

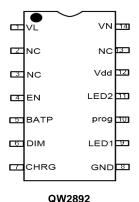
概述

QW2892 是一款应急检测控制专用芯片。芯片采用专利的高压隔离和检测技术,无需任何外围元件直接监测交流输入信号状态,并直接或间接驱动 LED 灯串。同时支持全电压 85-265Vac 输入。

QW2892集成了高精度单节锂电池管理,以及 MOSFET。具有过充保护、可编程充电电流、恒流充电和涓流充电、过放保护功能。芯片同时具有在关灯充电时充电指示功能,以及电池充满电指示功能。

QW2892 EN 端支持直接串联限流电阻来直接驱动单串 LED,同时也支持外接升压电路来驱动多串 LED。

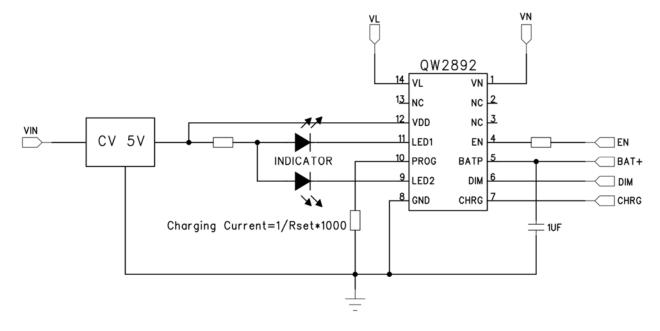
QW2892 采用专利技术, 可使得灯具在关灯状态下充电,并且 在应急状态下亮度可调。


QW2892 采用符合 ROHS SOP-14 封装,工作温度范围-40 度至 105 度。

特性

- 极简的应用电路
- 精准的交流输入阻抗检测
- 85-265Vac 全电压输入
- EN 直接驱动 LED 负载
- 完善的电池保护及管理
- 应急调光
- 关灯充电
- 完善的电池充电管理功能
- 充电状态显示

管脚封装

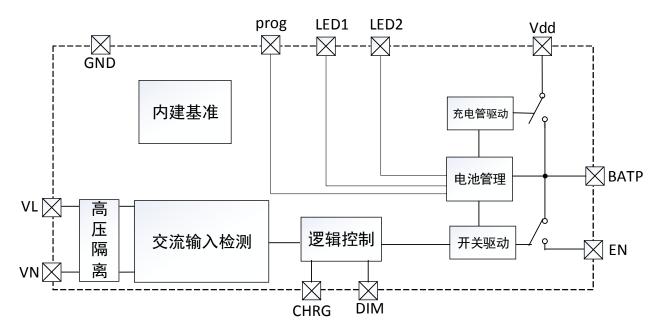

(Top View) SOP-14

应用

- 全并全亮 LED 应急灯
- 全串半亮 LED 应急灯
- 带升压电路 LED 应急灯
- 消防应急灯

典型应用线路

图一 QW2892 典型应用电路


管脚描述

管脚号	管脚名称	功能
1	VN	交流零线输入
2	NC	
3	NC	
4	EN	应急输出
5	BATP	接电池正端
6	DIM	应急调光控制
7	CHRG	关灯充电控制输出
8	GND	芯片地
9	LED1	充电指示灯 1
10	prog	设定恒流充电电流
11	LED2	充电指示灯 2
12	Vdd	接充电器输出端
13	NC	
14	VL	交流火线输入

内部原理图

图二 内部原理图

极限参数 (@TA= +25°C, unless otherwise specified. Note 4)

参数	符号	值	单位
BATP Vdd 电压	V _{cc}	-0.3 to GND+10V	V
EN, LED1,LED2,prog 电压	V _D	-0.3 to BATP +7V	V
VL, VN	V _L , V _n	600V	V
工作结温	TJ	+150	°C
存储温度	T _{STG}	-65 to +150	°C
热阻(Note 5)	θ_{JA}	90	°C/W
焊接温度 (Soldering, 10sec)	TLEAD	+300	°C
ESD (Machine Model)	_	200	V
ESD (Human Body Model)	_	2000	V

建议工作条件

符号	参数	最小	最大	单位
TA	环境温度	-40	+105	°C

电气参数(@TA=+25°C, unless otherwise specified. Note 6)

参数	符号	条件	最小	典型	最大	单位
待机电流部分						
静态电流	Icc	V _{CC} =4.5V		70	-	uA
内置 功率 NMOS 部分						
MOS 导通阻抗	R _{DSON}	-	-	0.2	-	Ω
Vdd 与 BATP 之间导通阻抗	Rd			0.35		Ω
交流检测部分						
交流阻抗门槛				1000		ΚΩ
电池保护部分						
浮充充电电压		-	4.15	4.2	4.25	V
大山山 法		Rprog = 10k	93	100	107	mA
充电电流		Rprog = 2k	465	500	535	mA
涓流充电电流		Vbat <vtrikl ,="" rprog="2K</td"><td>40</td><td>50</td><td>60</td><td>mA</td></vtrikl>	40	50	60	mA
涓流充电电压	Vbatp 上升		2.8	2.9	3	٧
涓流充电窗口			60	80	100	mV
Vdd-Vbatp 欠压保护	Vdd 上升		70	100	140	mV
Vuo-voaip 八座MV	Vdd 下降		5	30	50	mV
Vprog 电压	恒流充电模式	Vbat = 4V	0.93	1	1.07	V
VLED1, VLED2 电压		I= 5mA		0.35	0.6	V

QW2892

关灯充电应急灯专用检测芯片

再充电延时	Trecharge	0.8	1.8	4	mS
Prog 上拉电流	I_{prog}		2		uA

<u>SincereTek</u>

应用信息

1、交流检测

QW2892 是一颗专业应急检测控制芯片,可以根据VL与VN之间的阻抗状态来实现EN脚电平转换。当VL与VN之间正常输入85-265Vac电压时,内部的开关管截止,EN输出低电平;当VL与VN之间阻抗大于阈值电阻时,内部的开关管截止,EN输出低电平;只有当VL与VN之间阻抗小于阈值电阻时,EN输出高电平。

注:以上逻辑正常工作的必要前提条件是BATP与BATN之间电压在正常工作允许范围之内。

交流输入	EN 输出	NOTE
AC 有	高阻	
AC 开路	高阻	
AC 短路	高电平(电池电压)	L 和 N 之间的阻抗小于阈值电阻

表 1 EN 输出的逻辑表

2、电池管理

QW2892内部集成了完备的单节锂电池充电保护管理模块。 电池保护管理包括: 过充保护, 过放保护, 以及充电器检测线路。芯片内部在给电池充电的时候, 会根据电池电压,分别采取涓流充电, 恒流充电, 恒压充电的模式。并根据芯片内部散热的情况,自动调整充电电流的大小,保护芯片不至于过热而损坏。由于电池的充放电管理检测的电压是电池电压, 所以, 在设计PCB layout的时候, 应该尽量将QW2892芯片的BATP, GND靠近电池的端子。 在靠近这两个管脚的地方加高频滤波电容, 也会有利于抑制AC/DC在开关动作的时候, 对电池电压采样的干扰。 推荐使用1uF的贴片电容,并且尽量将电容靠近芯片的管脚。

3、输出电流

QW2892 的EN PIN 内置一个200毫欧的开关。 当EN输出高电平的时候, 可以在EN PIN和LED的输出之间串一个限流电阻, 来给LED负载供电。

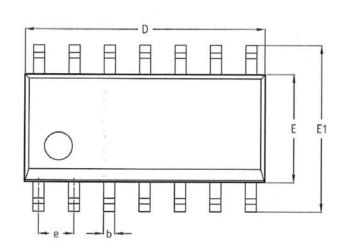
4、关灯充电 应急调光逻辑

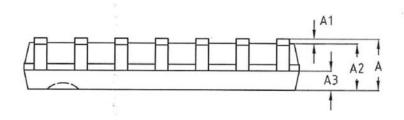
在交流通电的情况下, 连续切换开关状态, 将使得芯片处于关灯充电模式。

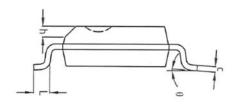
交流输入	CHRG	NOTE
ON	开路	
OFF	开路	
ON	输出低电平	开关间隔小于 6S, 关机充电模式
	开路	开关间隔大于 6S,正常模式

在应急模式下, 连续切换开关状态, 将使得芯片处于应急调光模式

应急模式	DIM	NOTE
ON	高电平(电池电压)	
OFF	高电平(电池电压)	
ON	低电平	开关间隔小于 6S, 应急调光模式
	高电平(电池电压)	开关间隔大于 6S, 正常模式




5、PCB 布板的注意事项


合理的PCB 布局对于最大程度保证系统稳定性以及低噪声来说是很重要的。使用多层PCB 板是避免噪声干扰的一种很有效的办法。为了有效减小电流回路的噪声,输入旁路电容应当另行接地。将大电流接地回路、输入旁路电容的接地引线及输出滤波器的接地引线连接到同一点(星形接地接法),以最大限度地减小接地噪声。

封装信息

	Dimer	sions		
SYMBOL	MIN	NOMINAL	MAX	
Α	-	-	1.75	
A1	0.01	-	0.09	
A2	1.35	1.45	1.55	
A3	0.60	0.65	0.70	
b	0.35	-	0.50	
С	0.19		0.25	
D	8.50	8.60	8.70	
Ε	3.80	3.90	4.00	
E1	5.80	6.00	6.20	
6	1.27 BSC			
h	0.30	-	0.50	
L	0.40	-	0.80	
0	0°	-	8*	