICA	ATION EXAMPLES	.11
	7.1	Normal Mode Setup Example	.11
	7.2	Continuous Mode Setup Example	
	7.3	Self-test Example	
	7.4	Suspend Mode Example	.11
	7.5	Measurement Example	
	7.6	Soft Reset Example	.11
8	I ² C COM	MUNICATION PROTOCOL	
	8.1	I ² C Timings	
	8.2	I ² C R/W Operation	.13
9	REGISTI	ERS	
	9.1	Register Map	
	9.2	Register Definition	.14

↓\$₽ 砂睿

INTERNAL SCHEMATIC DIAGRAM 1

1.1 **Internal Schematic Diagram**

Figure 1. Block Diagram

Block	Function
AMR bridge	3-axis magnetic sensor
MUX	Multiplexer for sensor channels
PGA	Programmable gain amplifier for sensor signals
ADC	Analog-to-Digital converter
Signal conditioning	Digital blocks for magnetic signal calibration and compensations
I ² C	Interface logic data I/O
NVM	Non-volatile memory
Register	Internal register
Selftest	Internal driver to generate self-test stimulus
Set-reset Driver	Internal driver to initialize magnetic sensor
Reference	Voltage/current reference for internal biasing
CLKGEN.	Internal oscillator for internal operation
POR	Power on reset

Table 1. Block Function

The information contained herein is the exclusive property of QST, and shall not be distributed,	
reproduced, or disclosed in whole or in part without prior written permission of QST.	

SPECIFICATIONS AND I/O CHARACTERISTICS 2

Product Specifications 2.1

Table 2. Specifications (Tested and specified at 25°C except stated otherwise.)

Parameter	Conditions		Min	Тур	Max	Unit
Supply Voltage	VDD		2.5		3.6	V
Suspend Mode Current	Total Current on VDD			22		μA
		ODR=10Hz		35/78		
Normal Mode	Low power and high	ODR=50Hz		85/310		uA
Current ^[1]	power mode	ODR=100Hz		150/600		UA
	power mode	ODR=200Hz		280/1180		
Continuous Mode Current	Maximum ODF	R: 1500Hz		2200		uA
Sensor Field Range	Full Scale		-30		+30	Gauss
	Field Range =	±30G		1000		LSB/G
O a sectification [2]	Field Range =		2500		LSB/G	
Sensitivity ^[2]	Field Range =		3750		LSB/G	
	Field Range =	YZ	15000		LSB/G	
Linearity	Field Range = ±30G Happlied= ±15G		4	0.5		%FS
Hysteresis	3 sweeps acro	ss ±30G	ΊK	0.03		%FS
Offset				±10		mG
Sensitivity Tempco	Ta = -40°C~85	°C	/	±0.05		%/°C
Digital Resolution	Field Range =	Field Range = ±30G		1.0		mGauss
Field Resolution	Standard	X/Y axis		2		mGauss
	deviation Z axis			3		moduss
X-Y-Z Orthogonality	Sensitivity Directions			90±1		Degree
Operating Temperature			-40		85	°C
ESD	НВМ		4000			V
200	CDM		1000			,

Note [1]: The Normal Mode Current differs at different OSR1 setting. The value of low power mode is measured at OSR1=1 setting, and the value of high power mode is measured at OSR1=8.

Note [2]: Sensitivity is calibrated at zero field; it is slightly decreased at high fields.

2.2 Absolute Maximum Ratings

Parameter	MIN.	MAX.	Units		
VDD	-0.3	5.4	V		
Storage Temperature	-40	125	°C		
Exposed to Magnetic Field (all directions)		50000	Gauss		
Reflow Classification	MSL 1, 260 °C F	Peak Temperature			

 Table 3. Absolute Maximum Ratings (Tested at 25°C except stated otherwise.)

2.3 I/O Characteristics

Table 4. I/O Characteristics (VDDIO=3.3V)

Symbol	Parameter(Units)	Minimum	Typical	Maximum
Viн	High Level Input Voltage(V)	0.7*VDDIO		
VIL	Low Level Input Voltage(V)			0.3*VDDIO
VHYS	Hysteresis of Schmitt Trigger Input(V)	0.1		
lı∟	Input Leakage, ALL Inputs(uA)	-10		10
Voн	High Level output Voltage(V)	0.8*VDDIO		
Vol	Low Level output Voltage(V)			0.2*VDDIO

3 PACKAGE PIN CONFIGURATIONS

3.1 Package 3-D View

Arrow indicates direction of magnetic field that generates a positive output reading in normal measurement configuration.

< QMC6310 >

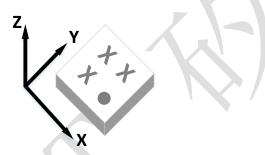


Figure 2. Package 3-D View

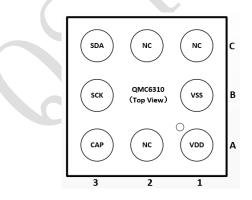


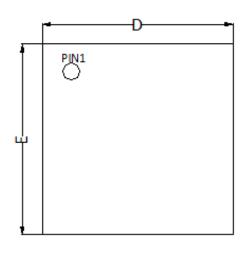
Figure 3. Package Top View

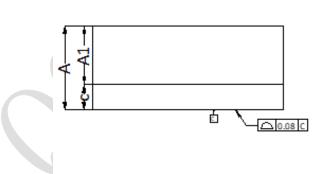
Table 5. Pin Configurations

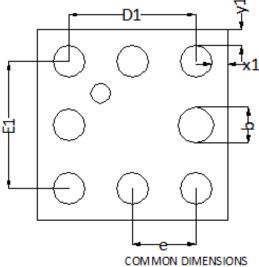
The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

4 \$Por or the second	13-52-17	Title:	QMC6310 Datasheet
---	----------	--------	-------------------

PIN	PIN	I/O	TYPE	Function
No.	NAME			
A1	VDD		Power	Supply Power
A2	NC NC Not connected		Not connected	
A3	CAP	P CMOS Reservoir capacitor connection		Reservoir capacitor connection
B1	VSS		VSS	Ground
B3	SCK	I	CMOS	I2C clk
C1	NC		NC	Not connected
C2	NC		NC	Not connected
C3	SDA	I/O	CMOS	I2C data


3.2 Package Outlines


3.2.1 Package Type


LGA 8-pin

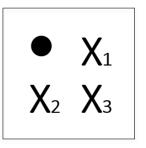
3.2.2 Package Size:

1.2mm (Length)*1.2mm (Width)*0.53mm (Height)

(UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN.	NOM.	MAX.		
Α	0.47	0.53	0.59		
A1		0.37			
C	0.13	0.16	0.19		
D	1.15	1.25			
D1		0.80 BSC			
E	1.15	1.20	1.25		
E1		0.80 BSC			
e		0.40 BSC			
b	0.15	0.20	0.25		
x1		0.10 REF			
y1	0.10 REF				

Figure 4. Package Size


3.2.3 Marking:

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

Tracking code: X1X2X3

 X_1 = Series code, to distinguish 6310 series with the different I2C address "U" for QMC6310U, "N" for QMC6310N

X₂X₃= Package Lot •= Pin1 Identifier

4 EXTERNAL CONNECTION

4.1 Recommended External Connection

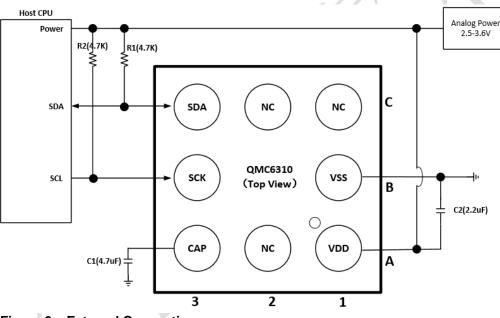


Figure 6. External Connection

Note: R1/R2 selection guide: 2.7Kohm for a short I2C bus length (less than 10 cm), and 4.7Kohm for a bus length less than 5 cm.

4.2 Mounting Considerations

The following is the recommend printed circuit board (PCB) footprint for the QMC6310. Due to the fine pitch of the pads, the footprint should be properly centered in the PCB.

The information contained herein is the exclusive property of QST, and shall not be distributed,	7 / 17
reproduced, or disclosed in whole or in part without prior written permission of QST.	

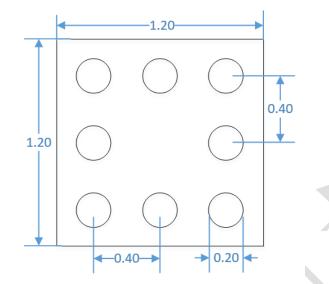


Figure 7. QMC6310 PCB footprint

4.3 Layout Considerations

Besides keeping all components that may contain ferrous materials (nickel, etc.) away from the sensor on both sides of the PCB, it is also recommended that there is no conducting copper line under/near the sensor in any of the PCB layers.

4.3.1 Solder Paste

A 4-mil stencil and 100% paste coverage is recommended for the electrical contact pads.

4.3.2 **Reflow Assembly**

This device is classified as MSL 1 with 260°C peak reflow temperature. Reference IPC/JEDEC standard J-STD-033 for additional information.

No special reflow profile is required for QMC6310, which is compatible with lead eutectic and lead-free solder paste reflow profiles. QST recommends adopting solder paste manufacturer's guidelines. Hand soldering is not recommended.

4.3.3 **External Capacitors**

The external capacitors C1 should be ceramic type with low ESR characteristics. The exact ESR value is not critical, but values less than 200 milli-ohms are recommended. Reservoir capacitor C1 is nominally 4.7 µF in capacitance. Low ESR characteristics may not be in many small SMT ceramic capacitors (0402), so be prepared to up-size the capacitors (0201) to gain low ESR characteristics.

BASIC DEVICE OPERATION 5

5.1 Anisotropic Magneto-Resistive Sensors

The QMC6310 magneto-resistive sensor circuit consists of tri-axial sensors and application specific support circuits to measure magnetic fields. With a DC power supply is applied to the sensor two terminals, the sensor converts any incident magnetic field in the sensitive axis directions to a differential voltage output.

The device has an offset cancellation function to eliminate sensor and ASIC offsets. It also applies a self-aligned magnetic field to restore magnetic state before each measurement to ensure high accuracy. Because of these features, the QMC6310 doesn't need to calibrate every time in most of application situations. It may need to be calibrated once in a new system or a system changes a new battery.

5.2 **Power Management**

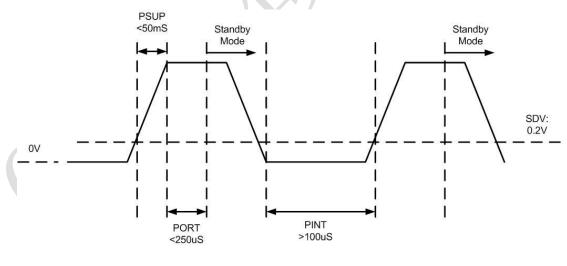
8/17 The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

There are only one power supply pins to the device. VDD provides power for all the internal analog and digital functional blocks and I/O.

When the device is powered on, all registers are reset by POR (Power-On-Reset), then the device transits to the suspend mode and waits for further commands.

Table 6 provides references for two power states.

Table 6: Power States


Power State	VDD	Power State description
1	0V	Device Off, No Power Consumption
2	2.5V~3.6V	Device On, Enters Suspend Mode after POR, waiting for further commands

5.3 Power On/Off Time

After the device is powered on, some time periods are required for the device fully functional. The external power supply requires a time period for voltage to ramp up (PSUP), it is typically 50 milli-second. However, it isn't controlled by the device. The Power-On-Reset time period (PORT) includes time to reset all the logics, load values in NVM to proper registers, enter the standby mode and get ready for analogy measurements. The power on/off time related to the device is in Table 7.

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
POR	PORT	Time Period After VDD at			250	uS
Completion		Operating Voltage to Ready for				
Time		I ² C Command				
Power off	SDV	Voltage that Device			0.2	V
Voltage		Considered to be Power				
		Down.				
Power on	PINT	Time Period Required for	100			uS
Interval		Voltage Lower Than SDV to				
		Enable Next POR				

Table 7. Time Required for Power On/Off

Power On/Off Timing

Figure 8. Power On/Off Timing

Communication Bus Interface I²C and Its Addresses 5.4

This device will be connected to a serial interface bus as a slave device under the control of a master device, such as the processor. Control of this device is carried out via I²C.

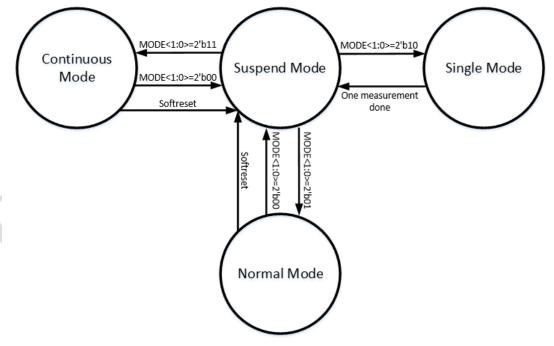
This device is compliant with I²C Bus Specification. As an I²C compatible device, this device has a 7-bit serial address and supports I²C protocols. This device supports standard and fast speed modes, 100kHz and 400kHz, respectively. External pull-up resistors are required to support all these modes.

There are two I²C address available for QMC6310 series. The value is 1CH for QMC6310U and 3CH for QMC6310N.

If more I²C address options are required, please contact factory.

5.5 **Internal Clock**

The device has an internal clock for internal digital logic functions and timing management. This clock is not available to external usage.


5.6 **Temperature Compensation**

The Device has built-in Temperature compensation function. The compensated magnetic sensor data is placed in the Output Data Registers automatically.

6 MODES OF OPERATION

6.1 **Modes Transition**

The device has three different modes, controlled by register (0x0A), mode bits Mode<1:0>. The main purpose of these modes is for power management. The modes can be transited from one to another, as shown below. through I²C commands of changing mode bits. The default mode is Suspend Mode.

Figure 9. Modes Transition

The information contained herein is the exclusive property of QST, and shall not be distributed,	10 / 17
reproduced, or disclosed in whole or in part without prior written permission of QST.	

6.2 Description of Modes

6.2.1 Normal Mode

During the Normal mode (MODE bits= 2'b01), the magnetic sensor continuously makes measurements and places measured data in data output registers. The field range register is controlled by RNG<1:0> in register 0BH and data output rate is controlled by ODR<1:0> in register 0AH. They should be set up properly for your applications in the normal mode.

6.2.2 Single Mode

During the Single Mode (MODE bits=2'b10), the whole chip runs only once and enter in the suspend mode after 1 measurement is finished.

6.2.3 Continuous Mode

During the Continuous Mode (MODE bits=2'b11), the whole chip runs all the time without sleep time, so the maximum ODR can be got at this mode. The self-test function can only be enabled in Continuous Mode and enters in Suspend Mode after the data is updated.

6.2.4 Suspend Mode

Suspend mode is the default magnetometer state upon POR and soft reset. Only few function blocks are activated in this mode which keeps power consumption as low as possible. In this state, register values are hold on by a lower power LDO, I2C interface is active and all register read and write are allowed. There is no magnetometer measurement in this Mode.

7 APPLICATION EXAMPLES

7.1 Normal Mode Setup Example

- ♦ Write Register 29H by 0x06 (Define the sign for X Y and Z axis)
- ♦ Write Register 0BH by 0x08 (Define Set/Reset mode, with Set/Reset On, Field Range 8Guass)
- ♦ Write Register 0AH by 0xCD (set normal mode, set ODR=200Hz)

7.2 Continuous Mode Setup Example

- ♦ Write Register 29H by 0x06 (Define the sign for X Y and Z axis)
- ♦ Write Register 0BH by 0x08 (Define Set/Reset mode, with Set/Reset On, Field Range 8Guass)
- ♦ Write Register 0AH by 0xC3 (set continuous mode)

7.3 Self-test Example

- ♦ Write Register 29H by 0x06 (Define the sign for X Y and Z axis)
- ♦ Write Register 0AH by 0x03 (set continuous mode)
- ♦ Check status register 09H[0] ,"1" means ready
- ♦ Read data Register 01H ~ 06H, recording as datax1/datay1/dataz1
- ♦ Write Register 0BH by 0x40(enter self-test function)
- ♦ Waiting 5 millisecond until measurement ends
- ♦ Read data Register 01H ~ 06H, recording as datax2/datay2/dataz2
- ♦ Calculate the delta (datax1-datax2), (datay2-datay1), (dataz2-dataz1)

7.4 Suspend Mode Example

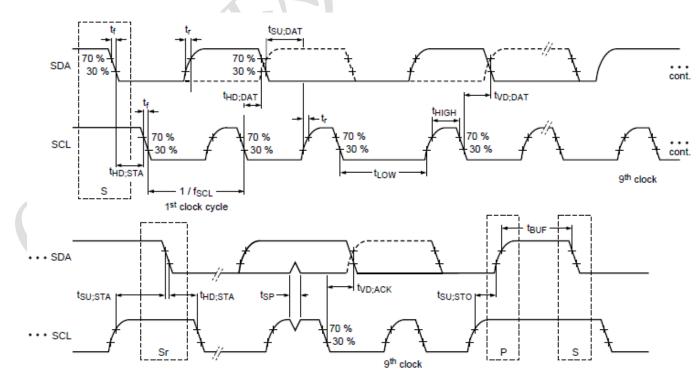
♦ Write Register 0AH by 0x00

7.5 Measurement Example

- ♦ Check status register 09H[0] ,"1" means ready
- ♦ Read data register 01H ~ 06H

7.6 Soft Reset Example

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.


♦ Write Register 0BH by 0x80

I²C COMMUNICATION PROTOCOL 8

I²C Timings 8.1

Below table and graph describe the I²C communication protocol times

Symbol	Parameter	Conditions	Standa	rd-mode	Fast	t-mode	Unit
			Min	Max	Min	Max	
fscl	SCL clock frequency		0	100	0	400	kHz
thd;sta	hold time (repeated) START condition	After this period, the first clock pulse is generated.	4.0		0.6		uS
tlow	LOW period of the SCL clock		4.7		1.3		uS
tніgн	HIGH period of the SCL clock		4.0		0.6		uS
tsu;sta	set-up time for a repeated START condition		4.7		0.6		uS
thd;dat	data hold time		0		0		uS
tsu;dat	data set-up time		250		100		nS
tr	rise time of both SDA and SCL signals			300		300	nS
tr	fall time of both SDA and SCL signals		1-1	300		300	nS
tsu;sto	set-up time for STOP condition		4.0		0.6		uS
t BUF	bus free time between a STOP and START condition		4.7		1.3		uS
Cb	capacitive load for each bus line			200		200	pF
tvd;dat	data valid time			0.8		0.8	uS
tvd;ack	data valid acknowledge time			0.8		0.8	uS

Figure 10. I²C Timing Diagram

The information contained herein is the exclusive property of QST, and shall not be distributed,	12 / 17
reproduced, or disclosed in whole or in part without prior written permission of QST.	

8.2 I²C R/W Operation

8.2.1 Abbreviation

Table 9. Abbreviation

SACK	Acknowledged by slave
MACK	Acknowledged by master
NACK	Not acknowledged by master
RW	Read/Write

8.2.2 Start/Stop/Ack

START: Data transmission begins with a high to transition on SDA while SCL is held high. Once I²C transmission starts, the bus is considered busy.

STOP: STOP condition is a low to high transition on SDA line while SCL is held high.

ACK: Each byte of data transferred must be acknowledged. The transmitter must release the SDA line during the acknowledge pulse while the receiver must then pull the SDA line low so that it remains stable low during the high period of the acknowledge clock cycle.

NACK: If the receiver doesn't pull down the SDA line during the high period of the acknowledge clock cycle, it's recognized as NACK by the transmitter.

8.2.3 I²C Write

I²C write sequence begins with start condition generated by master followed by 7 bits slave address and a write bit (R/W=0). The slave sends an acknowledge bit (ACK=0) and releases the bus. The master sends the one-byte register address. The slave again acknowledges the transmission and waits for 8 bits data which shall be written to the specified register address. After the slave acknowledges the data byte, the master generates a stop signal and terminates the writing protocol.

Table 10. I²C Write for QMC6310U 📹

	 _	_	-	<u> </u>			<u>.</u>			<u> </u>																		
		SI	ave	e Ao	ddre	ess		R			Re	egis	ster	Ad	dre	ss						Da	ata					
ST								W	SЪ				(0x	0A)				Š				(0x	03)				SЪ	rv L
AR	0	0	1	1	1	0	0	0	Ó	0	0	0	0	1	0	1	0	Ś	0	0	0	0	0	0	1	1	ç	Ŏ
									2																			Ψ

Table 11. I²C Write for QMC6310N

S		Sl	ave	e Ac	ddre	ess		R	(0)		Re	egis			dre	SS		(0)				Da					(0)	(0)
<u> </u>				-				W	SA				(0x	JA)				SA				(0x	03)				SA	ST
AR.	0	1	1	1	1	0	0	0	Ŝ	0	0	0	0	1	0	1	0	Ŝ	0	0	0	0	0	0	1	1	ç	P
-																											\sim	Ŭ

8.2.4 I²C Read

I²C read sequence consists of a one-byte I²C write phase followed by the I²C read phase. A start condition must be generated between two phases. The I²C write phase addresses the slave and sends the register address to be read. After slave acknowledges the transmission, the master generates again a start condition and sends the slave address together with a read bit (R/W=1). Then master releases the bus and waits for the data bytes to be read out from slave. After each data byte, the master has to generate an acknowledge bit (ACK = 0) to enable further data transfer. A NACK from the master stops the data being transferred from the slave. The slave releases the bus so that the master can generate a STOP condition and terminate the transmission.

Table 12. I²C Read for QMC6310U

	IUN				U 11	cu					•											
			SI	ave	e Ac	ddre	ess		R			Re	egis	ster	Ad	dre	SS					
	STA								W	Š				(0x	00)				SAC			
	AR	0	0	1	1	1	0	0	0	Ó	0	0	0	0	0	0	0	0	<u>í</u>			
	Ĥ									X									X			
	S		SI	ave	A e	ddre	ess		R	ŝ				Da	ata				·Z	o ا		
									in is th le or i												tribute	ed,
1	-									-			-			-						

初睿

							W				(0x	80)			
0	0	1	1	1	0	0	1	1	0	0	0	0	0	0	0

Table 13. I²C Read for QMC6310N

ST		SI	ave	e Ac	ddre	ess		R W	SA		Re		ter (0x		dre	SS		/S	
START	0	1	1	1	1	0	0	0	ACK	0	0	0	0	0	0	0	0	SACK	
ST		SI	ave	e Ac	ddre	ess		R W	SA				Da (0x					N/	S
START	0	1	1	1	1	0	0	1	АСК	1	0	0	0	0	0	0	0	NACK	ΓΟΡ

9 REGISTERS

9.1 **Register Map**

The table below provides a list of the 8-bit registers embedded in the device and their respective function and addresses

Table 14. Register Map

	r. negiste	i iliap							
Addr.	7	6	5	4	3	2	1	0	Access
00H	CHIPID[7:0]							Read only
01H	Data Out	tput X LSE	8 Register	XOUT[7:	:0]				Read only
02H	Data Out	tput X MS	B Register	XOUT[1	5:8]	K//			Read only
03H	Data Out	tput Y LSE	8 Register	YOUT[7:0]				Read only
04H	Data Out	tput Y MS	B Register	YOUT[15	5:8]				Read only
05H	Data Out	tput Z LSE	8 Register	ZOUT[7:0]				Read only
06H	Data Out	tput Z MSI	3 Register	ZOUT[15	:8]				Read only
09H			RF	U			OVFL	DRD	Read only
								Y	
0AH	OSR2<1	:0>	OSR1<1	:0>	ODR<1:	:0>	MODE	<1:0>	Read/Write
0BH	SOFT_	SELF_	R	FU	RNG<1	:0>	SET/RE	ESET	Read/Write
	RST	TEST					MODE-	<1:0>	

Register Definition 9.2

9.2.1 **Output Data Register**

Register 00H stores the chip ID. The default value is 80H.

Registers 01H ~ 06H store the measurement data from each axis magnetic sensor in each working mode. In the normal mode, the output data is refreshed periodically based on the data update rate ODR setup in control registers 0AH. The data stays the same, regardless of reading status through I²C, until new data replaces them. Each axis has 16-bit data width in 2's complement, i.e., MSB of 02H/04H/06H indicates the sign of each axis. The output data of each channel saturates at -32768 and 32767.

Addr.	7	6	5	4	3	2	1	0	
00H	CHIPID[7	7:0]			-				
01H	Data Out	tput X LS	B Register	XOUT[7:	0]				
02H	Data Out	tput X M	SB Registe	r XOUT[1	5:8]				
03H	Data Out	tput Y LS	B Register	YOUT[7:	0]				
04H	Data Out	tput Y M	SB Registe	r YOUT[1	5:8]				

Table 15 Output Data Register

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

05H	Data Output Z LSB Register ZOUT[7:0]
06H	Data Output Z MSB Register ZOUT[15:8]

9.2.2 Status Register

There is one status register located in address 09H.

Register 09H has two bits indicating for status flags, the rest are reserved for factory use. The status registers are read only bits.

Table 16. Status Register 1

Addr.	7	6	5	4	3	2	1	0
09H							OVFL	DRDY

Data Ready Register (DRDY), it is set when all three-axis data is ready and loaded to the output data registers in each mode. It is reset to "0" by reading the status register through I²C commands

DRDY: "0": no new data, "1": new data is ready

OVFL bit set high when either axis code output exceeds the range of [-30000,30000] LSB and reset to "0" after this bit is read.

OVFL: "0": no data overflow occurs, "1": data overflow occurs

9.2.3 Control Registers

Two 8-bits registers are used to control the device configurations.

Control register 1 is located in address 0AH, it sets the operational modes (MODE) and over sampling rate (OSR). Control register 2 is located in address 0BH. It controls soft reset, self-test and set/reset mode.

Two bits of MODE registers can transfer mode of operations in the device, the four modes are Suspend Mode, Normal mode, Single Mode and Continuous Mode. The default mode after Power-On-Reset (POR) is Suspend Mode. Suspend Mode should be added in the middle of mode shifting between Continuous Mode. Single Mode and Normal Mode.

The Output data rate is controlled by ODR registers. Four data update frequencies can be selected: 10Hz, 50Hz, 100Hz or 200Hz.

Over sample Rate (OSR1) registers are used to control bandwidth of an internal digital filter. Larger OSR value leads to smaller filter bandwidth, less in-band noise and higher power consumption. It could be used to reach a good balance between noise and power. Four over sample ratios can be selected, 8,4,2 or 1.

Another filter is added for better noise performance; the depth can be adjusted through OSR2.

7	6	5	4		3	2	1		0
OSR2<1:0>		OSR1<1:0>		ODR<		1:0> MOI		DE<1:0>	
Definitio	on	00		01		10		11	
Mode Control		Suspend		Normal		Single		Continuous	
		-		Mode				Mode	
Output Data		10Hz		50Hz		100Hz		200Hz	
Rate									
Over	sample	8		4		2		1	
Ratio1	-								
Down	sampling	1		2		4		8	
rate									
	7 OSR2 Definitic Mode Co Output D Rate Over Ratio1 Down	76OSR2<1:0>DefinitionMode ControlOutput DataRateOverSampleRatio1DownSampling	7 6 5 OSR2<1:0> OSR1<1	7654OSR2<1:0>OSR1<1:0>Definition00Mode ControlSuspendOutput Data Rate10HzOver Ratio18Cover Down Sampling1	7 6 5 4 OSR2<1:0> OSR1<1:0> Definition 00 01 Mode Control Suspend Nor Output Data 10Hz 50H Rate 0 4 Over sample 8 4 Ratio1 1 2	7 6 5 4 3 OSR2<1:0> OSR1<1:0> ODR Definition 00 01 Mode Control Suspend Normal Mode Output Data Rate 10Hz 50Hz Over sample Ratio1 8 4 Down sampling 1 2	7 6 5 4 3 2 OSR2<1:0> OSR1<1:0> ODR<1:0> Definition 00 01 10 Mode Control Suspend Normal Mode Single Output Data Rate 10Hz 50Hz 100Hz Over sample 8 4 2 Down sampling 1 2 4	7 6 5 4 3 2 1 OSR2<1:0> OSR1<1:0> ODR<1:0> ODR<1:0> MO Definition 00 01 10 Mode Control Suspend Normal Mode Single Output Data Rate 10Hz 50Hz 100Hz Over sample Ratio1 8 4 2 Down sampling 1 2 4	7 6 5 4 3 2 1 OSR2<1:0> OSR1<1:0> ODR<1:0> MODE<1

Table 17. Control Register 1

Set/Reset Mode can be control by the register SET/RESET MODE. There are 3 modes for selection: SET AND RESET ON, SET ONLY ON and SET AND RESET OFF. In SET ONLY ON or SET AND RESET OFF mode, the

The information contained herein is the exclusive property of QST, and shall not be distributed,	15 / 17
reproduced, or disclosed in whole or in part without prior written permission of QST.	

offset is not renewed during measuring.

Field ranges of the magnetic sensor can be selected through the register RNG. The full-scale range is determined by the application environments. The lowest field range has the highest sensitivity, therefore, higher resolution.

Self-test function is added for verification of the signal-chain. When the function is enabled through the bit SELF_TEST, an inner-built current is generated and an additional signal is added to the sensor, generating a difference in the 3 axis' value. User should record the value before and after the self-test and compare with threshold value.

Soft Reset can be done by changing the register SOFT_RST. Soft reset can be invoked at any time of any mode.

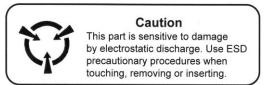

Addr.	7		6	5	4	3	2	1	0	
0BH	SOFT_RST		SELF_TEST	-	-	RNG<1:0>			RESET E<1:0>	
Reg.		Definit	ion	00		01	10		11	
SET/RESE	Т	Set and	d reset mode	Set and	reset	Set only on	Set and	reset	Set and	d reset
MODE		ctrl		on			off		off	
RNG		Full Range		30Guass		12Guass	Guass 8Guass		2Guass	
SELF_TEST		Self_test		1: self_test enable, auto clear after the data is updated						
SOFT_RST Soft reset			1: Soft reset, restore default value of all registers, 0: no reset						set	

Table 18. Control Register 2

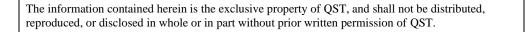
The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

ORDERING INFORMATION

Ordering Number	rdering Number Operating Temperature		Packaging			
QMC6310U-TR	-40°C ~ 85°C	LGA8	Tape and Reel: 3k pieces/reel			
QMC6310N-TR	-40°C ~ 85°C	LGA8	Tape and Reel: 3k pieces/reel			

CAUTION: ESDS CAT. 1B

FIND OUT MORE


For more information on QST's Magnetic Sensors contact us at 86-21-69517300.

The application circuits herein constitute typical usage and interface of QST product. QST does not provide warranty or assume liability of customer-designed circuits derived from this description or depiction.

QST reserves the right to make changes to improve reliability, function or design. QST does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

U.S. Patents 4,441,072, 4,533,872, 4,569,742, 4,681,812, 4,847,584 and 6,529,114 apply to the technology described.

China Patents 201210563667.3, 201210563956.3, 201210563952.5, 201210563687.0, 201310403912.9, 201410027189.3, 201410027240.0, 201410027085.2 and 201410085278.3 apply to the technology described.

