


## **Product Overview**

The Qorvo QPD2025D is a discrete 250 micron pHEMT which operates from DC to 20 GHz. The QPD2025D is fabricated using Qorvo's proven standard 0.25 um power pHEMT production process. This process features advanced techniques to optimize microwave power and efficiency at high drain bias operating conditions.

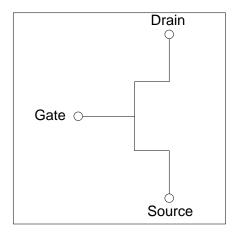
The QPD2025D typically provides 24 dBm of output power at P1dB with gain of 14 dB and 58% power-added efficiency at 1 dB compression. This performance makes the QPD2025D appropriate for high efficiency applications. The protective overcoat layer with silicon nitride provides a level of environmental robustness and scratch protection.

The QPD2025D is lead-free and RoHS compliant.



## **Key Features**

Frequency: DC – 20 GHz
Output Power (P<sub>1dB</sub>)<sup>1</sup>: 24 dBm


Typical Gain¹: 14 dB
Typical PAE<sub>1dB</sub>¹: 58%
Noise Figure¹: 0.9 dB

No Vias

Technology: 0.25 um GaAs pHEMT
Chip Dimensions: 0.41 x 0.34 x 0.10 mm
Notes:

1. @ 12 GHz

# **Functional Block Diagram**



| Pad Dimensions | Terminal |
|----------------|----------|
| 71 um x 71 um  | Gate     |
| 71 um x 71 um  | Drain    |
| 121 um x 71 um | Source   |

# **Applications**

- Defense and Aerospace
- High-Reliability
- · Test and Measurement
- Commercial
- Broadband Wireless

# **Ordering Information**

| Part Number | Description       |
|-------------|-------------------|
| QPD2025D    | 250 um GaAs pHEMT |



# 250 um Discrete GaAs pHEMT

# **Absolute Maximum Ratings<sup>1</sup>**

| Parameter                                              | Absolute           | Continuous         | Units |
|--------------------------------------------------------|--------------------|--------------------|-------|
| Drain-Source Voltage (V <sub>DS</sub> ) <sup>(2)</sup> | 12                 | 8                  | V     |
| Gate-Source Voltage (V <sub>GS</sub> )                 | -7                 | -3                 | V     |
| Drain Current (I <sub>DS</sub> ) <sup>(2)</sup>        | IDSS               | I <sub>DSS</sub>   | mA    |
| Forward Gate Current (I <sub>G,F</sub> )               | 12                 | 2                  | W     |
| Channel Temperature (T <sub>CH</sub> ) <sup>(3)</sup>  | 175 <sup>(4)</sup> | 150 <sup>(5)</sup> | °C    |
| Storage Temperature (T <sub>STG</sub> )                | -65 to 150         | -65 to 150         | °C    |
| RF Input Power (P <sub>IN</sub> ) <sup>(2)</sup>       | 18                 | At 3dB Compression | dBm   |
| Power Dissipation (P <sub>TOT</sub> )                  | 1.34               | 0.89               | W     |

#### Notes:

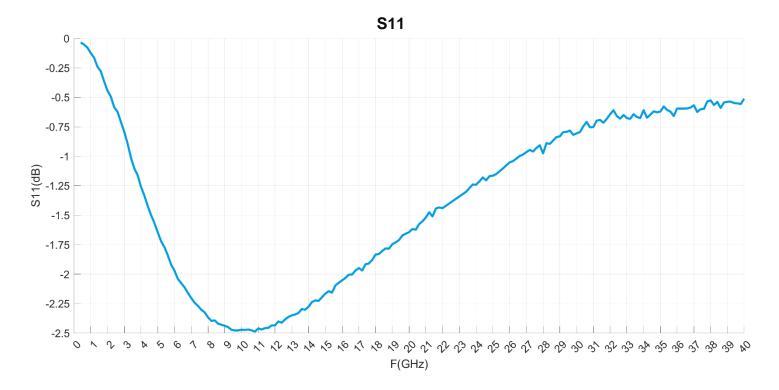
- 1. These ratings represent the maximum operable values for this device. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device and/or affect device lifetime. These are stress ratings only, and functional operation of the device at these conditions is not implied.
- 2. Combinations of supply voltage, supply current, input power, and output power shall not exceed the maximum total power dissipation listed in the table.
- 3. Junction operating temperature will directly affect the device median time to failure. For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.
- 4. When operated at this channel temperature, the median life is 1.0E+5 hours.
- 5. When operated at this channel temperature, the median life is 1.0E+6 hours.

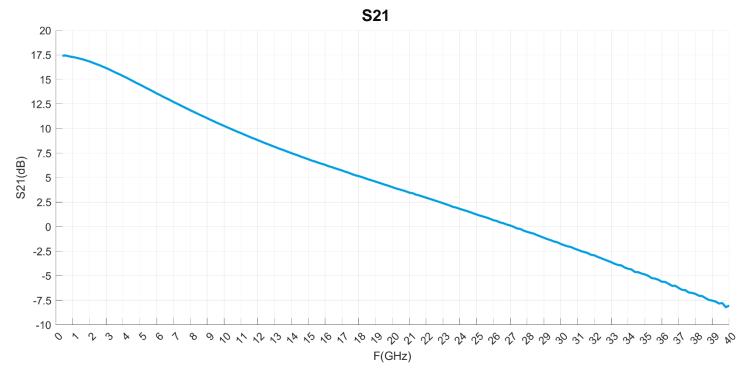
## Electrical Characteristics<sup>1</sup>

| Parameters                                           | Conditions                                     | Typical Values    | Units |
|------------------------------------------------------|------------------------------------------------|-------------------|-------|
| Output Power at 1dB Compression (P <sub>1dB</sub> )  | Freq = 12 GHz                                  | 24                | dBm   |
| Gain at P1dB (G <sub>1dB</sub> )                     | V <sub>DS</sub> = 8 V                          | 14                | dB    |
| PAE at P1dB (PAE)                                    | lps = 50% lpss                                 | 58                | %     |
| 50 OHM Noise Figure (NF)                             | $V_{DS} = 2 \text{ V}, I_{DS} = 19 \text{ mA}$ | 0.9               | dB    |
| Saturated Drain Current (I <sub>DSS</sub> )          | $V_{DS} = 2 V$ , $V_{GS} = 0 V$                | 81 <sup>(2)</sup> | mA    |
| Transconductance (Gm)                                | $V_{DS} = 2 V$ , $I_{DS} = 50\% I_{DSS}$       | 97                | mS    |
| Pinch-Off Voltage (V <sub>P</sub> )                  | $V_{DS} = 2 V$ , $I_{DS} = 0.125 \text{ mA}$   | -1.0              | V     |
| Gate-Drain Breakdown Voltage (BV <sub>GD</sub> )     | I <sub>G</sub> = 0.25 mA, source open          | -15               | V     |
| Gate-Source Breakdown Voltage (BV <sub>GS</sub> )    | I <sub>G</sub> = 0.25 mA, drain open           | -15               | V     |
| Thermal Resistance (R <sub>TH</sub> ) <sup>(3)</sup> | AuSn eutectic attach                           | 62.5              | °C/W  |

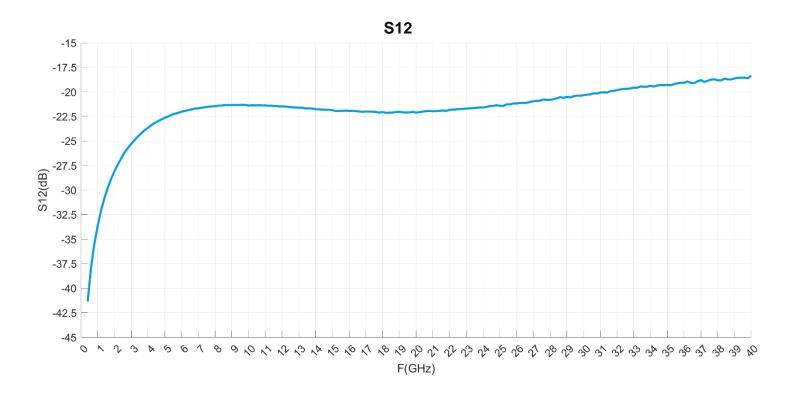
### Notes:

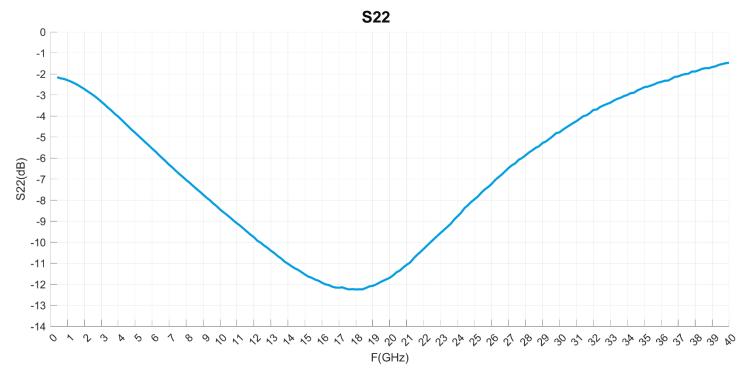
- 1. Test conditions unless otherwise noted:  $T_A = +25$  °C
- 2. Typical Standard Deviation of 2 mA (1  $\sigma$ ).
- 3. Based on IR Scan.





# 250 um Discrete GaAs pHEMT

# S-Parameters<sup>1</sup>


#### Notes

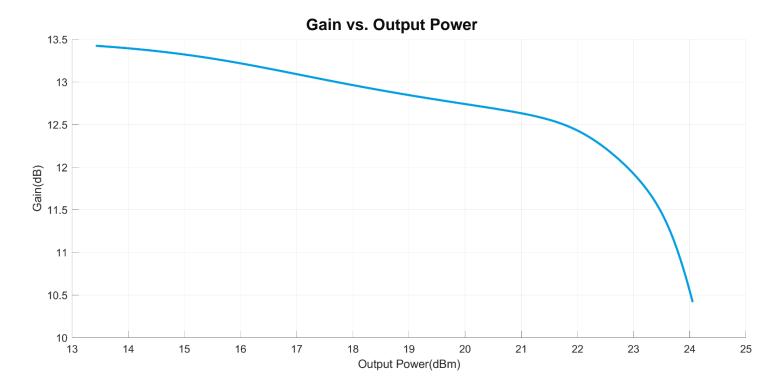

1. S-Parameter data was measured by Modelithics with bonding wires at V<sub>D</sub> = 8 V, I<sub>DQ</sub> = 20 mA, and T<sub>A</sub> = 25 °C. Please review Modelithics's QPD2025D model datasheet for more information on configurations of bonding wires.

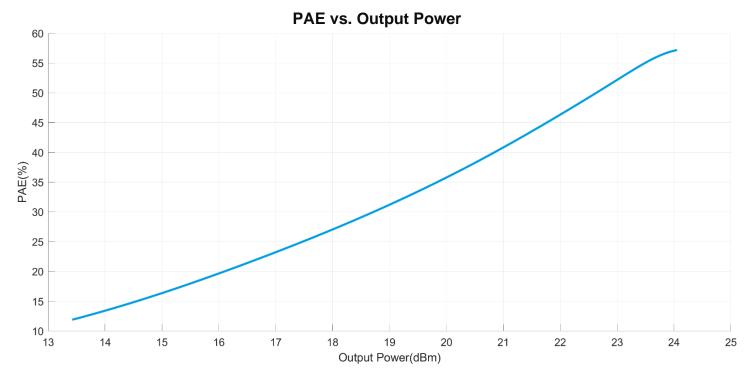










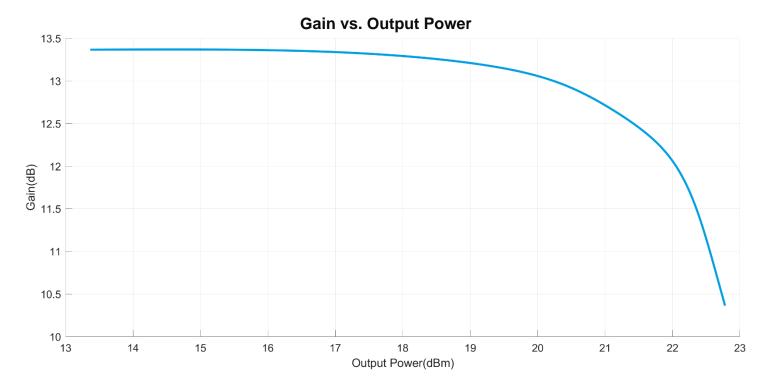



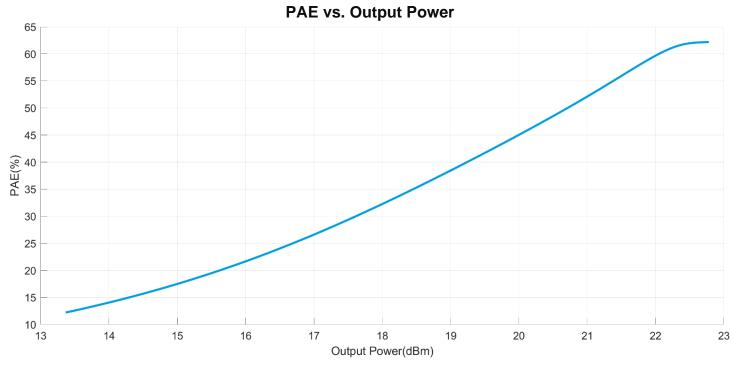

## Performance Plots - Power Tuned @ 12 GHz<sup>1</sup>

#### Notes

1. Performance Plots are simulated result using Modelithics's QPD2025D model with V<sub>D</sub> = 8 V, I<sub>DQ</sub> = 20 mA, BWremoval = 0. Please visit Modelithics for Measurement vs. Model Data and more information.

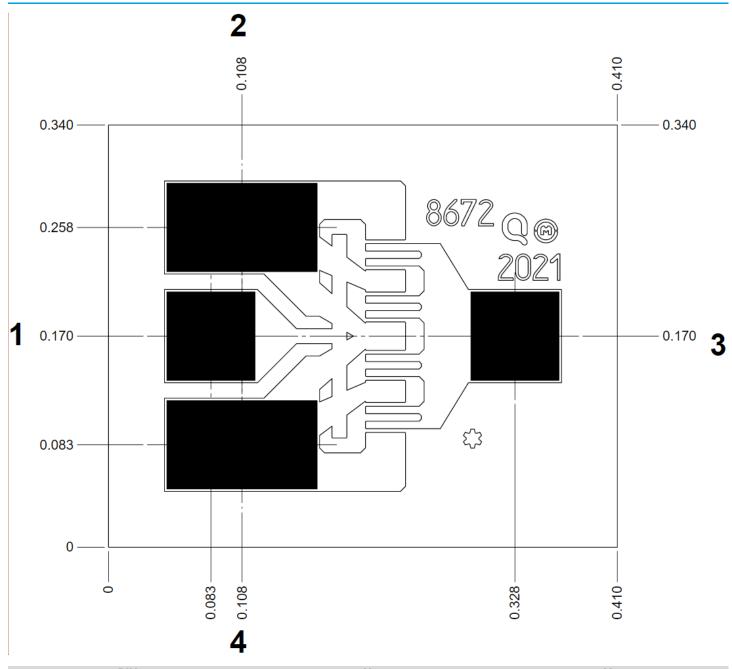





# Performance Plots – Efficiency Tuned @ 12 GHz<sup>1</sup>

#### Notes


1. Performance Plots are simulated result using Modelithics's QPD2025D model with V<sub>D</sub> = 8 V, I<sub>DQ</sub> = 20 mA, BWremoval = 0. Please visit Modelithics for Measurement vs. Model Data and more information.







# **Die Dimensions**<sup>1</sup>




| PIN | X     | Y     |
|-----|-------|-------|
| 1   | 0.071 | 0.071 |
| 2   | 0.121 | 0.071 |
| 3   | 0.071 | 0.071 |
| 4   | 0.121 | 0.071 |

### Notes:

1. All units are in mm.



## DC Characteristics<sup>1</sup>



### Notes:

1. The I-V plot shown above was simulated data using Modelithics's model with Model self\_heat = 0. Please visit Modelithics for Measurement vs. Model Data and more information.



## **Assembly Notes**

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- · Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment (i.e. epoxy) can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.

### Reflow process assembly notes:

- Recommend Eutectic die attach with AuSn (80/20) solder and limit exposure to temperatures above 300°C to 30 seconds, maximum.
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- · Do not use any kind of flux.
- · Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

### Interconnect process assembly notes:

- Either Thermo-compression Wedge Bonding or Thermosonic Ball Bonding can be used to bond onto the die.
- Force, time, and ultrasonics are critical bonding parameters.
- · Aluminum wire should not be used.
- Devices with small pad sizes should be bonded with 0.0008-inch wire.



## **Handling Precautions**

GaAs devices are susceptible to damage for electrostatic discharge. Proper precautions should be observed during handling, assembly, and test.



## **RoHS Compliance**

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- · Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C<sub>15</sub>H<sub>12</sub>Br<sub>4</sub>O<sub>2</sub>) Free
- PFOS Free
- SVHC Free

Not HAST compliant.

## **Contact Information**

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u>
Tel: 1-844-890-8163

Email: customer.support@gorvo.com

# **Important Notice**

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2022 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.