

N-Channel 30V Fast Switching MOSFET

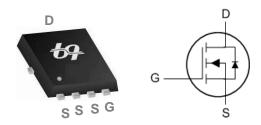
General Description

The QN3107M6N is a high performance trench N-channel MOSFET which utilizes extremely high cell density to provide low Rdson and gate charge characteristics. It is ideally suited to support synchronous buck converter applications.

The QN3107M6N meets RoHS and Green Product requirements while supporting full function reliability.

Features

- ✓ Advanced high cell density Trench technology
- ✓ Super Low Gate Charge
- ✓ Green Device Available


Product Summary

V _{DS}	R _{DS(ON)} max (V _{GS} =10V)	I _D (T _C =25 °C)
30V	2.6mΩ	118A

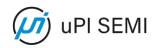
Applications

- ✓ High Frequency Point-of-Load Synchronous Buck Converter for MB/NB/UMPC/VGA
- ✓ Networking DC-DC Power System
- ✓ Load Switch

Pin Configuration

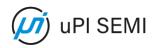
Ordering Information

Order Number	Package Type	Top Marking	
QN3107M6N	PRPAK5X6	Weekly Code Yearly Code Logo Pin 1 dot Sequence Assembly Code	



Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	30	V
V _{GS}	Gate-Source Voltage	±20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	118	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ¹	74	Α
I _D @T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	22	Α
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹	17	Α
I _{DM}	Pulsed Drain Current ²	236	А
EAS	Single Pulse Avalanche Energy ³	155.1	mJ
I _{AS}	Avalanche Current	55.7	Α
P _D @T _C =25°C	Total Power Dissipation ⁴	56	W
P _D @T _A =25°C	Total Power Dissipation ⁴	2.0	W
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

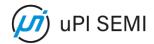

Thermal Data

Symbol	Parameter		Max.	Unit
$R_{ heta JA}$	Thermal Resistance Junction-Ambient ¹	44	62	°C/W
$R_{ heta JC}$	Thermal Resistance Junction-Case ¹	2.2	2.5	°C/W

N-Channel Electrical Characteristics

N-Channel Electrical Characteristics: (T _J =25 °ℂ, unless otherwise noted)						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	30			V
△BV _{DSS} /△T _J	BVDSS Temperature Coefficient	Reference to 25°C, I _D =1mA		0.01		V/°C
Б	Static Drain-Source	V _{GS} =10V, I _D =30A		2.1	2.6	
R _{DS(ON)}	On-Resistance ²	V _{GS} =4.5V, I _D =15A		2.9	3.8	mΩ
V _{GS(th)}	Gate Threshold Voltage	\\ -\\ -250\	1.2		2.5	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	$V_{GS}=V_{DS}$, $I_D=250uA$		-4.6		mV/°C
	Drain Course Leakage Current	V _{DS} =24V, V _{GS} =0V,T _J =25°C			1	uA
l _{DSS}	Drain-Source Leakage Current	V _{DS} =24V, V _{GS} =0V,T _J =55°C			5	
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V, V _{DS} =0V			±100	nA
gfs	Forward Transconductance	V _{DS} =5V, I _D =15A		47.5		S
R_g	Gate Resistance	V _{DS} =0V, V _{GS} =0V, f=1MHz		0.9		Ω
Qg	Total Gate Charge (10V)	V _{DS} =15V, V _{GS} =10V, I _D =15A		31.4		
Qg	Total Gate Charge (4.5V)			15.1		-0
Q _{gs}	Gate-Source Charge	V _{DS} =15V, V _{GS} =4.5V, I _D =15A		5.4		nC
Q_{gd}	Gate-Drain Charge			5.2		
t _{d(on)}	Turn-On Delay Time			10.8		
t _r	Rise Time	V_{DS} =15V, V_{GS} =10V, R_{G} =3.3 Ω ,		44.6		
t _{d(off)}	Turn-Off Delay Time	I _D =15A		25.3		ns
t _f	Fall Time			6.1		
C _{iss}	Input Capacitance			1950		
C _{oss}	Output Capacitance	V _{DS} =15V, V _{GS} =0V, f=1MHz		1120		pF
C _{rss}	Reverse Transfer Capacitance			42		1

Guaranteed Avalanche Characteristics


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
EAS	Single Pulse Avalanche Energy ⁵	V _{DD} =25V , L=0.1mH , I _{AS} =35A	61.25			mJ

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _S	Continuous Source Current 1,6	V _G =V _D =0V, Force Current			118	Α
I _{SM}	Pulsed Source Current ^{2,6}				236	Α
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V, I _S =1A, T _J =25℃			1.2	V
t _{rr}	Reverse Recovery Time	I _F =15A, di/dt=100A/μs,		73.6		nS
Q _{rr}	Reverse Recovery Charge	T _J =25℃		62.3		nC

Note:

- 1. Test data conducted with surface mount attachment to 1 inch², FR-4 board utilizing 2oz copper
- 2. Pulse Test. Pulse width \leq 300uS, duty cycle \leq 2%
- 3. EAS data is a maximum rating. The test condition is V_{DD} =25V, V_{GS} =10V, L=0.1mH
- 4. The power dissipation is limited by a 150°C maximum junction temperature
- 5. The Min. value is 100% EAS tested guarantee
- 6. The data is theoretically the same as I_D and I_{DM} . In real applications, it will be limited by total power

Typical Characteristics

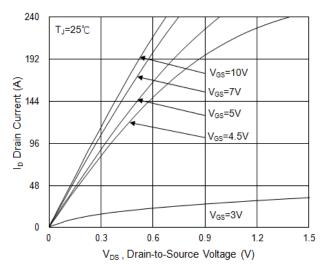


Fig.1: Typical Output Characteristics

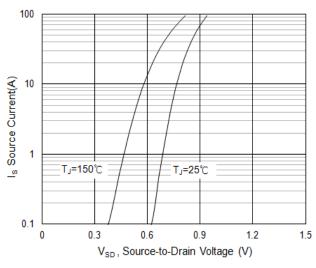


Fig.3: Forward Characteristics of Reverse

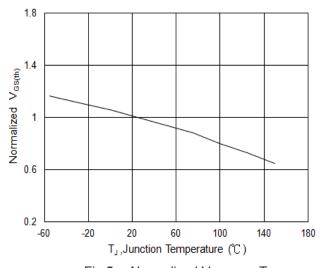


Fig.5: Normalized $V_{GS(th)}$ vs. T_J

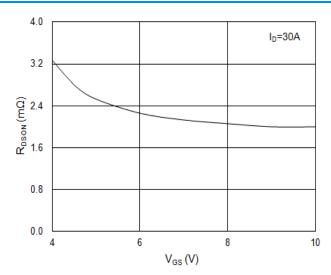


Fig.2: On-Resistance vs. Gate-Source

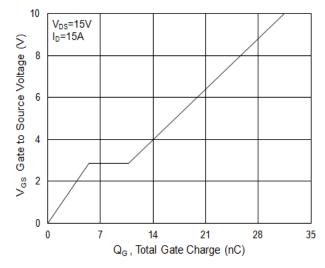


Fig.4: Gate-Charge Characteristics

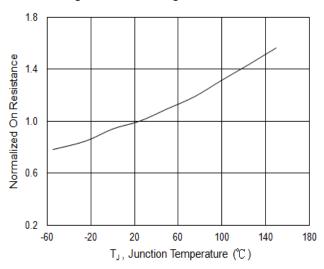
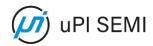



Fig.6: Normalized R_{DSON} vs. T_J

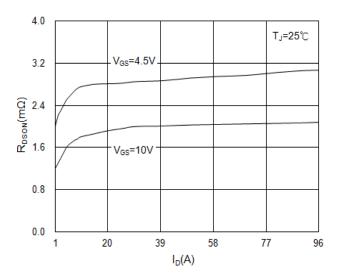


Fig.7: Drain-Source On-State Resistance

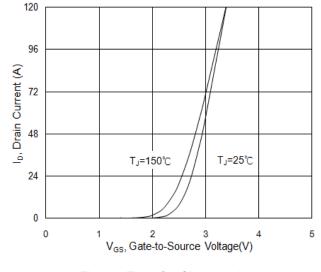


Fig.8: Transfer Characteristics

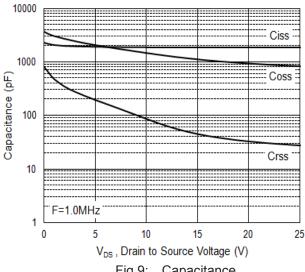


Fig.9: Capacitance

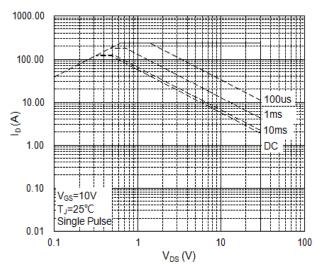


Fig.10: Safe Operating Area

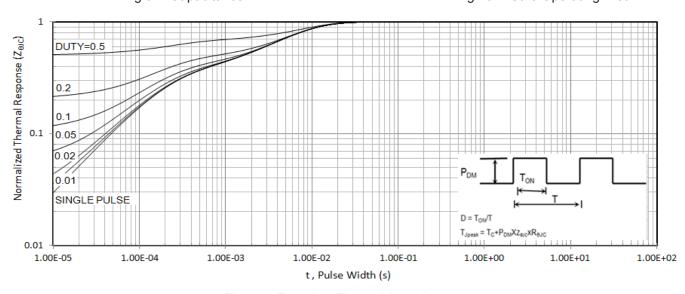


Fig.11: Transient Thermal Impedance

Legal Notice

The contents of this document are provided in connection with uPI Semiconductor Corp. ("uPI") products. uPI makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice.

No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights, is granted by this publication. Except as provided in uPI's terms and conditions of sale for such products, uPI assumes no liability whatsoever, and uPI disclaims any express or implied warranty relating to sale and/or use of uPI products, including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. uPI products are not designed, intended, authorized or warranted for use as components in systems intended for medical, life-saving, or life sustaining applications. uPI reserves the right to discontinue or make changes to its products at any time without notice.

Copyright© 2019, uPI Semiconductor Corp. All rights reserved. uPI, uPI design logo, and combinations thereof, are trademarks or registered trademarks of uPI Semiconductor Corp.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

uPI Semiconductor Corp.

9F., No. 5, Taiyuan 1st St. Zhubei City, Hsinchu, Taiwan, R.O.C.

TEL: 886.3.560.1666 FAX: 886.3.560.1888