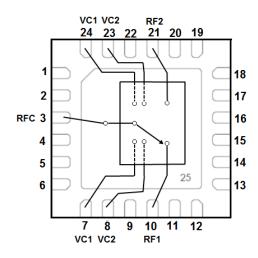


0.15 - 2.8 GHz High Power GaN SPDT Switch

Product Overview

Qorvo's QPC1005 is a Single-Pole, Double-Throw (SPDT) switch fabricated on Qorvo's QGaN25 0.25um GaN on SiC production process.


Operating from 0.15 to 2.8 GHz, the QPC1005 typically supports 50 W input power handling at control voltages of 0/-40 V for both CW and pulsed RF operations. This switch maintains low insertion loss less than 0.7 dB and greater than 30 dB isolation, making it ideal for high power switching applications across both defense and commercial platforms.


QPC1005 is offered in a 4 x 4 mm plastic overmolded QFN package.

Lead-free and RoHS compliant

Evaluation Boards are available upon request.

Functional Block Diagram

4mm x 4mm 24 Lead OVM QFN

Key Features

SPDT

Frequency Range: 0.15 to 2.8 GHz

Input Power: 50 W
Insertion Loss: < 0.7 dB
Isolation: >30 dB Typical
Switching Speed: 30 ns
Control Voltages: 0 V/-40 V
Redundant Control Lines

Package Dimensions: 4 x 4 x 0.85 mm

Performance is typical across frequency. Please reference electrical specification table and data plots for more details.

Applications

- Commercial and Military Radar
- Communications
- Electronic Warfare
- Test Instrumentation
- General Purpose

Ordering Information

Part No.	ECCN	Description
QPC1005	EAR99	0.15–2.8 GHz High Power GaN SPDT Switch

0.15 to 2.8 GHz High Power GaN SPDT Switch

Absolute Maximum Ratings

Parameter	Rating
Control Voltage (V _C)	-50 V
Control Current (Ic)	−1.5 / +1.5 mA
Power Dissipation	12 W
RF Input Power, CW, 50 Ω, T = 25 °C	60 W
Channel Temperature, T _{CH}	275 °C
Mounting Temperature (30 sec)	260 °C
Storage Temperature	-40 to 150 °C

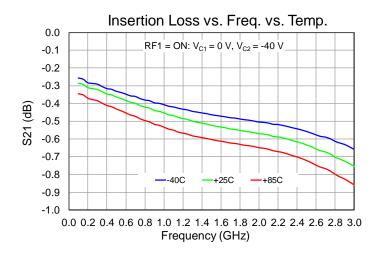
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

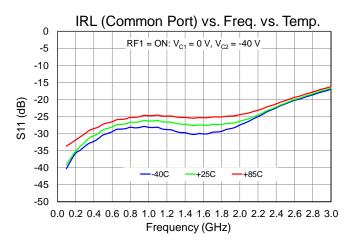
Recommended Operating Conditions

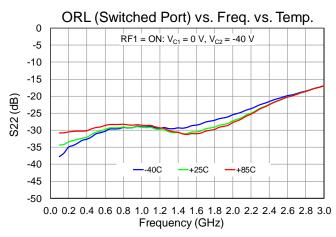
Parameter	Min	Тур	Max	Units
V_{C1}		0/-40		V
V _{C2}		-40/0		V
Channel Temp., T _{CH}		≤ 225		°C

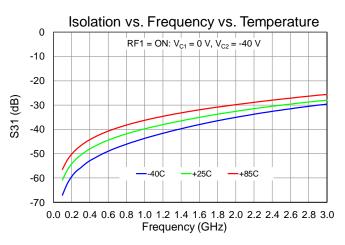
Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

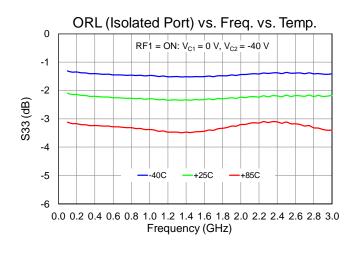
Electrical Specifications

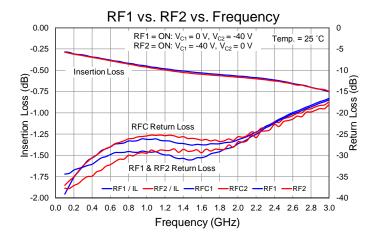

Test conditions unless otherwise noted: 25 °C, $V_{C1} = 0 \text{ V}/-40 \text{ V}$, $V_{C2} = -40 \text{ V}/0 \text{ V}$, see function table on page 12.

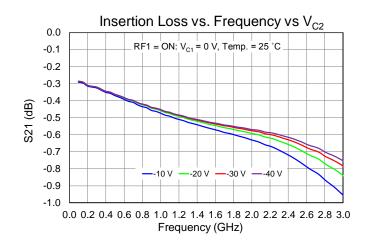

Parameter	Min	Тур	Max	Units	
Operational Frequency Range		0.15	_	2.8	GHz
	Frequency = 0.15 GHz		0.30	_	
Insertion Loss (On-State)	Frequency = 1.0 GHz		0.45	_	dB
	Frequency = 2.8 GHz		0.70	_	
	Frequency = 0.15 GHz		37	_	
Input Return Loss (On-State) Common Port RL	Frequency = 1.0 GHz		26	_	dB
Common For IVE	Frequency = 2.8 GHz		18	_	
	Frequency = 0.15 GHz		34	_	
Output Return Loss (On-State) Switched Port RL	Frequency = 1.0 GHz		29	_	dB
OWNORCUT OFFICE	Frequency = 2.8 GHz		18	_	
	Frequency = 0.15 GHz		57	_	
Isolation (Off-State)	Frequency = 1.0 GHz		40	_	dB
	Frequency = 2.8 GHz		29	_	
	Frequency = 0.15 GHz		2.1	_	
Output Return Loss Isolated Port	Frequency = 1.0 GHz		2.3	_	dB
isolated i oit	Frequency = 2.8 GHz		2.2	_	
Insertion Loss @ P _{IN} = 47 dBm	Frequency = 0.15 GHz		0.30		
(Pulsed RF)	Frequency = 1.0 GHz		0.50		dB
PW = 100us; DC = 10%	Frequency = 2.8 GHz		0.70		
Insertion Loss @ P _{IN} = 47 dBm	Frequency = 0.15 GHz		0.30		
(CW)	Frequency = 1.0 GHz		0.50		dB
	Frequency = 2.8 GHz		0.75		
Input Power (P _{0.1dB})			47		dBm
Control Voltage			-40	-50	V
Total Supply Current			<3		mA
Switching Speed			30		nS
Insertion Loss Temperature Coe	efficient	_	-0.0015	_	dB/°C

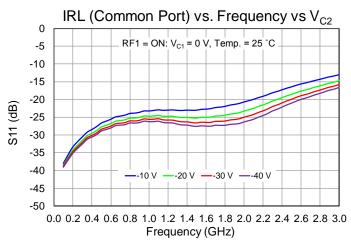


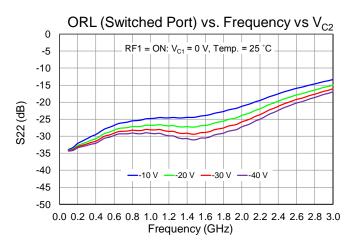

Performance Plots - Small Signal

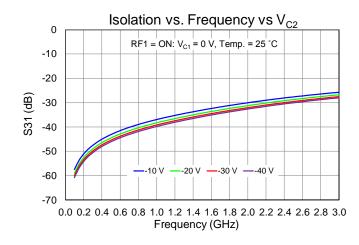

Notes: RFC = Port1; RF1 = Port 2; RF2 = Port 3

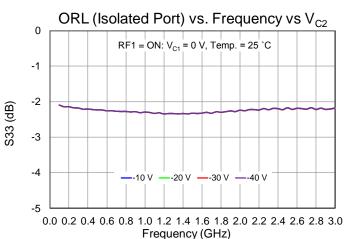


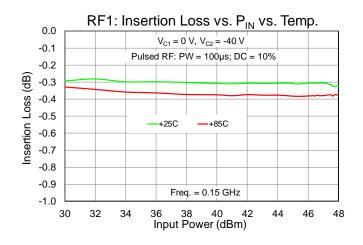


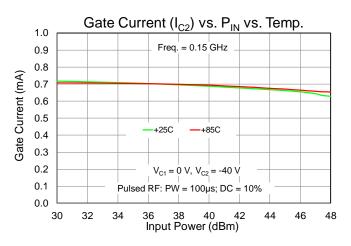


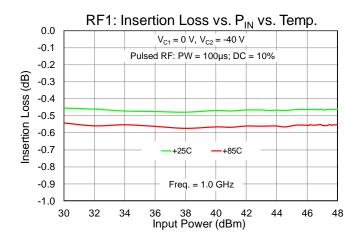


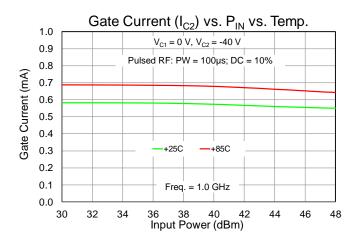


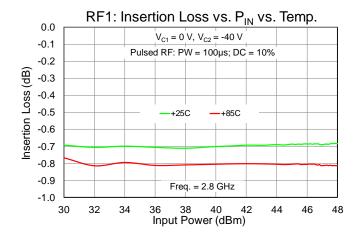

Performance Plots - Small Signal

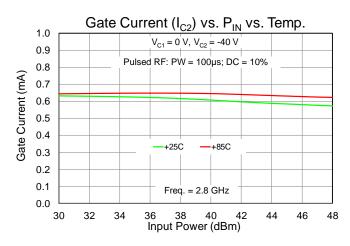


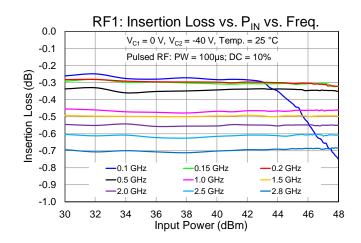


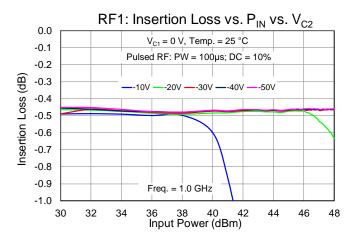


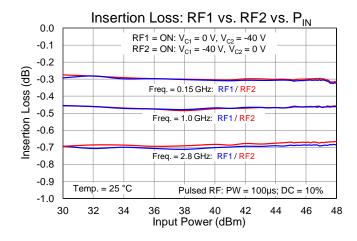



Performance Plots - Compression (Pulsed)

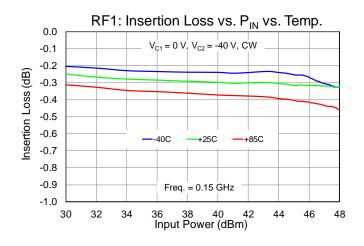


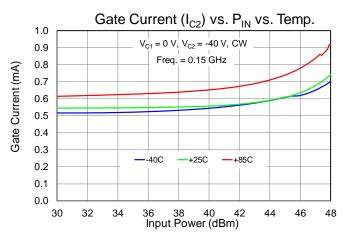


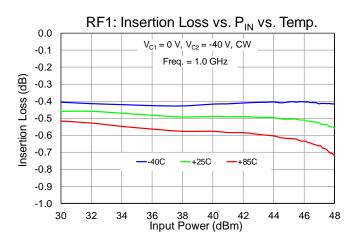


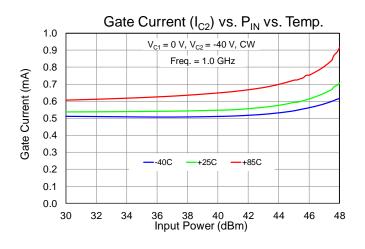


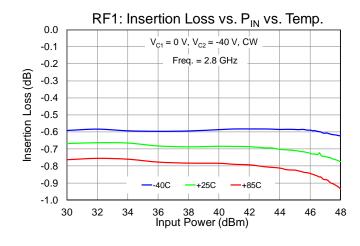
Performance Plots - Compression (Pulsed)

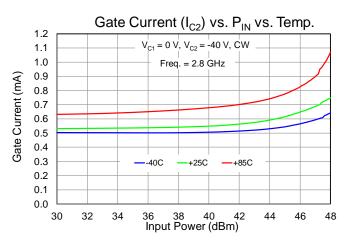


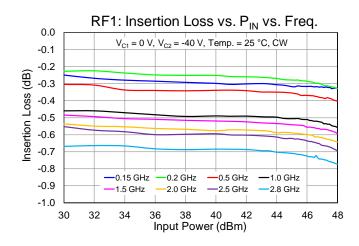


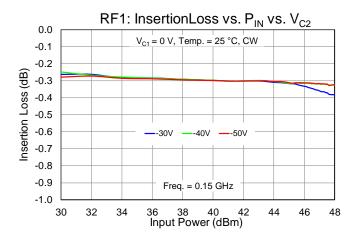


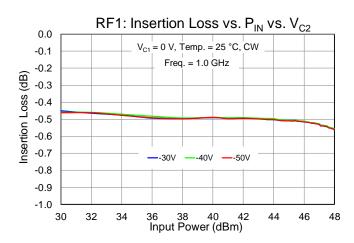


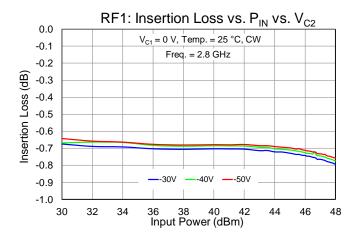

Performance Plots - Compression (CW)

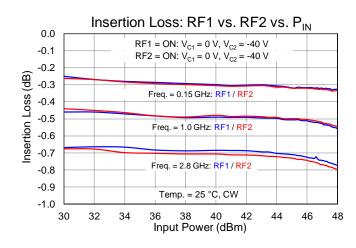


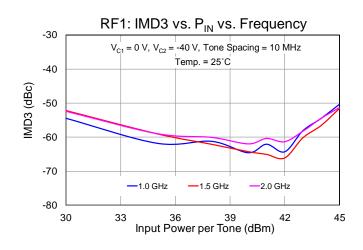


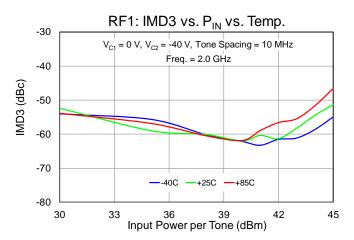


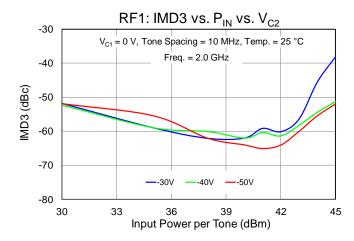





Performance Plots - Compression (CW)

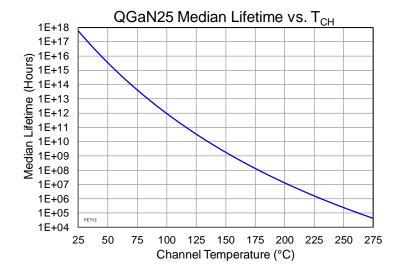






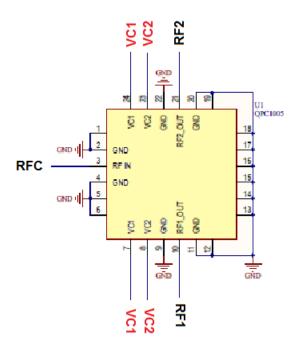
Performance Plots - Linearity

Thermal and Reliability Information


Parameter	Test Conditions	Value	Units
Thermal Resistance $(\theta_{JC})^{(1)}$		7.69	°C/W
Channel Temperature (T _{CH}) ⁽¹⁾	TBASE = 85 °C, $V_{C1} = 0 \text{ V}$, $V_{C2} = -40 \text{ V}$, Freq. = 2.8 GHz $P_{IN} = 60 \text{ W}$ (CW), P_{DISS} (2) = 6.5 W, CW	135	°C
Median Lifetime (T _M)	1 IN = 35 VV (37V), 1 biss = 3.5 VV, 3VV	9.75 x 10^9	Hrs

Notes:

- 1. Measured to the back of the package.
- 2. This is a total PDISS in the FETs.


Median Lifetime and Channel Temperature

Test Conditions: V_D = +40 V; Failure Criteria = 10% reduction in I_{D_MAX} during DC Life Testing

Application Circuit

Notes:

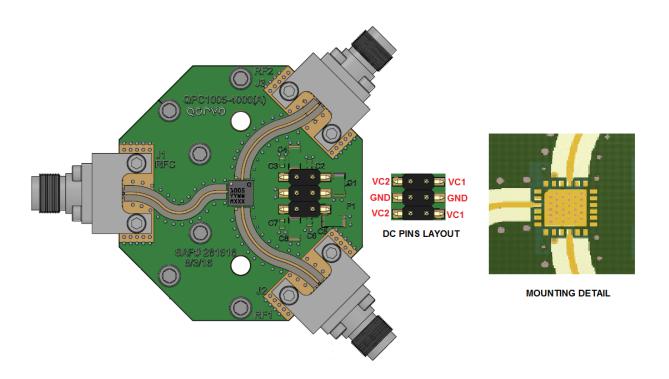
- 1. This switch can be configured as a Single Pole, Single Throw (SPST) by terminating one unused RF switched port with a 50 Ohm load.
- 2. V_{C1} can be biased from either pin 7 or 24 and the non-biased pin can be left open.
- 3. V_{C2} can be biased from either pin 8 or 23 and the non-biased pin can be left open.
- 4. External components are not required

Bias Up Procedure

1. V_{C1} or V_{C2} set to 0 V (see Function Table for RF Path)
2. V _{C2} or V _{C1} set to -40 V (see Function Table for RF Path)

3. Apply RF signal to RF Input

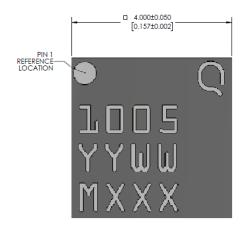
Bias Up Down

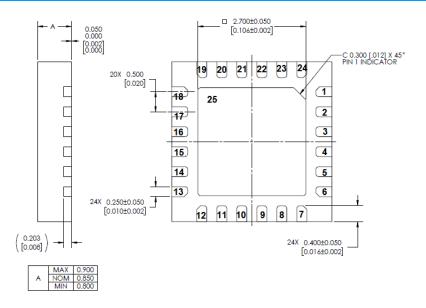

- 1. Turn off RF supply
- 2. Turn V_{C2} or V_{C1} to 0 V
- 3. Turn V_{C1} or V_{C2} to 0 V

Function Table

RF Path	State	V _{C1}	V_{C2}
RFC to RF1 ON	On-State (Insertion Loss)	0 V	-40 V
RFC to RFT ON	Off-State (Isolation)	-40 V	0 V
DEC to DEC ON	On-State (Insertion Loss)	-40 V	0 V
RFC to RF2 ON	Off-State (Isolation)	0 V	-40 V

Evaluation Board (EVB) Assembly Layout.




Notes:

- 1. This switch can be configured as a Single Pole, Single Throw (SPST) by terminating one unused RF switched port with a 50 Ohm load.
- 2. V_{C1} can be biased from either pin and the non-biased pin can be left open.
- 3. V_{C2} can be biased from either pin and the non-biased pin can be left open.
- 4. External components are not required

Mechanical Information

Units: millimeters

Tolerances: unless specified

 $x.xx = \pm 0.25$ $x.xxx = \pm 0.100$

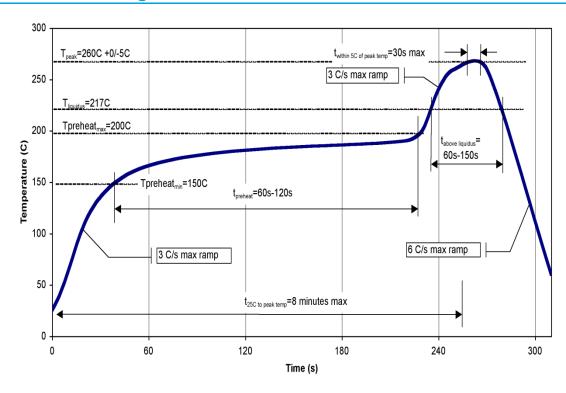
Materials:

Base: Laminate

Packaged Exposed Metallization is gold plated

Marking:

QPC1005: Part number YY: Part Assembly year WW: Part Assembly week


MXXX: Batch ID

Pin Description

Pad No.	Symbol	Description
1, 5, 6, 11-20,	N/C	Not connected internally. Recommended to be grounded at EVB level
2, 4, 9, 22	GND	Ground. Connected to GND paddle (pin 25); should be grounded on PCB to improve isolation
3	RFC	RF common port; matched to 50 Ω; DC coupled
7, 24	V _{C1}	Control voltage #1; External components are not required
8, 23	V _{C2}	Control voltage #2; External components are not required
10	RF1	RF switched port 1; matched to 50 Ω; DC coupled
21	RF2	RF switched port 2; matched to 50 Ω; DC coupled
25	GND	Backside Paddle. Multiple vias should be employed to minimize inductance and thermal resistance.

Recommended Soldering Profile

Handling Precautions

Parameter	Rating	Standard
ESD-Human Body Model (HBM)	TBD	ESDA/JEDEC JS-001-2012
ESD - Charged Device Model (CDM)	TBD	ESDA/JEDEC JS-002-2014
MSL – Convection Reflow 260 °C	TBD	JEDEC standard IPC/JEDEC J-STD-020

Caution! ESD-Sensitive Device

Solderability

Compatible with the latest version of J-STD-020, Lead-free solder, 260 °C

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>
Tel: 1-844-890-8163

Email: <u>customer.support@gorvo.com</u>

For technical questions and application information: **Email: appsupport@gorvo.com**

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2016 @ Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.