### Spatium<sup>™</sup> QPB2731N 27.5–31 GHz Ka-Band GaN Amplifier

#### **Product Description**

An excellent alternative to traveling wave tube amplifiers, Qorvo's Spatium<sup>™</sup> QPB2731N is a solid state, spatialcombining amplifier with an operating range of 27.5–31 GHz while achieving greater than 49 dBm of instantaneous linear power. With its maximum performance in output power, gain, power added efficiency, and power flatness, this Spatium is the ideal building block for Satcom BUC's and other millimeter-wave subsystems with wide-ranging applications.

Qorvo's patented and field-proven Spatium combining technology provides unprecedented Solid-State Power Amplifier (SSPA) performance in a rugged, compact size and weight which reduces total cost of ownership compared to alternative technologies. This product offering combines Qorvo's market leadership in GaN technology and Ka-band MMIC design along with our high-count combining techniques for a best in class solution to power amplification.

The QPB2731N is equipped with an integrated bias card, which allows for convenience of operation, reducing electrical losses in the bias networks, and weight reduction over using a separate bias card. It provides individualized bias settings for each amplifier blade in the Spatium SSPA.



#### Functional Block Diagram



Input (L) and Output (R)

#### **Product Features**

- Frequency Range: 27.5-31 GHz
- Saturated Output Power: > 51.5 dBm (P<sub>IN</sub> = 39 dBm)
- Linear Power (71°C): > 49 dBm
- Solid State MMIC Reliability
- Multi-Element Redundancy
- Instant On (no warm-up)
- Integrated Bias Card

Performance is typical across frequency. Please reference electrical specification table and data plots for more details.

#### **Applications**

TWTA Replacement

#### **Ordering Information**

| Part No. | Description                     |  |
|----------|---------------------------------|--|
| QPB2731N | 27.5 –31 GHz Spatium™ Amplifier |  |

#### **Absolute Maximum Ratings**

| Parameter                       | Value / Range |
|---------------------------------|---------------|
| Prime Power (V <sub>DC</sub> )* | 29.5 V        |
| Drain Current (ID_DRIVE)        | 40 A          |
| Operating Temperature**         | -40 to +71 °C |

Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied.

\* Rating for GaN Process

\*\* Refers to outside clamp surface temperature

### **Recommended Operating Conditions**

27.5-31 GHz Ka-Band GaN Amplifier

<u>Spatium</u><sup>™</sup> QPB2731N

| Parameter                                 | Value / Range |  |  |
|-------------------------------------------|---------------|--|--|
| Drain Voltage (V <sub>D</sub> )           | 22 V          |  |  |
| Quiescent Drain Current (IDQ)             | < 6.0 A       |  |  |
| Operating Drain Current (I <sub>D</sub> ) | < 36 A        |  |  |
| Operating Temperature (Linear Power)      | −10 to +71 °C |  |  |
| Operating Temperature (Saturated Power)   | −10 to +55 °C |  |  |

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

#### **Electrical Specifications**

| Parameter                                                             | Min                                                    | Тур                | Max  | Units       |
|-----------------------------------------------------------------------|--------------------------------------------------------|--------------------|------|-------------|
| Frequency                                                             | 27.5                                                   | 27.5               |      | GHz         |
| Saturated Output Power (P <sub>SAT</sub> ) (P <sub>IN</sub> = 39 dBm) |                                                        | 52.6               |      | dBm         |
| Power Added Efficiency (PAE) (P <sub>IN</sub> = 39 dBm)               |                                                        | 23.8               |      | %           |
| Power Gain (P <sub>IN</sub> = 39 dBm)                                 |                                                        | 13.6               |      | dB          |
| Gain Flatness (P <sub>IN</sub> = 39 dBm)                              |                                                        | 1.3                |      | dB          |
| Linear Power <sup>1,2</sup> (PLIN) at 55 °C                           |                                                        | 50.4               |      | dBm         |
| Linear Power <sup>1,2</sup> (PLIN) at 71 °C                           | 'ower <sup>1,2</sup> (P <sub>LIN</sub> ) at 71 °C 50.0 |                    |      | dBm         |
| Small Signal Gain                                                     |                                                        | 22.4               |      | dB          |
| Input Return Loss                                                     |                                                        | 17                 |      | dB          |
| DC Power at P <sub>SAT</sub> (55°C)                                   |                                                        | 732                |      | W           |
| Input RF Interface                                                    | 2.92 mm (F) Coaxial Connector                          |                    |      |             |
| Output RF Interface                                                   | WR-28 Waveguide                                        |                    |      |             |
| Gate Voltage Range                                                    | -3.6                                                   |                    | -1.3 | V           |
| Gate Current (per channel, continuous)                                | -75                                                    |                    | 100  | mA          |
| Average Drain Current (per channel)                                   |                                                        | 2.2                |      | A           |
| CB Temperature Monitor Response -14                                   |                                                        | -13                |      | mV/°C       |
| Temperature Monitor Accuracy                                          | rature Monitor Accuracy -5 5                           |                    | 5    | %           |
| Drain Current Monitor Response                                        |                                                        | 0.5                |      | V/A         |
| Drain Current Monitor Accuracy                                        | iccuracy -10 10                                        |                    | %    |             |
| Transmit Ready Time                                                   |                                                        |                    | 6    | ms          |
| Gate Enable Switching Speed                                           |                                                        | 100                | 125  | μs          |
| Weight – Complete Amplifier Unit                                      |                                                        | 5.66 (2.57)        |      | lbs. (kg)   |
| Dimensions – Amplifier Unit (L) x (W) x (H)                           |                                                        | 3.25 x 2.91 x 3.86 |      | inches      |
|                                                                       |                                                        | 82.6 x 73.9 x 98.0 |      | millimeters |

Test conditions unless otherwise noted: V\_D = 22 V, I\_{DQ} = 4.3 A, T = 25 \ ^{\circ}C

<sup>1</sup> Linear Power is defined as max output power at flange with -30dBc at 1 MHz offset for 1MSPS OQPSK ( $\alpha$ =0.35) per MIL-STD-188-164b.

<sup>2</sup> Linear power is not guaranteed at cold temperatures (<< 25 °C) below 28.5 GHz.

## QOCVO

#### **Typical Performance – P**<sub>SAT</sub>, **PAE**, **P**<sub>LIN</sub>, **Power Gain**, **I**<sub>\_Drain</sub>, **S**-Parameters

Conditions unless otherwise specified: V<sub>D</sub> = +22 V, I<sub>DQ</sub> = 4.3 A, T = 25 °C, CW Operation



### Spatium<sup>™</sup> QPB2731N 27.5–31 GHz Ka-Band GaN Amplifier

#### **Reliability Information**

Conditions unless otherwise specified:  $V_D$  = +22 V,  $I_{DQ}$  = 4.3 A, T = 25 °C, CW Operation



Calculations derived from MIL-HDBK-217F

Operational environments are: GB – Ground Benign GF – Ground Fixed AUC – Airborne Uninhabited Cargo

### Spatium<sup>™</sup> QPB2731N 27.5–31 GHz Ka-Band GaN Amplifier

#### **Block Diagram and Description**



Pin 22 ENABLE (5V CMOS compatible level signal): Logic L for Standby mode Logic H for Transmit Ready Mode

Pin 21 VTEMP is a temperature monitor pin

Pins 23, 24, 25 are for factory use only

| Pin No. | Label           | Description                         |
|---------|-----------------|-------------------------------------|
| J10     | RF In           | 2.92 mm (F) Coaxial RF Input.       |
| J11     | RF Out          | WR28 Waveguide High Power RF Output |
| J3      | 76829-0004      | VPRIME input power connector        |
| J4      | 76829-0004      | VPRIME input power connector        |
| J5      | 180-M26-113R911 | Mating bias connector to Spatium    |

### **Spatium**<sup>™</sup> **QPB2731N** 27.5–31 GHz Ka-Band GaN Amplifier

#### Mechanical Information – Outline Drawing (Spatium<sup>™</sup> Unit with Bias Card)



**Dimensions are in INCHES** 

Spatium<sup>™</sup> QPB2731N 27.5–31 GHz Ka-Band GaN Amplifier

#### **Mechanical Information – Bias Card Connector Pins**

| J5 CONNECTOR PIN FUNCTION AND DEFINITION |                 | J3 I                                                                                                                                                                                                                                                                                                   | J3 Molex       |          |
|------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|
| PIN NO.                                  | FUNCTION        | DESCRIPTION                                                                                                                                                                                                                                                                                            | 7682<br>Din No | 9-0004   |
| J1-1                                     | DRAIN 1 (1)     | Voltage output on this pin follows 0.5V/A times the current flowing through channel 1 of the Spatium                                                                                                                                                                                                   | 1              | +Vd      |
| J1-2                                     | DRAIN 2 (1)     | Voltage output on this pin follows 0.5V/A times the current flowing through channel 2 of the Spatium                                                                                                                                                                                                   | 2              | GND      |
| J1-3                                     | DRAIN 3 (1)     | Voltage output on this pin follows 0.5V/A times the current flowing through channel 3 of the Spatium                                                                                                                                                                                                   | 3              | GND      |
| J1-4                                     | DRAIN 4 (1)     | Voltage output on this pin follows 0.5V/A times the current flowing through channel 4 of the Spatium                                                                                                                                                                                                   | 4              | +Vd      |
| J1-5                                     | DRAIN 5 (1)     | Voltage output on this pin follows 0.5V/A times the current flowing through channel 5 of the Spatium                                                                                                                                                                                                   | 141            | Molov    |
| J1-6                                     | DRAIN 6 (1)     | Voltage output on this pin follows 0.5V/A times the current flowing through channel 6 of the Spatium                                                                                                                                                                                                   | J4 I           |          |
| J1-7                                     | DRAIN 7 (1)     | Voltage output on this pin follows 0.5V/A times the current flowing through channel 7 of the Spatium                                                                                                                                                                                                   | 70023          | 9-0004   |
| J1-8                                     | DRAIN 8 (1)     | Voltage output on this pin follows 0.5V/A times the current flowing through channel 8 of the Spatium                                                                                                                                                                                                   | PININO         | Function |
| J1-9                                     | DRAIN 9 (1)     | Voltage output on this pin follows 0.5V/A times the current flowing through channel 9 of the Spatium                                                                                                                                                                                                   | 1              |          |
| J1-10                                    | DRAIN 10 (1)    | Voltage output on this pin follows 0.5V/A times the current flowing through channel 10 of the Spatium                                                                                                                                                                                                  | 2              | GND      |
| J1-11                                    | DRAIN 11 (1)    | Voltage output on this pin follows 0.5V/A times the current flowing through channel 11 of the Spatium                                                                                                                                                                                                  | 3              | GND      |
| J1-12                                    | DRAIN 12 (1)    | Voltage output on this pin follows 0.5V/A times the current flowing through channel 12 of the Spatium                                                                                                                                                                                                  | 4              | +Vd      |
| J1-13                                    | DRAIN 13 (1)    | Voltage output on this pin follows 0.5V/A times the current flowing through channel 13 of the Spatium                                                                                                                                                                                                  |                |          |
| J1-14                                    | DRAIN 14 (1)    | Voltage output on this pin follows 0.5V/A times the current flowing through channel 14 of the Spatium                                                                                                                                                                                                  |                |          |
| J1-15                                    | DRAIN 15 (1)    | Voltage output on this pin follows 0.5V/A times the current flowing through channel 15 of the Spatium                                                                                                                                                                                                  |                |          |
| J1-16                                    | DRAIN 16 (1)    | Voltage output on this pin follows 0.5V/A times the current flowing through channel 16 of the Spatium                                                                                                                                                                                                  |                |          |
| J1-17                                    | 5V0 (2)         | 5V internally generated reference voltage                                                                                                                                                                                                                                                              |                |          |
| J1-18                                    | 5V0 (2)         | 5V internally generated reference voltage                                                                                                                                                                                                                                                              |                |          |
| J1-19                                    | GND             | Connect to logic ground                                                                                                                                                                                                                                                                                |                |          |
| J1-20                                    | GND             | Connect to logic ground                                                                                                                                                                                                                                                                                |                |          |
| J1-21                                    | VTEMP (3)       | Connects to Texas Instruments LMT87 temperature sensor output                                                                                                                                                                                                                                          |                |          |
| J1-22                                    | ENABLE          | 5V logic command bit to turn on/off the drain voltage leading to each channel of the Spatium. 0V puts the unit into a low-power state while 5V will allow normal operation. In the absence of an external logic signal (open), the amplifier will power on with the application of the supply voltage. |                |          |
| J1-23                                    | SCL             | I2C bus used to program amplifier for operation. Please contact Qorvo applications engineering for further information.                                                                                                                                                                                |                |          |
| J1-24                                    | SDA             | I2C bus used to program amplifier for operation. Please contact Qorvo applications engineering for further information.                                                                                                                                                                                |                |          |
| J1-25                                    | RESET           | I2C bus used to program amplifier for operation. Please contact Qorvo applications engineering for further information.                                                                                                                                                                                |                |          |
| J1-26                                    | GND             | Connect to logic ground.                                                                                                                                                                                                                                                                               |                |          |
| (1) J1-1 thr                             | rough J1-16 can | be used for diagnostics / status of MMIC; otherwise, leave open.                                                                                                                                                                                                                                       |                |          |
| (2) J1-17 a                              | nd J1-18 can be | e used to supply up to 100 mA of current if required. Otherwise, leave open.                                                                                                                                                                                                                           |                |          |

Do not apply a voltage to these pins.

(3) J1-21 can be used to monitor the reference temperature of the Spatium. For the relationship between the sensor output voltage and temperature, please see the LMT87 datasheet.

https://www.ti.com/lit/ds/symlink/lmt87.pdf/

### Spatium<sup>™</sup> QPB2731N 27.5–31 GHz Ka-Band GaN Amplifier

#### **Handling Precautions**



Caution! ESD-Sensitive Device

RF VOLTAGE HAZARD: Contact with RF fields at the output connector can cause burns or electric shock. High levels of RF/Microwave energy may be present when the unit is operating.

HIGH DC CURRENT HAZARD: High levels of DC current are present when the unit is operating.

#### **Contact Information**

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com

Tel: 1-844-890-8163

Email: customer.support@gorvo.com

#### **Important Notice**

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

© 2022 Qorvo US, Inc. All rights reserved. This document is subject to copyright laws in various jurisdictions worldwide and may not be reproduced or distributed, in whole or in part, without the express written consent of Qorvo US, Inc.