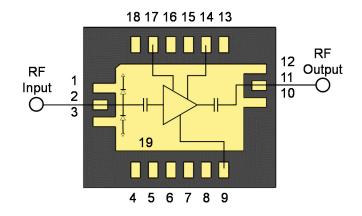


RFMD + TriQuint = Qorvo

QPM1000 2 -20 GHz Limiter/Low-Noise Amplifier

Applications

Receiver Front End Building Block



Functional Block Diagram

• Frequency Range: 2–20 GHz

Product Features

- Input Power CW Survivability: 4 W
- Gain: > 17 dB
- Adjustable gain (> 30 dB using V_{G2})
- Noise Figure: < 2.0 dB (3-12 GHz)
 - < 4.0 dB (outer frequencies)
- IM3: < -21 dBc (P_{IN} ≤ 0 dBm)
- Bias: V_{D} = 5 V, I_{D} = 100 mA, V_{G1} = -0.6 V typical, V_{G2} = +1.3 V
- Package dimensions: 6.00 x 5.00 x 1.72 mm

General Description

The Qorvo QPM1000 is an integrated limiter/LNA providing robust, high performance over the 2–20GHz frequency range. The QPM1000 delivers 17 dB small signal gain with gain control and > 18 dBm P1dB with a range of noise figure of 1.5-4 dB across frequency. In addition, the integrated limiter provides a robustness level of up to 4 W of incident power without performance degradation.

The QPM1000 is packaged in an air cavity, laminatebased 6 x 5 mm QFN for easy handling. With a small form factor coupled with both ports matched to 50 ohms and DC blocked, the QPM1000 is ideally suited to support both commercial and defense related applications where robust receiver front ends are required.

Lead-free and RoHS compliant.

Evaluation boards are available upon request.

Pad Configuration

Pad No.	Symbol
1, 3, 10, 12, 19	GND
2	RF Input
4-8, 13, 15, 16, 18	NC
9	V _{G1}
11	RF Output
14	VD
17	V _{G2}

Ordering Information					
Part	ECCN	Description			
QPM1000	EAR99	2–20 GHz Limiter/LNA			

Absolute Maximum Ratings

Parameter	Value
Drain Voltage (VD)	7 V
Gate Voltage Range (V _{G1})	-2 to 0 V
Gate Voltage Range (V _{G2})	-2 to +3 V
Drain Current (I _D)	144 mA
Gate Current Range (IG1)	–24 to +24 mA
Gate Current Range (I _{G2})	–24 to +24 mA
RF Input Power, CW, 50 Ω, 25 °C	36 dBm
RF Input Power, CW, 50 Ω, 85 °C	33 dBm
Incident Power, Pulsed ¹ , 50 W, 85 °C	40 dBm
Channel Temperature (T _{CH})	200 ℃
Mounting Temperature (30 seconds)	260 °C
Storage Temperature	-55 to 150 ℃
Note:	

Recommended Operating Conditions

Parameter	Value
Drain Voltage (V _D)	5 V
Drain Current (I _{DQ})	100 mA
Gate Voltage (V _{G1}), typical	–0.6 V
Gate Voltage (V _{G2})	1.3 V
Operating Temperature Range	–40 to 85 ℃

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

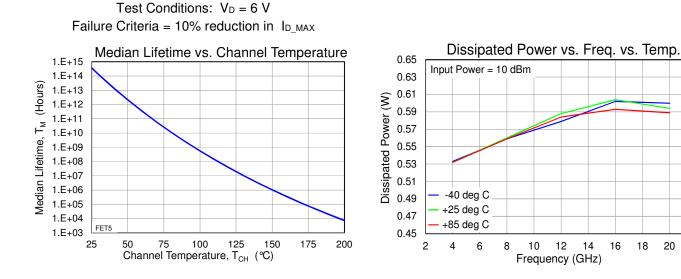
¹ Pulse conditions: PW = 100 us, Duty Cycle = 10%

Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied.

Electrical Specifications

Test conditions unless otherwise noted: 25 °C , V _D = 5 V, I _{DQ} = 100 mA, V _{G1} = -0.6 V Typical, V _{G2} = 1.3 V				
	Test conditions unless otherw	vise noted: $25 ^{\circ}\mathrm{C}$ V $_{\mathrm{D}} = 5$	$V I_{DO} = 100 \text{ mA} V_{C1} = -0$	6 V Typical $V_{G2} = 1.3 V$

Parameter	Min	Typical	Max	Units
Operation Frequency Range	2		20	GHz
Small Signal Gain		> 17		dB
Input Return Loss		> 9.7		dB
Output Return Loss		> 7.6		dB
Noise Figure: 2 GHz		2.8		dB
8 GHz		1.7		dB
14 GHz		2.3		dB
20 GHz		4.0		dB
Third-Order Intermodulation Distortion ($P_{IN} \le 0$ dBm/Tone, 10 MHz Tone Spacing)		> -21		dBc
Output Power (Saturation; P _{IN} = 10 dBm)		> 21		dBm
Output Power (1 dB Compression)		> 17		dBm
Gain Temperature Coefficient		-0.010		dB/℃
Noise Figure Temperature Coefficient		0.010		dB/℃
Output Power Temperature Coefficient		-0.004		dB/℃


Thermal and Reliability Information

Parameter	Test Conditions	Value	Units
Thermal Resistance (θ _{JC}) ⁽¹⁾	T _{base} = 85 °C, V _D = 5 V, I _{DQ} = 144 mA, Freq = 16	30.2	°C/W
Channel Temperature (T _{CH}) (Under RF drive)	GHz, I _{D_Drive} = 144 A, PIN = 10 dBm, POUT = 20.3	102.0	°C
Median Lifetime (T _M)	dBm, P _{DISS} = 0.562 W	4.77E08	Hrs

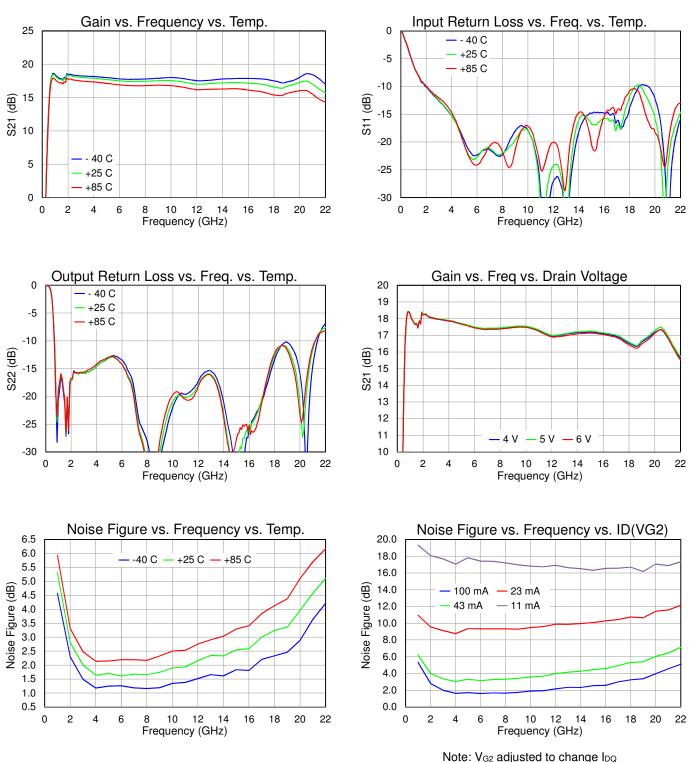
Notes:

1. Thermal resistance measured to back of package.

Median Lifetime

16

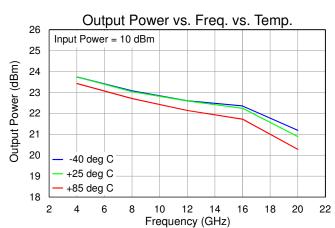
14

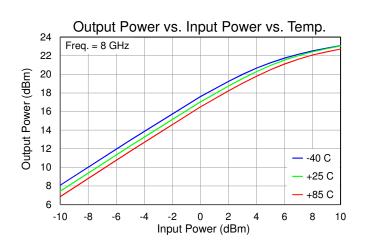

20 22

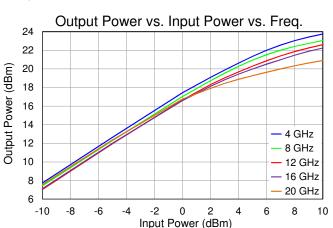
18

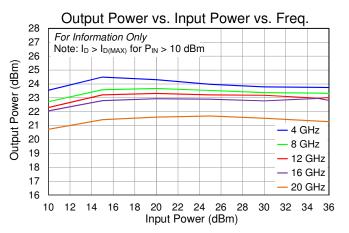
Typical Performance: Small Signal

Test conditions unless otherwise noted: 25 $^{\circ}\!C$, V_{D} = 28 V, I_{DQ} = 100 mA, V_{G2} = 1.3 V

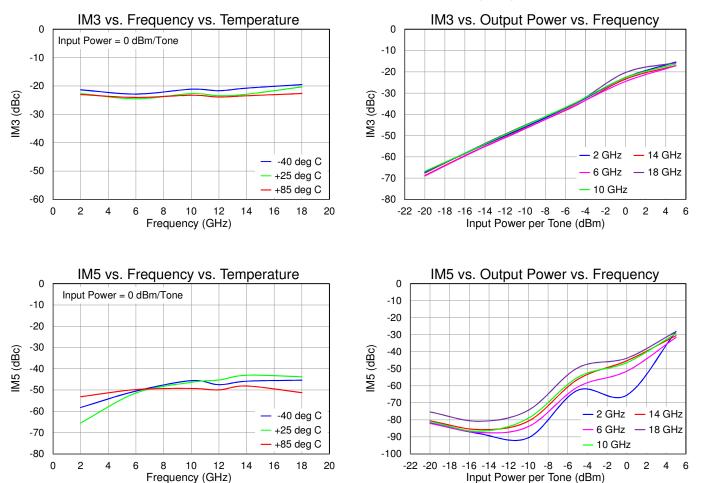


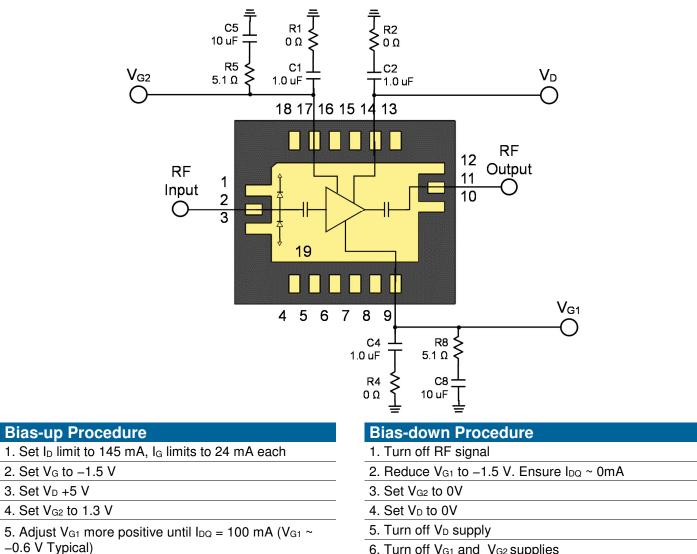

Datasheet: Rev - 12-11-15 © 2015 TriQuint




Typical Performance: Large Signal

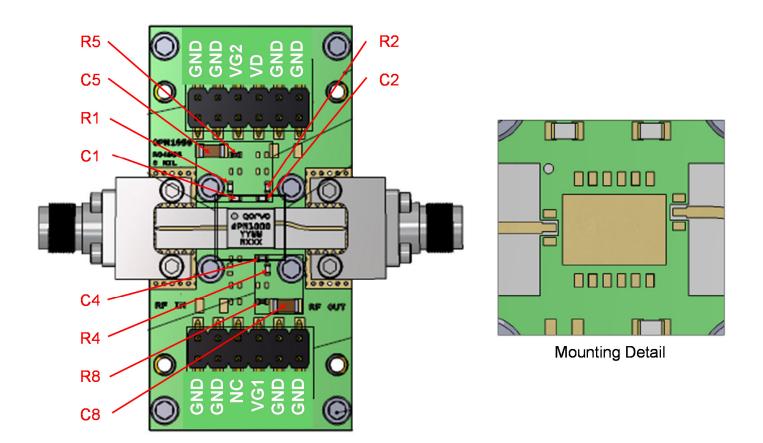
Test conditions unless otherwise noted: 25 °C , V_{D} = 5 V, I_{DQ} = 100 mA, V_{G2} = 1.3 V




Typical Performance: Linearity

Test conditions unless otherwise noted: 25 $^{\circ}$ C , V_D = 5 V, I_{DQ} = 100 mA, 10 MHz Tone Spacing

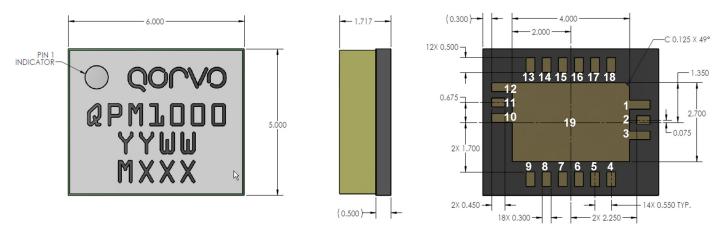
Application Circuit



6. Turn off V_{G1} and V_{G2} supplies

6. Apply RF signal

Evaluation Board and Mounting Detail



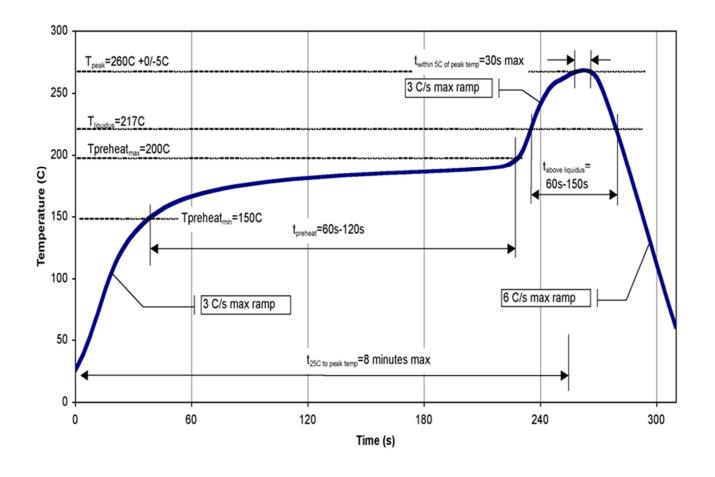
RF Layer is 0.008" thick Rogers Corp. RO40003C ($\epsilon_r = 3.35$). Metal layers are 1.0 oz. copper. The microstrip line at the connector interface is optimized for the Southwest Microwave end launch connector 1092-02A-5.

Reference Des.	Component	Value	Manuf.	Part Number
C1, C2, C4	Surface Mount Cap	1.0 uF, ±10 %, 50 V (0402), X7R	Various	
C5, C8	Surface Mount Cap	10 uF, ±20 %, 50 V (1206), X5R	Various	
R1, R2, R4	Surface Mount Cap	Resistor, SMT, 0402, 0 ohms	Various	
R5, R8	Surface Mount Cap	Resistor, SMT, 0402, 5.1 ohms	Various	

Mechanical Drawing & Pad Description

NOTES:

PACKAGE METAL BASE AND LEADS ARE GOLD PLATED.


PART MARKING: QPM1000: PART NUMBER YY: PART ASSY YEAR WW: PART ASSY WEEK MXXX: LOT NUMBER

DIMENSIONS IN MM

Pin Number	Label	Description
1, 3, 10, 12, 19	GND	RF Ground
2	RF Input	RF Input; matched to 50Ω
4-8, 13, 15, 16, 18	NC	No connection in package. Can be grounded on PCB if desired.
9	V _{G1}	Gate voltage 1. Bias network is required; see Application Circuit as an example
11	RF Output	RF Output; matched to 50Ω; DC Blocked
14	VD	Drain voltage. Bias network is required; see Application Circuit as an example
17	V _{G2}	Gate voltage 2. Bias network is required; see Application Circuit as an example

Recommended Soldering Temperature Profile

Product Compliance Information

ESD Sensitivity Ratings

Caution! ESD-Sensitive Device

ESD Rating: TBD Value: TBD Test: Human Body Model (HBM) Standard: JEDEC Standard JESD22-A114

MSL Rating

Level 5a at 260 °C convection reflow The part is rated Moisture Sensitivity Level 5a JEDEC standard IPC/JEDEC J-STD-020.

ECCN

US Department of Commerce: EAR99

Solderability

Compatible with the latest version of J-STD-020 Lead free solder, 260 $^\circ\!\mathrm{C}.$

RoHS Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Antimony Free
- TBBP-A (C15H12Br402) Free
- PFOS Free
- SVHC Free

ontact Information

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web:	www.triquint.com	Tel:	+1.972.994.8465
Email:	info-sales@triquint.com	Fax:	+1.972.994.8504

For technical questions and application information:

Email: info-products@triquint.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.