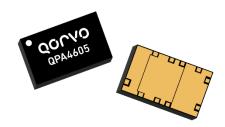


QPA4605 5 W, 48 V, 4.5 – 4.6 GHz, GaN PAM

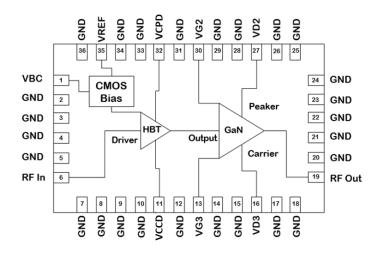

Product Overview

The QPA4605 is an integrated 2-stage Power Amplifier Module designed for massive MIMO applications with 5 W RMS at the device output covering frequency range from 4.5 to 4.6 GHz.

The module is 50 Ω input and output and requires minimal external components. The module is also compact and offers a much smaller footprint than traditional discrete component solutions.

The QPA4605 incorporates a driver and Doherty final stage delivering high power added efficiency for the entire module at 5 W average power.

RoHS compliant



6 x 10 mm Over Mold Laminate

Key Features

- Operating Frequency Range: 4.5 4.6 GHz
- Operating Drain Voltage: +48 V
- 50 Ω input / output
- Integrated Doherty Final Stage
- Gain at 5W avg.: 25.4dB
- Power Added Efficiency at 5W avg.: 39.7%
- 6x10 mm Plastic Surface Mount Package

Functional Block Diagram

Applications

- WCDMA / LTE
- · Macrocell Base Station
- · Microcell Base Station
- Small Cell
- Active Antenna
- 5G Massive MIMO
- General Purpose Applications

Ordering Information

Part Number	Description		
QPA4605SR	7" Reel – 100 Pieces		
QPA4605TR13	13" Reel – 2500 Pieces		
QPA4605EVB-01	4.5 – 4.6GHz EVB		

Absolute Maximum Ratings

Parameter	Rating
Breakdown Voltage (BV _{DG})	+165 V
Gate Voltage Range (V _G)	−7 to +2 V
Drain Voltage (V _D)	+55 V
RF Input Power, pulsed, 10%, 100us	+25 dBm
VSWR Mismatch, P3dB Pulse (10% Duty Cycle, 100 µs Width), T = +25°C	10:1
Storage Temperature	−65 to +150°C

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to device may reduce device reliability.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Peaker Gate Voltage (V _{G2})		-4.2		V
Carrier Gate Voltage (V _{G3})		-2.8		V
Supply Voltages HBT (Vcc)		+5.0		V
CMOS Bias Controller (V _{BC})	+1.8			V
CMOS Bias Controller (V _{REF})	+3.3	+5.0	+5.5	V
Supply Voltages GaN (V _{D2,3})		+48		V
Quiescent Current (I _{DQ3})		40		mA

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

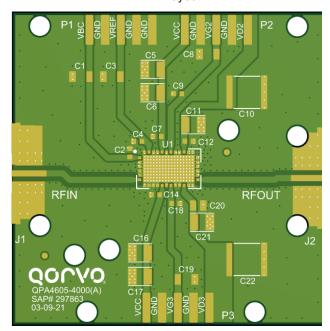
Electrical Specifications

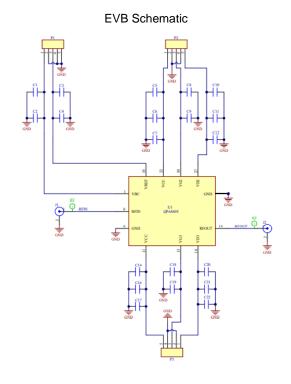
Parameter	Conditions	Min	Тур	Max	Units
Frequency Range		4500		4600	MHz
Driver Quiescent Current (Iccd)			55		mA
Carrier Quiescent Current (IDQ3)			40		mA
Gain ^{1,2}	P _{OUT} = 37 dBm	23.0	25.4		dB
Power Added Efficiency (PAE) ^{1,2}	P _{OUT} = 37 dBm	35.5	39.7		%
Raw ACLR ^{1,2}	P _{OUT} = 37 dBm		-26.5	-20.0	dBc
Psat ³	P _{IN} = 24 dBm, f = 4600 MHz	44.6	45.7		dBm
V _{EN} Low ⁴		0		0.63	V
V _{EN} High ⁴		1.17		Vcc	V

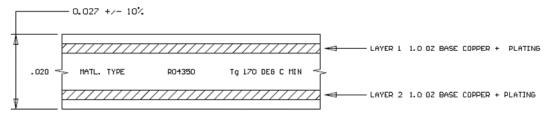
Test conditions unless otherwise noted:

- 1. $V_{REF} = 5V$, $V_{CC} = 5V$, $V_{BC} = 1.8V$, $V_{G2} = V_{G2 Set} 1.5V$, $I_{DO3} = 40mA$, $V_{D2} = V_{D3} = +48V$, $T = +25^{\circ}C$, using a single-carrier, 20 MHz LTE signal with 7.8 dB PAR at 0.01% CCDF on the reference design fixture.
- 2. Typical parameter value averaged over 4500, 4550, and 4600MHz frequency values.
- 3. $V_{REF} = 5V$, $V_{CC} = 5V$, $V_{BC} = 1.8V$, $V_{G2} = V_{G2_Set} 1.5V$, $I_{DQ3} = 40$ mA, $V_{D2} = V_{D3} = +48V$, $V_{D2} = +25$ °C, using Pulsed CW, 10% Duty Cycle, PW 100us, on the reference design fixture.
- 4. V_{EN} guaranteed by design.

Thermal Information


Parameter	Conditions	Values	Units
Thermal Resistance, Peak IR Surface Temperature at Average Power (θ_{JC})	T _{CASE} = +85°C, TCH = 116°C CW: P _{DISS} = 7.59 W, P _{OUT} = 5 W	4.08	°C/W

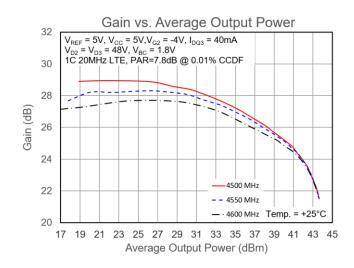

- 1. Thermal resistance is measured to package backside.
- 2. Refer to the following document: GaN Device Channel Temperature, Thermal Resistance, and Reliability Estimates

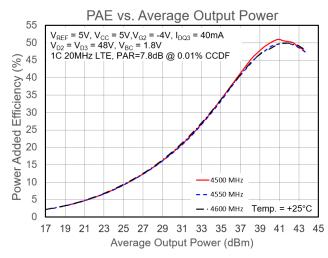

QPA4605 4.5 - 4.6 GHz Reference Design

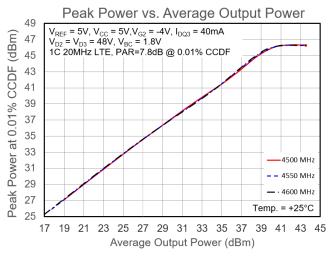
EVB Layout

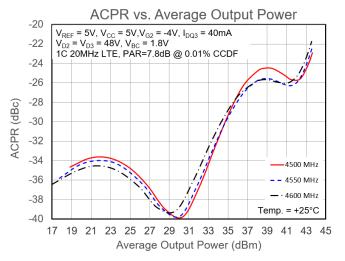
PCB Stackup and Material

Notes:


- 1. All dimensions are in inches.
- 2. PCB is soldered on a 2 in. x 2 in. copper base plate with 0.25 in. thickness.

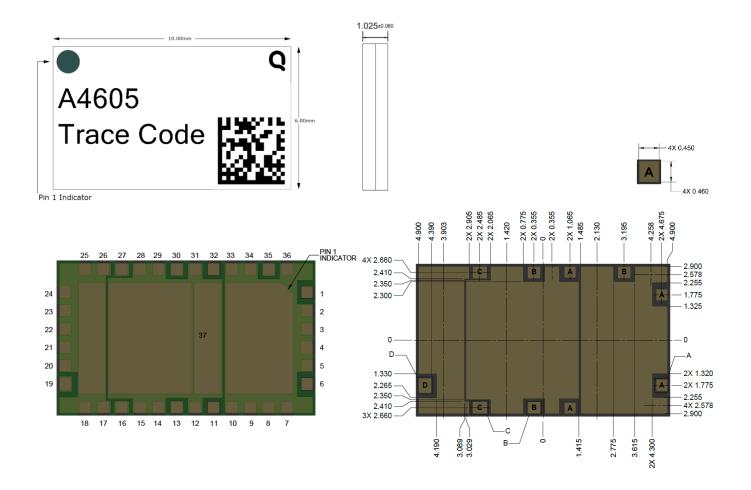

Bill of Materials - QPA4605 4.5 - 4.6 GHz Evaluation Board


Reference Des.	Value	Description	Manufacturer	Part Number
C2, C4, C7, C9, C12, C14, C18, C20	0.022 μF	CAP, 0.022µF, 10%, 100V, X7R, 0603	TDK	CGA3E2X7R2A223K080AA
C3, C8, C19	4.7 µF	CAP, 4.7µF, 10%, 50V, X7R, 1206	Murata	GRM31CR71H475KA12L
C5, C6, C16, C17	10 µF	CAP, 10µF, 10%, 50V, X7R, 1210	Murata	GRM32ER71H106KA12L
C10, C22	10 µF	CAP, 10µF, 20%, 100V, X7S, 2220	TDK	C5750X7S2A106M230KB
C11, C21	4.7 µF	CAP, 4.7µF, 10%, 100V, X7S, 1206	Murata	GRM31CC72A475KE11L
J1, J2		Connector, SMA, 4-Hole Panel Mount Jack	Gigalane	PAF-S00-000
P1, P2, P3		Connector, HDR, ST, PLRZD, 5-Pin, 0.100"	AMP	640454-5
U1		5 W 4.5 – 4.6 GHz PA Module	Qorvo	QPA4605



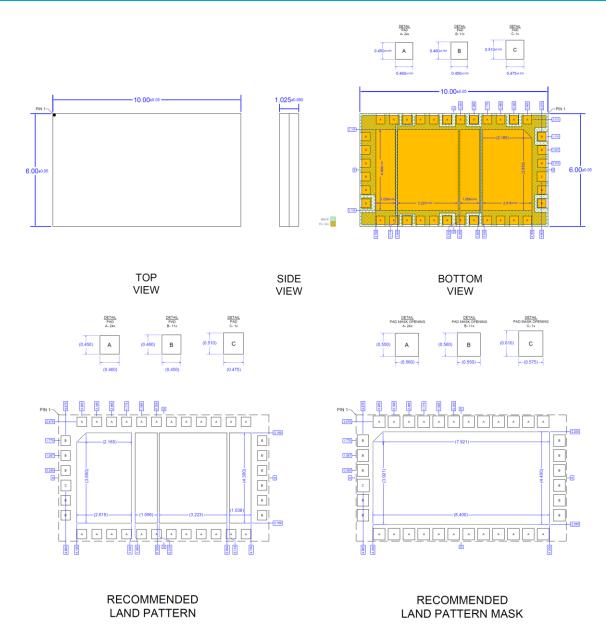
Performance Plots

Note:

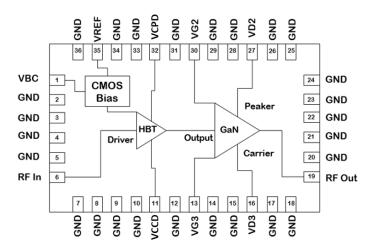

Test conditions unless otherwise noted: $V_{REF} = 5V$, $V_{CC} = 5V$, $V_{BC} = 1.8V$, $V_{G2} = -4V$, $I_{DO3} = 40$ mA, $V_{D2} = V_{D3} = 48V$, T = +25°C, tested using a single-carrier, 20 MHz LTE signal with 7.8 dB PAR at 0.01% CCDF on a reference design fixture.

Package Marking and Dimensions

Marking: Qorvo Logo


Part Number - QPA4605

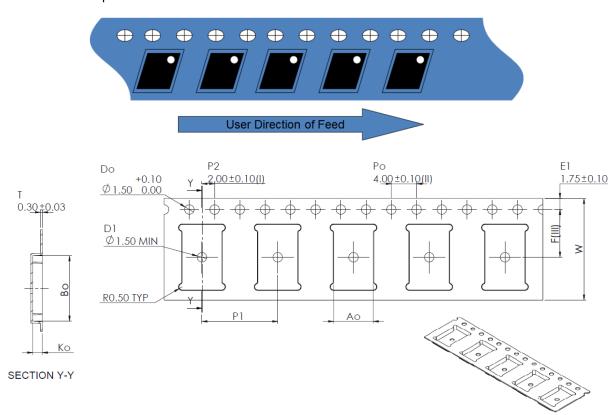
- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. General tolerance is ±0.05 unless otherwise shown.
- 3. Part is overmold encapsulated.
- 4. Contact plating is ENEPIG. Au nominal thickness is $0.095 \pm 0.025 \, \mu m$.


PCB Mounting Pattern

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. General tolerance is ±0.05 unless otherwise shown.
- 3. Part is overmold encapsulated.
- 4. Contact plating is ENEPIG. Au nominal thickness is $0.095 \pm 0.025 \,\mu m$.

Pad Configuration and Description

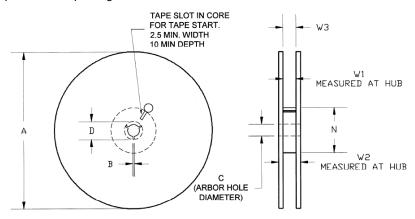
Pad No.	Label	Description
1	VBC	CMOS Controller Enable
6	RFIN	RF Input
11	VCCD	Carrier Amplifier Driver Vcc = +5V
13	VG3	Carrier Amplifier, Gate Bias
16	VD3	Carrier Amplifier, Drain Bias
19	RFOUT	RF Output, DC Blocked
27	VD2	Peaking Amplifier, Drain Bias
30	VG2	Peaking Amplifier, Gate Bias
32	VCPD	Peaking Amplifier Driver Vcc = +5V
35	VREF	CMOS Controller +5V
2,3,4,5,7,8,9,10,12,14,15,17,18,20,21, 22,23,24,25,26,28,29,31,33,34,36	GND	Internal Grounding, recommend connecting to EPAD ground
EPAD	GND	DC/RF Ground. Must be soldered to EVB Ground Plane over an array of vias for thermal and RF performance. Solder voids under the EPAD will result in excessive junction temperatures causing permanent damage.


Biasing Procedure

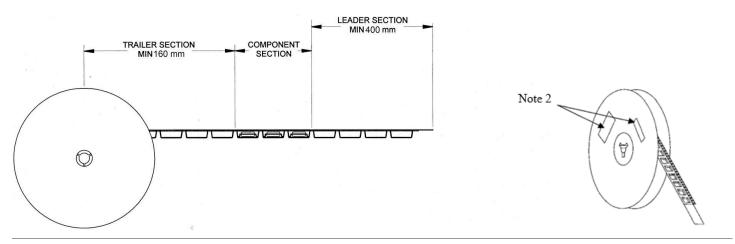
Bias On	Bias Off
1. Set V _{G2} , V _{G3} = −5V	1. Set $V_{BC} = 0V$
2. Set $V_{REF} = 5V$	2. Set V _{G2} = V _{G3} = -5V
3. Set $V_{CC} = 5V$	3. Set $V_{D2} = V_{D3} = 0V$
4. Set $V_{D2} = V_{D3} = 48V$	4. Set $V_{CC} = V_{REF} = 0V$
5. Set I _{DQ2} (Peaker) = 80mA	
 Adjust V_{G2} offset voltage −1.5V 	
Typical V _{G2} after offset is -4.2V	
7. Adjust V _{G3} to get I _{DQ3} = 40mA	
Typical $V_{G3} = -2.8V$	
8. Set $V_{BC} = 1.8V$	

Tape and Reel Information – Carrier and Cover Tape Dimensions

Tape and reel specifications for this part are also available on the Qorvo website. Standard T/R size = 2500 pieces on a 13" reel.

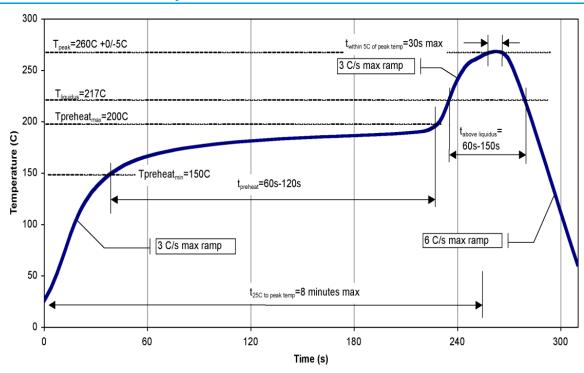


Feature	Measure	Symbol	Size (in)	Size (mm)
	Length	A0	0.248	6.30
Covity	Width	В0	0.406	10.30
Cavity	Depth	K0	0.061	1.55
	Pitch	P1	0.472	12.00
Centerline Distance	Cavity to Perforation - Length Direction	P2	0.079	2.00
Centenine Distance	Cavity to Perforation - Width Direction	F	0.295	7.50
Cover Tape Width		С	0.524	13.30
Carrier Tape	Width	W	0.630	16.00


Tape and Reel Information – Reel Dimensions

Packaging reels are used to prevent damage to devices during shipping and storage, loaded carrier tape is typically wound onto a plastic take-up reel. The reel size is 13" diameter. The reels are made from high-impact injection-molded polystyrene (HIPS), which offers mechanical and ESD protection to packaged devices.

Feature	Measure	Symbol	Size (in)	Size (mm)
	Diameter	Α	12.992	330.00
Flange	Thickness	W2	0.874	22.20
	Space Between Flange	W1	0.661	16.80
	Outer Diameter	N	4.016	102.00
Hub	Arbor Hole Diameter	С	0.512	13.00
пир	Key Slit Width	В	0.079	2.00
	Key Slit Diameter	D	0.787	20.00


Tape and Reel Information – Tape Length and Label Placement

- 1. Empty part cavities at the trailing and leading ends are sealed with cover tape. See EIA 481-1-A.
- 2. Labels are placed on the flange opposite the sprockets in the carrier tape.

Recommended Solder Temperature Profile

Solderability

Compatible with lead-free (260°C max. reflow temp.) soldering processes.

Package lead plating is ENEPIG. Au nominal thickness is $0.095 \pm 0.025 \, \mu m$.

Handling Precautions

Parameter	Rating	Standard
ESD-Human Body Model (HBM)	Class 1B (500V)	ANSI/ESDA/JEDEC Standard JS-001
ESD-Charged Device Model (CDM)	Class C3 (1000V)	ANSI/ESDA/JEDEC Standard JS-002
MSL-Moisture Sensitivity Level	Level 3	IPC/JEDEC Standard J-STD-020

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Halogen Free (Chlorine, Bromine)
- · Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u> Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Important Notice

The information contained in this Data Sheet and any associated documents ("Data Sheet Information") is believed to be reliable; however, Qorvo makes no warranties regarding the Data Sheet Information and assumes no responsibility or liability whatsoever for the use of said information. All Data Sheet Information is subject to change without notice. Customers should obtain and verify the latest relevant Data Sheet Information before placing orders for Qorvo® products. Data Sheet Information or the use thereof does not grant, explicitly, implicitly or otherwise any rights or licenses to any third party with respect to patents or any other intellectual property whether with regard to such Data Sheet Information itself or anything described by such information.

DATA SHEET INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo® products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. Applications described in the Data Sheet Information are for illustrative purposes only. Customers are responsible for validating that a particular product described in the Data Sheet Information is suitable for use in a particular application.

© 2022 Qorvo US, Inc. All rights reserved. This document is subject to copyright laws in various jurisdictions worldwide and may not be reproduced or distributed, in whole or in part, without the express written consent of Qorvo US, Inc. | QORVO® is a registered trademark of Qorvo US, Inc.