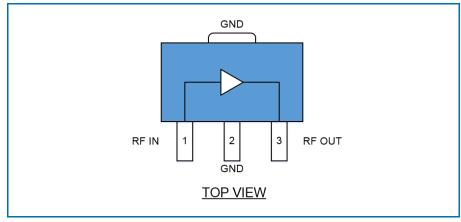


DC to 3000 MHz, CASCADABLE SiGe HBT MMIC AMPLIFIER

The QPA7489A is a high performance SiGe HBT MMIC amplifier. A Darlington configuration provides high F_{T} and excellent thermal performance. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products. Only two DC-blocking capacitors, a bias resistor, and an optional RF choke are required for operation.



SOT-89 Package

Features

- DC to 3000MHz Operation
- High Output IP3: +37.7 dBm Typical at 850 MHz
- Low Noise Figure: 3.2dB Typical at 1950 MHz

Functional Block Diagram

Ordering Information

QPA7489ASQ	Sample Bag with 25 pieces
QPA7489ASR	7" Reel with 100 pieces
QPA7489ATR13	13" Reel with 3000 pieces
QPA7489APCK401	850MHz, 8V Operation PCBA with 5-piece Sample Bag

Applications

- Oscillator Amplifiers
- Power Amplifier for Low or Medium Power Applications
- IF/RF Buffer Amplifier
- LO Driver Amplifier

Absolute Maximum Ratings

Parameter	Rating	Units
Device Voltage(V _D)	+7.0	V
Device Current (I _D)	170	mA
RF Input Power Note 1	+16	dBm
RF Input Power Note 2	+2	dBm
Storage Temperature	-55 to +150	°C
ESD Rating (HBM)	2000 (Class 2)	V
Moisture Sensitivity Level	MSL2	-

Notes:

- 1. Load Condition 1: $Z_L = 50 \Omega$
- 2. Load Condition 2: $Z_L = 10:1$ VSWR, Take into account out of band load VSWR presented by devices such as SAW filters to determine maximum RF input power. Reflected harmonic levels in saturation are significant.
- 3. Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on this
- 4. Bias Conditions should also satisfy the following expression: $I_DV_D < (T_J T_L)/$ R_{TH} , and $T_L = T_{LEAD}$.

Recommended Operating Conditions

Parameter		Rating	Units	
raiailietei	Min	Тур	Max	Ullits
Operating Temperature Range	-40		+85	°C
Junction Temperature (T _J)			+125	°C
Device Operating Voltage	+4.7	+5.0	+5.3	V

rfmd >>> QOCYO

RFMD + TriQuint = Qorvo

Caution! ESD sensitive device.

RFMD Green: RoHS status based on EU Directive 2011/65/EU (at time of this document revision), halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

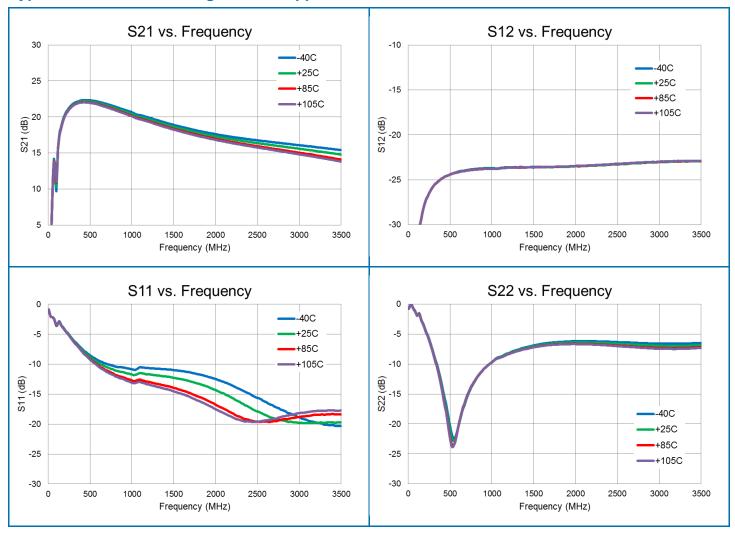
Electrical Specifications - General

Parameter	Specification		Units	Conditions		
raiailletei	Min	Тур	Max	UIIILS	Conditions	
		21.2		dB	850MHz	
Small Signal Gain, S21		17.7		dB	1950MHz	
		16.9		dB	2400MHz	
		+22.1		dBm	850MHz	
Output Power at 1 dB Compression		+21.1		dBm	1950MHz	
		+20.1		dBm	2400MHz	
		+39.1		dBm	500MHz	
Output Third Order Intercept Point		+37.7		dBm	850MHz	
Output Third Order Intercept Point		+34.1		dBm	1950MHz	
		+32.5		dBm	2400MHz	
		10.5		dB	850MHz	
Input Return Loss, S11		12.3		dB	1950MHz	
		14.9		dB	2400MHz	

Test Conditions unless otherwise specified: +V_D = +5 V, V_S = 8 V, I_D = 118 mA Typ., OIP3 Tone Spacing=1 MHz, P_{OUT} per tone = 0 dBm, $R_{BIAS} = 26\Omega$, $T_{L} = 25^{\circ}C$, $Z_{S} = Z_{L} = 50 \Omega$

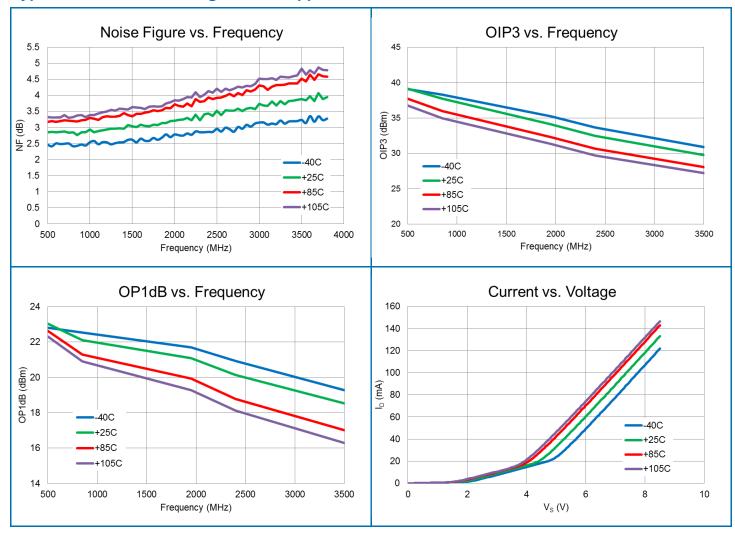
RFMD + TriQuint = Qorvo

Electrical Specifications – General (Continued)

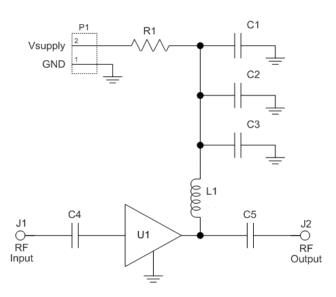

Parameter	Specification		Units	Conditions		
raiametei	Min	Тур	Max	UIIIIS	Conditions	
		11.8		dB	850MHz	
Output Return Loss, S22		6.2		dB	1950MHz	
		6.3		dB	2400MHz	
		23.8		dB	850MHz	
Reverse Isolation, S12		23.5		dB	1950MHz	
		23.3		dB	2400MHz	
		2.8		dB	850MHz	
Noise Figure		3.2		dB	1950MHz	
		3.4		dB	2400MHz	
Thermal Resistance		45		°C/W		
Device Operating Current		118		mΑ		
Test Conditions unless otherwise specified: +V _p :	= +5 V Vc	= 8 V l _D =	118 mA ⁻	Typ OIP:	3 Tone Spacing=1 MHz Pour per tone = 0 dBm	

Test Conditions unless otherwise specified: $+V_D = +5 \text{ V}, V_S = 8 \text{ V}, I_D = 118 \text{ mA Typ.}, OIP3 \text{ Tone Spacing=1 MHz}, P_{OUT} \text{ per tone = 0 dBm}, R_{BIAS} = 26\Omega, T_L = 25^{\circ}\text{C}, Z_S = Z_L = 50 \Omega$

RFMD + TriQuint = Qorvo

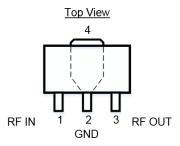

Typical Performance Using 850MHz Application Circuit

RFMD + TriQuint = Qorvo


Typical Performance Using 850MHz Application Circuit

Evaluation Board and Schematic

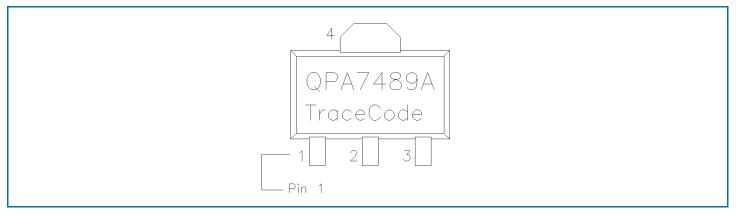
Evaluation Board Bill of Materials For 850MHz Application Circuit

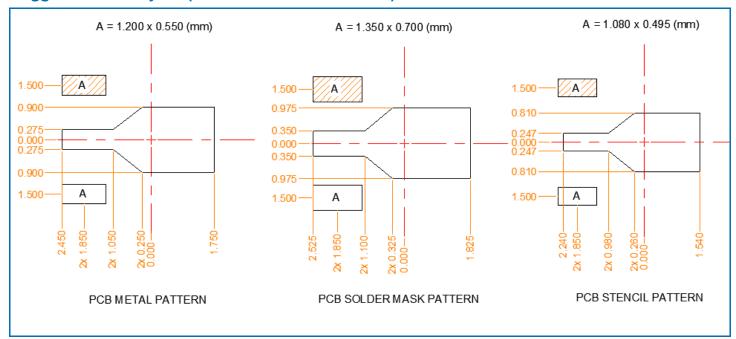

Description	Reference Designator	Manufacturer	Manufacturer's P/N
Gain Block	U1	QORVO	QPA7489A
PCB	-	Viasystems	QPAXX89A
CAP, 1uF, 10%, 25V, X7R, 1206	C1	Murata Electronics	GRM31MR71E105KA01L
CAP, 1000pF, 10%, 50V, X7R, 0402	C2	Murata Electronics	GRM155R71H102KA01D
CAP, 68pF, 5%, 50V, C0G, 0402	C3	Murata Electronics	GRM1555C1H680JA01D
CAP, 100pF, 5%, 50V, C0G, 0402	C4, C5	Murata Electronics	GRM1555C1H101JA01D
RES, 26.1 OHM, 1%, 1/2W, 1210	R1	Panasonic Industrial Devices	ERJ-14NF26R1U
IND, 33nH, 5%, M/L, 0603	L1	Murata Electronics	LL1608-FSL33NJ
CONN, SMA, EL, FLT, 0.068" SPE-000318	J1. J2	Amphenol RF Asia Corp	901-10426
CONN, HDR, ST, 1x2, 0.100", HI-TEMP, T/H	P1	Samtec Inc.	HTSW-102-07-G-S

RFMD + TriQuint = Qorvo

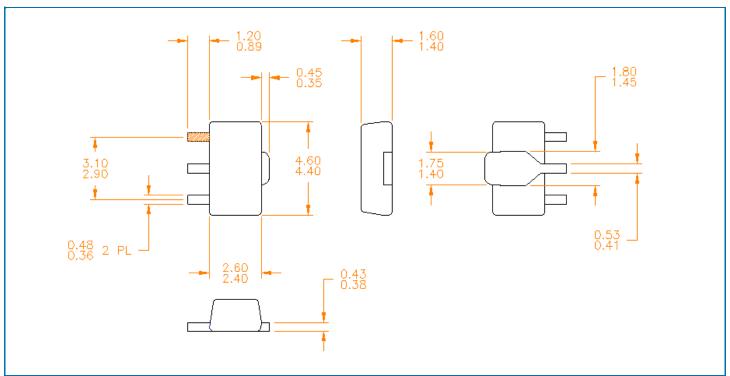
Component Values For Specific Frequency and Voltage in Application Circuit

Reference	Frequency (MHz)								
Designator	100	500	850	1950	2400				
C ₄ , C ₅	1000pF	220pF	100pF	68pF	56pF				
C ₃	100pF	100pF	68pF	22pF	22pF				
L ₁	470nH	68nH	33nH	22nH	18nH				
Required Bias Resistance for I _D =118mA Bias Resistance = R _{BIAS} + R _{LDC} = (V _S -V _D) / I _D									
Supply Volt	age (Vs)	7 V	8 V	9 V	12 V				
Bias Resistanc	e (R _{1 =} R _{Bias})	17 Ω	26 Ω	35 Ω	61 Ω				
*Note: Bias resistor improves current stability over temperature									


Pin Configuration and Description


Pin	Label	Description
1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor as shown in the application schematics
2	GND	Connect to ground per application circuit drawing.
3	RF OUT	RF output and bias pin. Bias will be supplied to this pin through an external RF choke. A DC blocking capacitor is necessary on the RF output as shown in the application circuit
4	GND	Exposed area on the bottom side of the package needs to be soldered to the ground plane of the board for thermal and RF performance. Vias should be located under the EPAD as shown in the recommended land pattern.

Package Marking



Suggested Pad Layout (Dimensions in millimeters)

Package Outline (Dimensions in millimeters)

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.rfmd.com Tel: 1-844-890-8163

Email: customer.support@qorvo.com

For information about the merger of RFMD and TriQuint as Qorvo:

Web: www.qorvo.com

Important Notice

The information contained herein is believed to be reliable. RFMD makes no warranties regarding the information contained herein. RFMD assumes no responsibility or liability whatsoever for any of the information contained herein. RFMD assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for RFMD products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

RFMD products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.