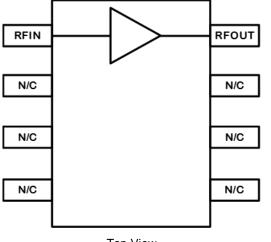
QOUND

QPB3321 17.5 dB Return Path Amplifier 5–210 MHz


Product Overview

The QPB3321 is an HBT single ended RF amplifier IC operating as return path amplifier capable of supporting DOCSIS 3.1 applications. This IC is designed to provide a low noise, high gain option for 5-210MHz interface using an 8V power supply to provide lower overall power dissipation. 5V operation is possible in applications with reduced linearity and gain requirements. The QPB3321 is packaged in a convenient SOIC8 package and features an externally adjustable bias control.

Package: SOIC-8 with Exposed Pad

Functional Block Diagram

Top View

Key Features

- 5MHz to 210MHz Operation
- 8V and 5V Operation
- Gain; 17.5dB Typical
- Noise Figure 3.4dB Typical
- Adjustable Bias Using External Resistors
- SOIC-8 Exposed Pad

Applications

- Head End CMTS Equipment
- Post Amp for Return Path Optical Receivers
- DOCSIS 3.1 Optical Nodes
- Residential Amplifiers and Splitters

Ordering Information

Part No.	Description
QPB3321SQ	Sample bag with 25 pieces
QPB3321SR	7" Reel with 100 pieces
QPB3321TR13	13" Reel with 2500 pieces
QPB3321PCK	5-210 MHz PCBA with 5 pc sample bag

Absolute Maximum Ratings

Parameter	Rating
Supply Voltage (VDD)	+10V
Supply Current (IDD)	275mA
Maximum CW Input Power for VDD=8V	+13dBm
Operating Temperature Range	-40 to +85 °C
Storage Temperature Range	−65 to +150 °C
Maximum Junction Temperature	+150 °C

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Parameter	Condition ⁽¹⁾	Min	Тур	Max	Unit
Supply Voltage (V _{DD})			8		V
Supply Current (I _{DD})			170		mA
Frequency Range		5		210	MHz
Gain			17.4		dB
Gain Flatness			±0.2		dB
Gain Tilt	Gain(210MHz) - Gain(5MHz)		-0.1		dB
Input Return Loss			19		dB
Output Return Loss	5MHz		21		dB
Reverse Isolation	Full bandwidth		21		dB
Noise Figure	Includes balun loss		3.4		dB
DTO	f1=13MHz, f2=19MHz 58dBmV per tone		78		-dBc
DSO	f1=13MHz, f2=19MHz 58dBmV per tone		59		-dBc
ACLR	Pout = 61dBmV, 5-195MHz OFDM w/ 9.6MHz exclusion band.		62.6		dB
OIP2	9dBm/tone, F1 = 113MHz, F2 = 119MHz		68		dBm
OIP3	9dBm/tone, F1 = 113MHz, F2 = 119MHz		48		dBm
Output P1dB	Full Band		24		dBm
Thermal Resistance	Θις		28		°C/W

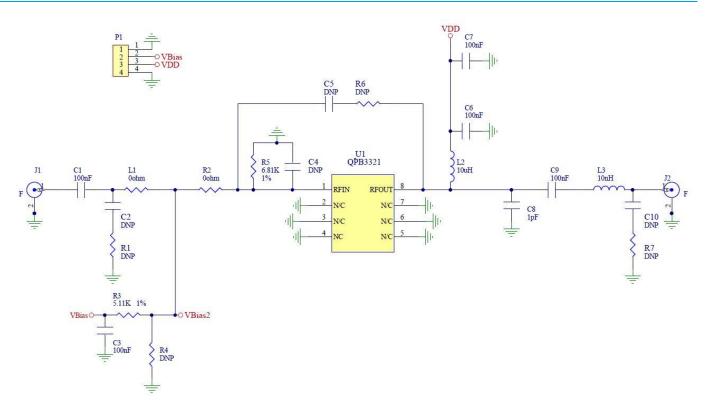
Electrical Specifications – 8V

Notes:

1. Typical performance at these conditions: Temp = +25°C, V_{DD} = +8V, 75 Ω system

QPB3321 17.5 dB Return Path Amplifier 5 – 210 MHz

Electrical Specifications – 5V


Parameter	Condition ⁽¹⁾	Min	Тур	Max	Unit
Supply Voltage (V _{DD})			5		V
Supply Current (I _{DD})			100		mA
Frequency Range		5		210	MHz
Gain			15.8		dB
Gain Flatness			±0.2		dB
Gain Tilt	Gain(210MHz) - Gain(5MHz)		-0.2		dB
Input Return Loss			26		dB
Output Return Loss			21		dB
Reverse Isolation	Full bandwidth		22		dB
Noise Figure	Full bandwidth		4.8		dB
DTO	f1=13MHz, f2=19MHz 55dBmV per tone		74		-dBc
DSO	f1=13MHz, f2=19MHz 55dBmV per tone		54		-dBc
ACLR	Pout = 53dBmV, 5-195MHz OFDM w/ 9.6MHz exclusion band.		61		dB
OIP2	6dBm/tone, F1 = 113MHz, F2 = 119MHz		51		dBm
OIP3	6dBm/tone, F1 = 113MHz, F2 = 119MHz		38		dBm
Output P1dB	Full Band		19.3		dBm

Notes:

1. Typical performance at these conditions: Temp = +25°C, V_{DD} = +5V, 75 Ω system

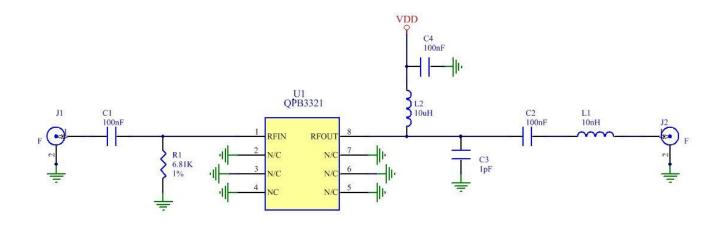
QPB3321 17.5 dB Return Path Amplifier 5–210 MHz

Evaluation Board Schematic 5-210MHz

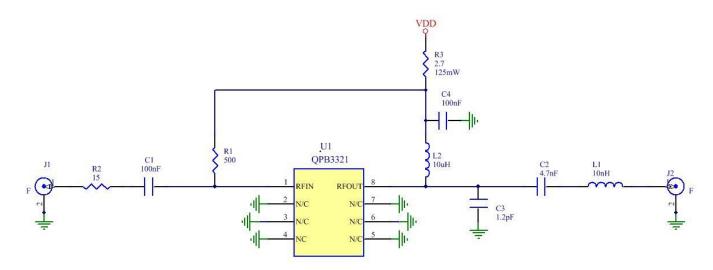
Evaluation Board Bill of Materials

Designator Description		Manufacturer	Part Number		
PCB	QPB3311-4000	DDI	QPB3311-4000(A)		
C1, C3, C6, C7, C9	CAP, 0.1uF, 10%, 16V, X7R, 0402	Murata Electronics	GRM155R71C104KA88D		
C8	CAP, 1.0pF, ±0.1pF, 50V, NPO, 0402	Murata Electronics	GRM1555C1H1R0BZ01D		
J1, J2	CONN, F FEM EDGE MOUNT, 75 OHMS	Millimeter Wave Technologies, LLC	MW-846-C-DD-75		
L1, R2	JMPR, 0 OHM, 0402	Panasonic	ERJ-2GE0R00		
L2	IND, 10uH, 10%, 500mA, W/W, 1210	Murata	82103C		
L3	IND, 10nH, 5%, M/L, 0402	Murata Electronics	LQG15HN10NJ02D		
P1	CONN, HDR, ST, FRCTN LOCK, 4-PIN	Molex	22-23-2041		
R3	RES, 5.11K, 1%, 1/16W , 0402	Cal-Chip Electronics	RM04F5111CT		
R5	RES, 6.81K, 1%, 1/16W, 0402	Panasonic	ERJ-2RKF6811X		
U1	17.5dB High-Linearity MMIC	Qorvo	QPB3321		
C2, C4, C5, C10, R1, R4, R6, R7	DNP	N/A	N/A		
HS1	Heat Sink 1.5 x 2	Shenzhen Minxingda Automation Equip	211086		
S1, S2, S3, S4	Screw, 2-56x3/16:, Socket Head	McMaster-Carr Supply Co.	92196A076		

QCCVO.


QPB3321 17.5 dB Return Path Amplifier 5–210 MHz

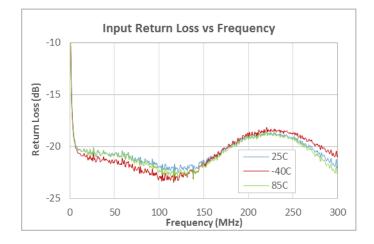
Evaluation Board Assembly Drawing

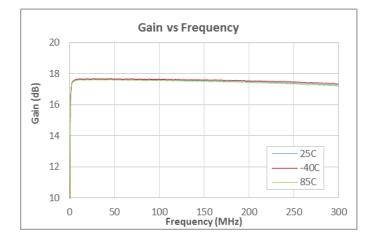


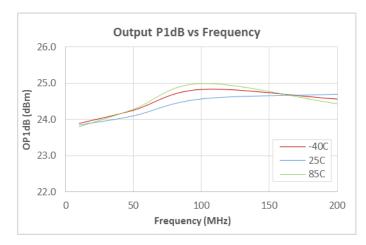
QPB3321 17.5 dB Return Path Amplifier 5–210 MHz

Typical Application Schematic, 8V

Typical Application Schematic, 5V

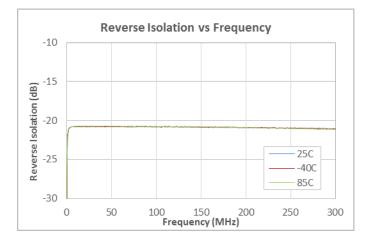


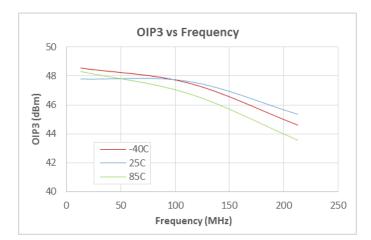

Notes:


- 1. R2 can be reduced to tradeoff reduced noise figure for degraded input return loss.
- 2. R1 increases bias current to recommended 100mA operating point to improve bias stability versus temperature.

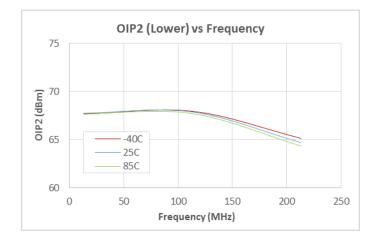
QPB3321 17.5 dB Return Path Amplifier 5 – 210 MHz

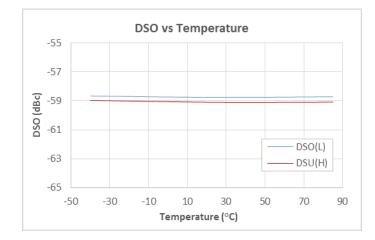
Performance Data – 8V

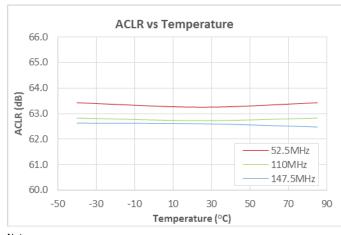




(1) OIP3: 9dBm/tone, F1 = 113MHz, F2 = 119MHz

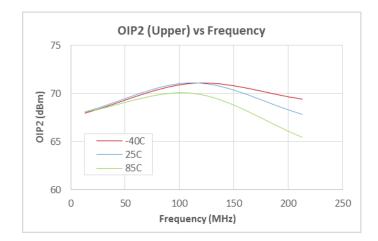


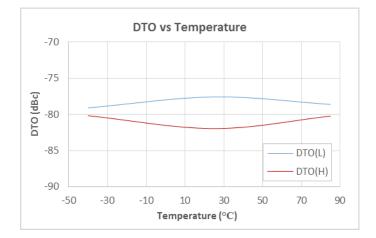


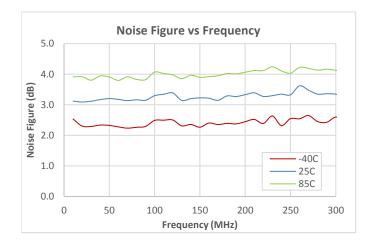


QPB3321 17.5 dB Return Path Amplifier 5–210 MHz

Performance Data – 8V

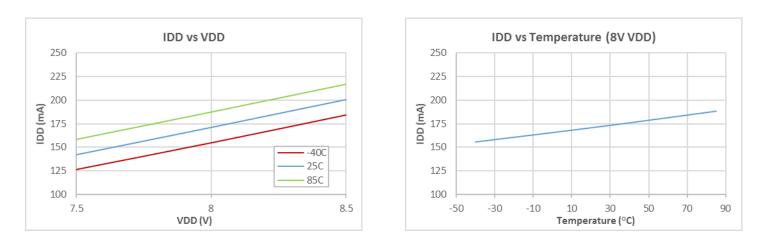




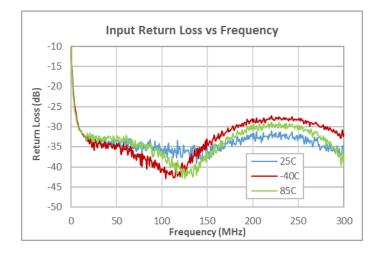

Notes:

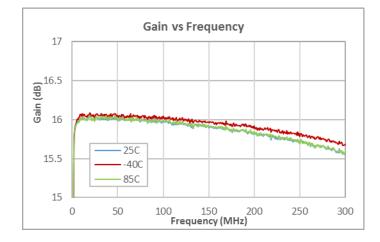
- (2) OIP2: 9dBm/tone, F1 = 113MHz, F2 = 119MHz
- (3) DSO/DTO: f1=13MHz, f2=19MHz 58dBmV per tone

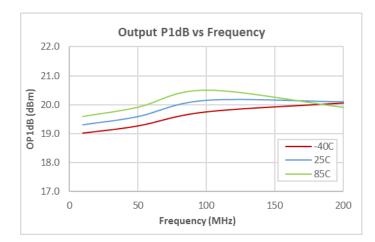
(4) ACLR: Pout = 61dBmV, 5-195MHz OFDM w/ 9.6MHz exclusion band.



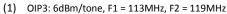
QPB3321 17.5 dB Return Path Amplifier 5–210 MHz


Performance Data – 8V

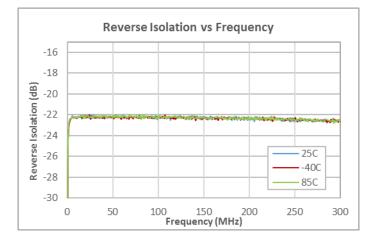


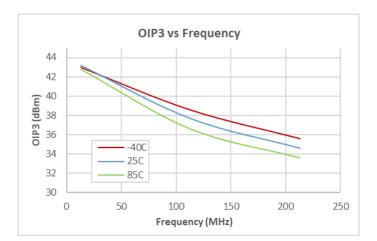

QCCVO

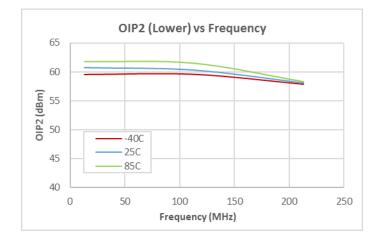
QPB3321 17.5 dB Return Path Amplifier 5 – 210 MHz

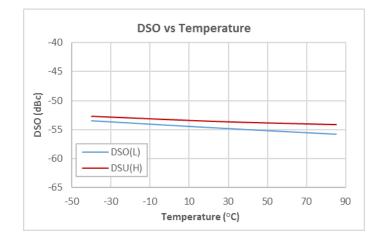

Performance Data – 5V

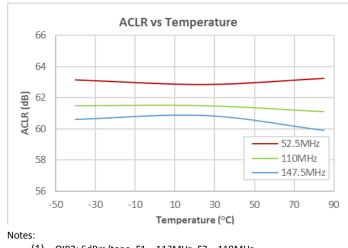




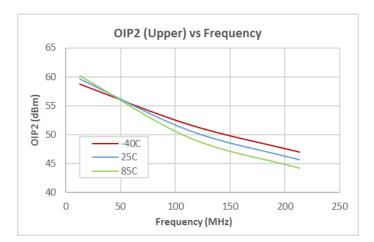


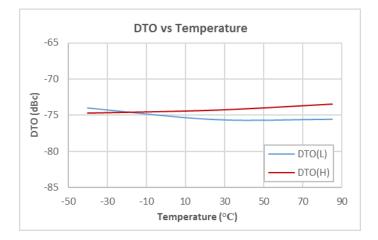


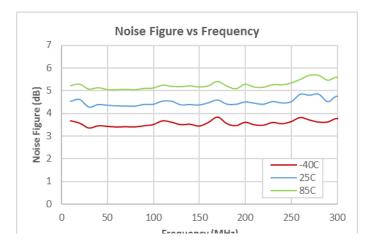




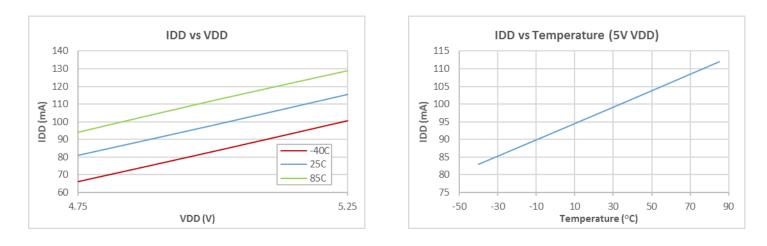
QPB3321 17.5 dB Return Path Amplifier 5–210 MHz


Performance Data – 5V



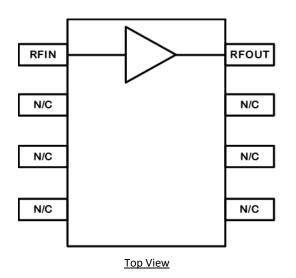


- (1) OIP2: 6dBm/tone, F1 = 113MHz, F2 = 119MHz
 (2) DSO/DTO: f1=13MHz, f2=19MHz 55dBmV per tone
- (3) ACLR: Pout = 53dBmV, 5-195MHz OFDM w/ 9.6MHz exclusion band.



Data Sheet -Rev C, July 24, 2017 | Subject to change without notice

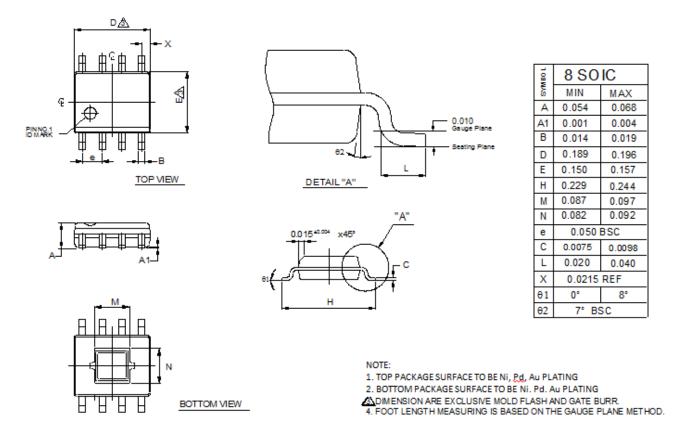
QPB3321 17.5 dB Return Path Amplifier 5–210 MHz


Performance Data – 5V

QCCVO.

QPB3321 17.5 dB Return Path Amplifier 5–210 MHz

Pad Configuration and Description

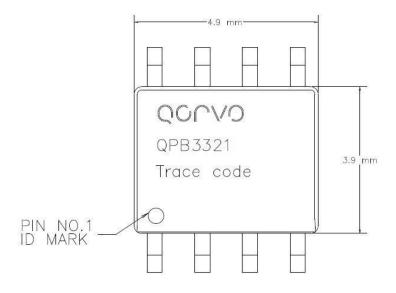


Pad No.	Label	Description
1	RFIN	RF Input, 75Ω
2	N/C	Internally Not Connected
3	N/C	Internally Not Connected
4	N/C	Internally Not Connected
5	N/C	Internally Not Connected
6	N/C	Internally Not Connected
7	N/C	Internally Not Connected
8	RFOUT	RF Output, 75Ω
Backside Paddle	GND	Ground. Use recommended via pattern to minimize inductance and thermal resistance. See PCB Mounting Pattern for suggested footprint.

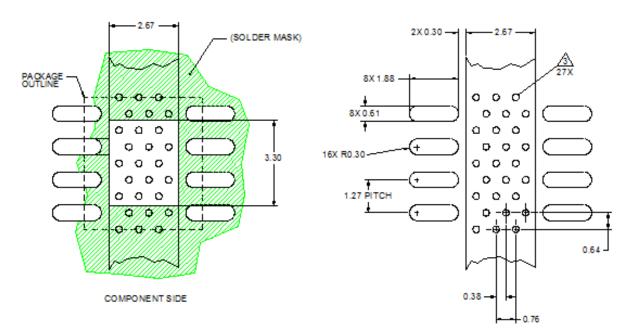
QOrvo

QPB3321 17.5 dB Return Path Amplifier 5–210 MHz

Package Outline


EXPOSED PADDLE

Notes:


1. Dimensions in millimeters

QPB3321 17.5 dB Return Path Amplifier 5–210 MHz

Package Marking

Recommended Mounting Pattern

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Use 1oz. copper minimum for top and bottom layers
- 3. Vias are required under the backside paddle for proper RF/DC grounding and thermal dissipation. We recommend a 0.35mm (#80/0.135") diameter bit for drilling via holes and a final plated through diameter of 0.25mm (0.010").
- 4. Ensure good backside paddle solder attach for reliable operation and best electrical performance.

Handling Precautions

Parameter	Rating	Standard		
ESD-Human Body Model (HBM)	1B	ESDA/JEDEC JS-001-2012		Caution! ESD-Sensitive Device
ESD-Charged Device Model (CDM)	C3	JEDEC JESD22-C101F		
MSL-Moisture Sensitivity Level	MSL3	IPC/JEDEC J-STD-020		

Solderability

Compatible with both lead-free (260°C max. reflow temp.) and tin/lead (245°C max. reflow temp.) soldering processes. Solder profiles available upon request.

Contact plating: NiPdAu

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Tel: 1-844-890-8163

Web: www.qorvo.com

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2017 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

