Doc Number: | 2001 (14.11.2011 | |-----------------------------| | ☐ Tentative Specification | | ☐ Preliminary Specification | | Approval Specification | MODEL NO.: R190E6 SUFFIX: L01 | Customer: | | |--|-----------------------------| | APPROVED BY | SIGNATURE | | Name / Title
Note | | | Please return 1 copy for signature and comments. | your confirmation with your | | 核准時間 | 部門 | 審核 | 角色 | 投票 | |------------------------|----|-----------------------------------|----------|--------| | 2011-07-11
13:49:52 | | yuhsiang.chang
(張喻翔/514-10922) | Director | Accept | Version 2.1 5 July 2011 1 / 31 # **CONTENTS** | 1.1 OVERVIEW 1.2 GENERAL SPECIFICATIONS 2. MECHANICAL SPECIFICATIONS 3. ABSOLUTE MAXIMUM RATINGS 3.1 ABSOLUTE RATINGS OF ENVIRONMENT 3.2 ELECTRICAL ABSOLUTE RATINGS 3.2.1 TFT LCD MODULE 3.2.2 BACKLIGHT UNIT 4. ELECTRICAL SPECIFICATIONS 4.1 FUNCTION BLOCK DIAGRAM 4.1 FUNCTION BLOCK DIAGRAM 4.2 INTERFACE CONNECTIONS 4.3 ELECTRICAL CHARACTERISTICS 4.3.1 LCD ELETRONICS SPECIFICATION 4.3.2 VCC POWER DIP CONDITION 4.3.4 INVERTER ELECTRICAL CHARATERISTIC 4.3.5 INVERTER INPUT SIGNAL 4.4 LVDS INPUT SIGNAL 4.4 LVDS DATA MAPPING TABLE 4.4.2 COLOR DATA INPUT ASSIGNMENT 4.5 DISPLAY TIMING SPECIFICATIONS 4.6 POWER ON/OFF SEQUENCE 5. OPTICAL CHARACTERISTICS 5.1 OPTICAL SPECIFICATIONS 6. RELIABILITY TEST ITEM 7. PACKING 7.1 PACKING METHOD 7.3 PALLET PARECAUTIONS 9.1 ASSEMBLY AND HANDLING PRECAUTIONS 2.4 CMI MODULE LABEL 9.9 PRECAUTIONS 9.1 ASSEMBLY AND HANDLING PRECAUTIONS | 1. | . GENERAL DESCRIPTION | 5 | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------|----| | 2. MECHANICAL SPECIFICATIONS 3. ABSOLUTE MAXIMUM RATINGS 3.1 ABSOLUTE RATINGS OF ENVIRONMENT 3.2 ELECTRICAL ABSOLUTE RATINGS 3.2.1 TFT LCD MODULE 3.2.2 BACKLIGHT UNIT 4. ELECTRICAL SPECIFICATIONS 4.1 FUNCTION BLOCK DIAGRAM 4.1 FUNCTION BLOCK DIAGRAM 4.2 INTERFACE CONNECTIONS 4.3 ELECTRICAL CHARACTERISTICS 4.3.1 LCD ELETRONICS SPECIFICATION 4.3.2 Vcc Power Dip Condition 4.3.3 BACKLIGHT UNIT 4.3.4 INVERTER ELECTRICAL CHARATERISTIC 4.3.5 INVERTER ENPUT SIGNAL 4.4 LVDS INPUT SIGNAL SPECIFICATIONS 4.4.1 LVDS DATA MAPPING TABLE 4.4.2 COLOR DATA INPUT ASSIGNMENT 4.5 DISPLAY TIMING SPECIFICATIONS 4.6 POWER ON/OFF SEQUENCE 5. OPTICAL CHARACTERISTICS 5.1 OPTICAL SPECIFICATIONS 6. RELIABILITY TEST ITEM 7. PACKING 7.1 PACKING SPECIFICATIONS 7.2 PACKING METHOD 7.3 PALLET 7.3 PALLET 8. CMI MODULE LABEL 9. PRECAUTIONS 2 | | 1.1 OVERVIEW | 5 | | 3. ABSOLUTE MAXIMUM RATINGS 3.1 ABSOLUTE RATINGS OF ENVIRONMENT. 3.2 ELECTRICAL ABSOLUTE RATINGS. 3.2.1 TFT LOD MODULE. 3.2.2 BACKLIGHT UNIT. 4. ELECTRICAL SPECIFICATIONS. 4.1 FUNCTION BLOCK DIAGRAM. 4.1 FUNCTION BLOCK DIAGRAM. 4.2 INTERFACE CONNECTIONS. 4.3 ELECTRICAL CHARACTERISTICS. 4.3.1 LOD ELETRONICS SPECIFICATION. 4.3.2 Vcc Power Dip Condition. 4.3.3 BACKLIGHT UNIT. 4.3.4 INVERTER ELECTRICAL CHARATERISTIC. 4.3.5 INVERTER INPUT SIGNAL. 4.4 LVDS INPUT SIGNAL SPECIFICATIONS. 4.4.1 LVDS DATA MAPPING TABLE. 4.4.2 COLOR DATA INPUT ASSIGNMENT. 4.5 DISPLAY TIMING SPECIFICATIONS. 4.6 POWER ON/OFF SEQUENCE. 5. OPTICAL CHARACTERISTICS. 5.1 OPTICAL SPECIFICATIONS. 6. RELIABILITY TEST ITEM. 7. PACKING. 7.1 PACKING SPECIFICATIONS. 7.2 PACKING METHOD. 7.3 PALLET. 7.3 PALLET. 8. CMI MODULE LABEL. 9. PRECAUTIONS. | | 1.2 GENERAL SPECIFICATIONS | 5 | | 3.1 ABSOLUTE RATINGS OF ENVIRONMENT 3.2 ELECTRICAL ABSOLUTE RATINGS 3.2.1 TFT LCD MODULE 3.2.2 BACKLIGHT UNIT. 4. ELECTRICAL SPECIFICATIONS 4.1 FUNCTION BLOCK DIAGRAM 4.1 FUNCTION BLOCK DIAGRAM 4.2 INTERFACE CONNECTIONS 4.3 ELECTRICAL CHARACTERISTICS 4.3.1 LCD ELETRONICS SPECIFICATION 4.3.2 Vcc Power Dip Condition 4.3.4 INVERTER ELECTRICAL CHARATERISTIC 4.3.5 INVERTER INPUT SIGNAL 4.4 LVDS INPUT SIGNAL SPECIFICATIONS 4.4.1 LVDS DATA MAPPING TABLE 4.4.2 COLOR DATA INPUT ASSIGNMENT 4.5 DISPLAY TIMING SPECIFICATIONS 4.6 POWER ON/OFF SEQUENCE 5. OPTICAL CHARACTERISTICS 5.1 OPTICAL SPECIFICATIONS 7.1 PACKING 7.1 PACKING 7.1 PACKING 7.3 PALLET 7.3 PALLET 8. CMI MODULE LABEL 2.4 PRECAUTIONS 2.5 PRECAUTIONS 2.6 RELABILITY TEST 2.7 PACKING METHOD 7.3 PALLET 7.3 PALLET | 2. | . MECHANICAL SPECIFICATIONS | 5 | | 3.1 ABSOLUTE RATINGS OF ENVIRONMENT 3.2 ELECTRICAL ABSOLUTE RATINGS 3.2.1 TFT LCD MODULE 3.2.2 BACKLIGHT UNIT. 4. ELECTRICAL SPECIFICATIONS 4.1 FUNCTION BLOCK DIAGRAM 4.1 FUNCTION BLOCK DIAGRAM 4.2 INTERFACE CONNECTIONS 4.3 ELECTRICAL CHARACTERISTICS 4.3.1 LCD ELETRONICS SPECIFICATION 4.3.2 Vcc Power Dip Condition 4.3.4 INVERTER ELECTRICAL CHARATERISTIC 4.3.5 INVERTER INPUT SIGNAL 4.4 LVDS INPUT SIGNAL SPECIFICATIONS 4.4.1 LVDS DATA MAPPING TABLE 4.4.2 COLOR DATA INPUT ASSIGNMENT 4.5 DISPLAY TIMING SPECIFICATIONS 4.6 POWER ON/OFF SEQUENCE 5. OPTICAL CHARACTERISTICS 5.1 OPTICAL SPECIFICATIONS 7.1 PACKING 7.1 PACKING 7.1 PACKING 7.3 PALLET 7.3 PALLET 8. CMI MODULE LABEL 2.4 PRECAUTIONS 2.5 PRECAUTIONS 2.6 RELABILITY TEST 2.7 PACKING METHOD 7.3 PALLET 7.3 PALLET | 3. | . ABSOLUTE MAXIMUM RATINGS | 5 | | 3.2.1 TFT LCD MODULE 3.2.2 BACKLIGHT UNIT | | 3.1 ABSOLUTE RATINGS OF ENVIRONMENT | 5 | | 3.2.1 TFT LCD MODULE 3.2.2 BACKLIGHT UNIT | | 3.2 ELECTRICAL ABSOLUTE RATINGS | 6 | | 4. ELECTRICAL SPECIFICATIONS 4.1 FUNCTION BLOCK DIAGRAM 4.1 FUNCTION BLOCK DIAGRAM 4.2. INTERFACE CONNECTIONS 4.3 ELECTRICAL CHARACTERISTICS 4.3.1 LCD ELETRONICS SPECIFICATION 4.3.2 Vcc Power Dip Condition 4.3.3 BACKLIGHT UNIT 4.3.4 INVERTER ELECTRICAL CHARATERISTIC 4.3.5 INVERTER INPUT SIGNAL 4.4 LVDS INPUT SIGNAL SPECIFICATIONS 4.4.1 LVDS DATA MAPPING TABLE 4.4.2 COLOR DATA INPUT ASSIGNMENT 4.5 DISPLAY TIMING SPECIFICATIONS 4.6 POWER ON/OFF SEQUENCE 5. OPTICAL CHARACTERISTICS 5.1 OPTICAL SPECIFICATIONS 6. RELIABILITY TEST ITEM 7. PACKING 7.1 PACKING SPECIFICATIONS 7.2 PACKING METHOD 7.3 PALLET 7.3 PALLET 8. CMI MODULE LABEL 9. PRECAUTIONS | | 3.2.1 TFT LCD MODULE | 6 | | 4.1 FUNCTION BLOCK DIAGRAM 4.1 FUNCTION BLOCK DIAGRAM 4.2. INTERFACE CONNECTIONS. 4.3 ELECTRICAL CHARACTERISTICS. 4.3.1 LCD ELETRONICS SPECIFICATION. 4.3.2 Vcc Power Dip Condition. 4.3.3 BACKLIGHT UNIT. 4.3.4 INVERTER ELECTRICAL CHARATERISTIC. 4.3.5 INVERTER INPUT SIGNAL. 4.4 LVDS INPUT SIGNAL SPECIFICATIONS. 4.4.1 LVDS DATA MAPPING TABLE. 4.4.2 COLOR DATA INPUT ASSIGNMENT. 4.5 DISPLAY TIMING SPECIFICATIONS. 4.6 POWER ON/OFF SEQUENCE. 5. OPTICAL CHARACTERISTICS. 5.1 OPTICAL SPECIFICATIONS. 6. RELIABILITY TEST ITEM. 7. PACKING. 7.1 PACKING SPECIFICATIONS. 2.7.2 PACKING METHOD. 7.3 PALLET. 7.3 PALLET. 7.3 PALLET. 8. CMI MODULE LABEL. 9. PRECAUTIONS. | | | | | 4.1 FUNCTION BLOCK DIAGRAM 4.2. INTERFACE CONNECTIONS 4.3 ELECTRICAL CHARACTERISTICS 4.3.1 LCD ELETRONICS SPECIFICATION. 4.3.2 Vcc Power Dip Condition. 4.3.3 BACKLIGHT UNIT. 4.3.4 INVERTER ELECTRICAL CHARATERISTIC 4.3.5 INVERTER INPUT SIGNAL 4.4 LVDS INPUT SIGNAL SPECIFICATIONS 4.4.1 LVDS DATA MAPPING TABLE 4.4.2 COLOR DATA INPUT ASSIGNMENT 4.5 DISPLAY TIMING SPECIFICATIONS 4.6 POWER ON/OFF SEQUENCE 5. OPTICAL CHARACTERISTICS 5.1 OPTICAL SPECIFICATIONS 6. RELIABILITY TEST ITEM 7. PACKING 7.1 PACKING SPECIFICATIONS 7.2 PACKING METHOD 7.3 PALLET 7.3 PALLET 7.3 PALLET 8. CMI MODULE LABEL 9. PRECAUTIONS | 4. | ELECTRICAL SPECIFICATIONS | 7 | | 4.2. INTERFACE CONNECTIONS 4.3 ELECTRICAL CHARACTERISTICS 4.3.1 LCD ELETRONICS SPECIFICATION. 4.3.2 Vcc Power Dip Condition. 4.3.3 BACKLIGHT UNIT. 4.3.4 INVERTER ELECTRICAL CHARATERISTIC. 4.3.5 INVERTER INPUT SIGNAL 4.4 LVDS INPUT SIGNAL SPECIFICATIONS 4.4.1 LVDS DATA MAPPING TABLE 4.4.2 COLOR DATA INPUT ASSIGNMENT. 4.5 DISPLAY TIMING SPECIFICATIONS 4.6 POWER ON/OFF SEQUENCE. 5. OPTICAL CHARACTERISTICS 5.1 OPTICAL SPECIFICATIONS 6. RELIABILITY TEST ITEM 7. PACKING 7.1 PACKING SPECIFICATIONS 2.7.1 PACKING METHOD 2.7.3 PALLET 7.3 PALLET 2.8. CMI MODULE LABEL 2.9 PRECAUTIONS | | | | | 4.3 ELECTRICAL CHARACTERISTICS 4.3.1 LCD ELETRONICS SPECIFICATION 4.3.2 Vcc Power Dip Condition 4.3.3 BACKLIGHT UNIT 4.3.4 INVERTER ELECTRICAL CHARATERISTIC 4.3.5 INVERTER INPUT SIGNAL 4.4 LVDS INPUT SIGNAL SPECIFICATIONS 4.4.1 LVDS DATA MAPPING TABLE 4.4.2 COLOR DATA INPUT ASSIGNMENT 4.5 DISPLAY TIMING SPECIFICATIONS 4.6 POWER ON/OFF SEQUENCE 5. OPTICAL CHARACTERISTICS 5.1 OPTICAL SPECIFICATIONS 6. RELIABILITY TEST ITEM 7. PACKING 7.1 PACKING SPECIFICATIONS 7.2 PACKING METHOD 7.3 PALLET 7.3 PALLET 7.3 PALLET 8. CMI MODULE LABEL 9. PRECAUTIONS | | | | | 4.3.1 LCD ELETRONICS SPECIFICATION. 4.3.2 Vcc Power Dip Condition. 4.3.3 BACKLIGHT UNIT. 4.3.4 INVERTER ELECTRICAL CHARATERISTIC. 4.3.5 INVERTER INPUT SIGNAL. 4.4 LVDS INPUT SIGNAL SPECIFICATIONS. 4.4.1 LVDS DATA MAPPING TABLE. 4.4.2 COLOR DATA INPUT ASSIGNMENT. 4.5 DISPLAY TIMING SPECIFICATIONS. 4.6 POWER ON/OFF SEQUENCE. 5. OPTICAL CHARACTERISTICS. 5.1 OPTICAL SPECIFICATIONS. 6. RELIABILITY TEST ITEM. 7. PACKING. 7.1 PACKING SPECIFICATIONS. 7.2 PACKING METHOD. 2.7.3 PALLET. 7.3 PALLET. 2.8. CMI MODULE LABEL. 2.9. PRECAUTIONS. 2.2. PRECAUTIONS. 2.3. PRECAUTIONS. 2.4. CMI MODULE LABEL. 2.5. CMI MODULE LABEL. 2.5. PRECAUTIONS. 2.6. PRECAUTIONS. 2.7. | | | | | 4.3.2 Vcc Power Dip Condition | | | | | 4.3.3 BACKLIGHT UNIT 4.3.4 INVERTER ELECTRICAL CHARATERISTIC 4.3.5 INVERTER INPUT SIGNAL 4.4 LVDS INPUT SIGNAL SPECIFICATIONS 4.4.1 LVDS DATA MAPPING TABLE 4.4.2 COLOR DATA INPUT ASSIGNMENT 4.5 DISPLAY TIMING SPECIFICATIONS 4.6 POWER ON/OFF SEQUENCE 5. OPTICAL CHARACTERISTICS 5.1 OPTICAL SPECIFICATIONS 6. RELIABILITY TEST ITEM 7. PACKING 7.1 PACKING SPECIFICATIONS 7.2 PACKING METHOD 7.3 PALLET 7.3 PALLET 7.3 PALLET 8. CMI MODULE LABEL 9. PRECAUTIONS | | | | | 4.3.4 INVERTER ELECTRICAL CHARATERISTIC 4.3.5 INVERTER INPUT SIGNAL 4.4 LVDS INPUT SIGNAL SPECIFICATIONS 4.4.1 LVDS DATA MAPPING TABLE 4.4.2 COLOR DATA INPUT ASSIGNMENT 4.5 DISPLAY TIMING SPECIFICATIONS 4.6 POWER ON/OFF SEQUENCE 5. OPTICAL CHARACTERISTICS 5.1 OPTICAL SPECIFICATIONS 6. RELIABILITY TEST ITEM 7. PACKING 7.1 PACKING SPECIFICATIONS 7.2 PACKING METHOD 7.3 PALLET 7.3 PALLET 7.3 PALLET 8. CMI MODULE LABEL 9. PRECAUTIONS | | | | | 4.3.5 INVERTER INPUT SIGNAL 4.4 LVDS INPUT SIGNAL SPECIFICATIONS 1 4.4.1 LVDS DATA MAPPING TABLE 2 4.4.2 COLOR DATA INPUT ASSIGNMENT 3 4.5 DISPLAY TIMING SPECIFICATIONS 1 4.6 POWER ON/OFF SEQUENCE 1 5. OPTICAL CHARACTERISTICS 2 5.1 OPTICAL SPECIFICATIONS 2 6. RELIABILITY TEST ITEM 2 7. PACKING 2 7.1 PACKING SPECIFICATIONS 2 7.2 PACKING METHOD 2 7.3 PALLET 2 7.3 PALLET 2 8. CMI MODULE LABEL 2 9. PRECAUTIONS 2 | | | | | 4.4 LVDS INPUT SIGNAL SPECIFICATIONS 1 4.4.1 LVDS DATA MAPPING TABLE 2 4.4.2 COLOR DATA INPUT ASSIGNMENT 2 4.5 DISPLAY TIMING SPECIFICATIONS 1 4.6 POWER ON/OFF SEQUENCE 1 5. OPTICAL CHARACTERISTICS 2 5.1 OPTICAL SPECIFICATIONS 2 6. RELIABILITY TEST ITEM 2 7.1 PACKING 2 7.2 PACKING METHOD 2 7.3 PALLET 2 7.3 PALLET 2 8. CMI MODULE LABEL 2 9. PRECAUTIONS 2 | | | | | 4.4.1 LVDS DATA MAPPING TABLE 4.4.2 COLOR DATA INPUT ASSIGNMENT 4.5 DISPLAY TIMING SPECIFICATIONS 1 4.6 POWER ON/OFF SEQUENCE 1 5. OPTICAL CHARACTERISTICS 2 5.1 OPTICAL SPECIFICATIONS 2 6. RELIABILITY TEST ITEM 2 7.1 PACKING 2 7.2 PACKING METHOD 2 7.3 PALLET 2 7.3 PALLET 2 8. CMI MODULE LABEL 2 9. PRECAUTIONS 2 | | | | | 4.4.2 COLOR DATA INPUT ASSIGNMENT 4.5 DISPLAY TIMING SPECIFICATIONS 1 4.6 POWER ON/OFF SEQUENCE 1 5. OPTICAL CHARACTERISTICS 2 5.1 OPTICAL SPECIFICATIONS 2 6. RELIABILITY TEST ITEM 2 7.1 PACKING 2 7.2 PACKING METHOD 2 7.3 PALLET 2 7.3 PALLET 2 8. CMI MODULE LABEL 2 9. PRECAUTIONS 2 | | | | | 4.5 DISPLAY TIMING SPECIFICATIONS 1 4.6 POWER ON/OFF SEQUENCE 1 5. OPTICAL CHARACTERISTICS 2 5.1 OPTICAL SPECIFICATIONS 2 6. RELIABILITY TEST ITEM 2 7. PACKING 2 7.1 PACKING SPECIFICATIONS 2 7.2 PACKING METHOD 2 7.3 PALLET 2 7.3 PALLET 2 8. CMI MODULE LABEL 2 9. PRECAUTIONS 2 | | | | | 4.6 POWER ON/OFF SEQUENCE 1 5. OPTICAL CHARACTERISTICS 2 5.1 OPTICAL SPECIFICATIONS 2 6. RELIABILITY TEST ITEM 2 7. PACKING 2 7.1 PACKING SPECIFICATIONS 2 7.2 PACKING METHOD 2 7.3 PALLET 2 7.3 PALLET 2 8. CMI MODULE LABEL 2 9. PRECAUTIONS 2 | | | | | 5. OPTICAL CHARACTERISTICS 2 5.1 OPTICAL SPECIFICATIONS 2 6. RELIABILITY TEST ITEM 2 7. PACKING 2 7.1 PACKING SPECIFICATIONS 2 7.2 PACKING METHOD 2 7.3 PALLET 2 8. CMI MODULE LABEL 2 9. PRECAUTIONS 2 | | | | | 5.1 OPTICAL SPECIFICATIONS 2 6. RELIABILITY TEST ITEM 2 7. PACKING 2 7.1 PACKING SPECIFICATIONS 2 7.2 PACKING METHOD 2 7.3 PALLET 2 8. CMI MODULE LABEL 2 9. PRECAUTIONS 2 | | | | | 6. RELIABILITY TEST ITEM | 5. | | | | 7. PACKING | | | | | 7.1 PACKING SPECIFICATIONS 2 7.2 PACKING METHOD 2 7.3 PALLET 2 8. CMI MODULE LABEL 2 9. PRECAUTIONS 2 | | | | | 7.2 PACKING METHOD | | | | | 7.3 PALLET | | | | | 7.3 PALLET | | | | | 8. CMI MODULE LABEL | | | | | 9. PRECAUTIONS | | | | | | | | | | 9.1 ASSEMBLY AND HANDLING PRECAUTIONS2 | 9. | | | | | | 9.1 ASSEMBLY AND HANDLING PRECAUTIONS | 29 | Version 2.1 5 July 2011 2 / 31 | Α | ppendix. OUTLINE DRAWING | 31 | |---|---------------------------|----| | | 9.6 OTHER | | | | 9.5 SAFETY STANDARDS | | | | 9.4 SAFETY PRECAUTIONS | 30 | | | 9.3 OPERATION PRECAUTIONS | 29 | | | 9.2 STORAGE PRECAUTIONS | 29 | Version 2.1 5 July 2011 3 / 31 # **REVISION HISTORY** | Version | Date | Page | Description | |---------|-----------|------|------------------------------------------------| | 2.0 | 2011/6/30 | All | Approval spec is first released | | | 2011/7/5 | | Correct LVDS connector P/N to GS23302-1311S-7F | | | | 8 | 1. sec.4.1, function block diagram | | 2.1 | | 9 | 2. sec.4.2, interface conditions, note(1) | | | | 32 | 3. appendix : outline drawing | Version 2.1 5 July 2011 4 / 31 Global LCD Panel Exchange Center # PRODUCT SPECIFICATION ### 1. GENERAL DESCRIPTION #### 1.1 OVERVIEW R190E6-L01 is an 19.0" TFT Liquid Crystal Display module with 14 CCFL Backlight unit and 30 pins and one port 2ch-LVDS interface. This module supports 1280 x 1024 SXGA mode and displays 16.7M colors driven by 8bit drivers. The LCD module includes built-in inverter for Backlight. #### 1.2 GENERAL SPECIFICATIONS | Item | Specification | Unit | Note | | | |-------------------|----------------------------------------------|----------------------------------------------------------|------|--|--| | Screen Size | 19.0" real diagonal | | | | | | Driver Element | a-si TFT active matrix | - | - | | | | Pixel Number | 1280(xR,G,B) x 1024 | Pixel | - | | | | Pixel Pitch | 0.294 (H) x 0.294 (V) | Mm | - | | | | Pixel Arrangement | Sub-pixel Vertical stripe | | - | | | | Display Colors | 16.7M | color | - | | | | Transmissive Mode | Dual domain IPS, Normally Black | - | - | | | | Surface Treatment | AG type | - | - | | | | Luminance, White | 650 | Cd/m2 | - | | | | Power Consumption | Total 45.84W (typ.) @ cell 3.84 W (typ.), BL | Total 45.84W (typ.) @ cell 3.84 W (typ.), BL 42 W (typ.) | | | | Note (1) The specified power consumption: Total= cell (reference 4.3.1)+ BL (reference 4.3.4) #### 2. MECHANICAL SPECIFICATIONS | It | em | Min. | Тур. | Max. | Unit | Note | |-------------|----------------|-------|---------|-------|------|------| | | Horizontal (H) | 395.5 | 396 | 397.5 | mm | | | Module Size | Vertical (V) | 323.5 | 324 | 324.5 | mm | (1) | | | Thickness (T) | | 27.1 | 27.6 | mm | | | Bezel Area | Horizontal | 380.0 | 380.3 | 380.6 | mm | | | bezei Alea | Vertical | 304.7 | 305 | 305.3 | mm | | | Active Area | Horizontal | - | 376.32 | - | mm | | | Active Area | Vertical | _ | 301.056 | - | mm | | | Weight | | _ | 1700 | 1800 | g | | Note (1) Please refer to the attached drawings for more information of front and back outline dimensions. #### 3. ABSOLUTE MAXIMUM RATINGS #### 3.1 ABSOLUTE RATINGS OF ENVIRONMENT | Item | Symbol | Va | lue | Unit | Note | | |-------------------------------|--------|------|------|-------|----------|--| | item | Symbol | Min. | Max. | Offic | Note | | | Storage Temperature | TST | -20 | 60 | °C | (1) | | | Operating Ambient Temperature | TOP | 0 | 55 | °C | (1), (2) | | Note (1) - (a) 90 %RH Max. (Ta <= 40 °C). - (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C). - (c) No condensation. Version 2.1 5 July 2011 5/31 Note (2) The temperature of panel surface should be 0 °C min. and 60 °C max. ### Relative Humidity (%RH) #### 3.2 ELECTRICAL ABSOLUTE RATINGS #### 3.2.1 TFT LCD MODULE | Item | Item Symbol | | lue | Unit | Note | |----------------------|-------------|------|------|-------|-------| | itom | Cymbol | Min. | Max. | Offic | 11010 | | Power Supply Voltage | vccs | -0.3 | 13.2 | ٧ | (1) | | Logic Input Voltage | V_{IN} | -0.3 | 4.3 | V | (1) | ### 3.2.2 BACKLIGHT UNIT | Item | Symbol | | Value | | | Note | | |----------------|----------|------|-------|------|------------|----------|--| | item | Gyrribor | Min. | Тур | Max. | Unit | 14016 | | | Lamp Voltage | V_L | 639 | 710 | 781 | V_{RMS} | | | | Lamp current | ΙL | 3.7 | 4.2 | 4.7 | mA_{RMS} | (1), (2) | | | Lamp frequency | F_L | 40 | | 80 | KHz | | | Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions. Note (2) Specified values are for lamp (Refer to 4.3.3 and 4.3.4 for further information). ### 4. ELECTRICAL SPECIFICATIONS #### **4.1 FUNCTION BLOCK DIAGRAM** ### 4.2. INTERFACE CONNECTIONS ### PIN ASSIGNMENT | PIN ASSI | GNIVIENT | | |----------|----------|----------------------------------------------------------| | Pin | Name | Description | | 1 | RXO0- | Negative LVDS differential data input. Channel O0 (odd) | | 2 | RXO0+ | Positive LVDS differential data input. Channel O0 (odd) | | 3 | RXO1- | Negative LVDS differential data input. Channel O1 (odd) | | 4 | RXO1+ | Positive LVDS differential data input. Channel O1 (odd) | | 5 | RXO2- | Negative LVDS differential data input. Channel O2 (odd) | | 6 | RXO2+ | Positive LVDS differential data input. Channel O2 (odd) | | 7 | GND | Ground | | 8 | RXOC- | Negative LVDS differential clock input. (odd) | | 9 | RXOC+ | Positive LVDS differential clock input. (odd) | | 10 | RXO3- | Negative LVDS differential data input. Channel O3(odd) | | 11 | RXO3+ | Positive LVDS differential data input. Channel O3 (odd) | | 12 | RXE0- | Negative LVDS differential data input. Channel E0 (even) | | 13 | RXE0+ | Positive LVDS differential data input. Channel E0 (even) | | 14 | GND | Ground | | 15 | RXE1- | Negative LVDS differential data input. Channel E1 (even) | | 16 | RXE1+ | Positive LVDS differential data input. Channel E1 (even) | | 17 | GND | Ground | | 18 | RXE2- | Negative LVDS differential data input. Channel E2 (even) | | 19 | RXE2+ | Positive LVDS differential data input. Channel E2 (even) | | 20 | RXEC- | Negative LVDS differential clock input. (even) | | 21 | RXEC+ | Positive LVDS differential clock input. (even) | | 22 | RXE3- | Negative LVDS differential data input. Channel E3 (even) | | 23 | RXE3+ | Positive LVDS differential data input. Channel E3 (even) | Version 2.1 5 July 2011 7 / 31 | 24 | GND | Ground | |----|-----------------------|---------------------------------------------------------------------| | 25 | LVDS_SEL | 0:VESA Mode; 1:JEITA Mode (0 : Ground ; 1 : 3.3V) ; default is zero | | 26 | NC | Not connection, this pin should be open | | 27 | NC | Not connection, this pin should be open | | 28 | V _{CC} (12V) | +12.0V power supply | | 29 | V _{CC} (12V) | +12.0V power supply | | 30 | V _{CC} (12V) | +12.0V power supply | Note (1) Connector Part No.: GS23302-1311S-7F (Foxconn KunShan) Note (2) The first pixel is even. Note (3) Input signal of even and odd clock should be the same timing. Note (4) The module uses a 100-ohm resistor between positive and negative data lines of each receiver input Version 2.1 5 July 2011 8 / 31 ### 4.3 ELECTRICAL CHARACTERISTICS ### 4.3.1 LCD ELETRONICS SPECIFICATION | Darama | Parameter | | | | | Unit | Note | |----------------------|---------------------------------|-------------------|------|-------|-------|------|------| | Falaille | Symbol | Min. | Тур. | Max. | Offic | Note | | | Power Supply | Vcc | 11.4 | 12 | 12.6 | V | - | | | Ripple Vo | Itage | V_{RP} | - | - | 300 | mV | - | | Rush Cu | rrent | I _{RUSH} | - | - | 3 | Α | (2) | | | White | | - | 0.410 | 0.574 | Α | (3)a | | Power Supply Current | Black | | - | 0.200 | 0.280 | Α | (3)b | | | Vertical Stripe | | - | 0.350 | 0.490 | Α | (3)c | | Power Cons | umption | PLCD | - | 4.92 | 6.888 | Watt | (4) | | LVDS differential | LVDS differential input voltage | | | - | 600 | mV | | | LVDS common in | Vic | 1.0 | 1.2 | 1.4 | V | | | | Logic High Inp | VIH | 2.64 | - | - | V | | | | Logic Low Inpu | ut Voltage | VIL | - | - | 0.66 | V | | Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C. Note (2) Measurement Conditions: ### Vcc rising time is 470µs Version 2.1 5 July 2011 9 / 31 Note (3) The specified power supply current is under the conditions at Vcc =12.0 V, Ta = 25 ± 2 °C, Fr = 60Hz, whereas a power dissipation check pattern below is displayed. Note (4) The power consumption is specified at the pattern with the maximum current. Note (5) VID waveform condition Version 2.1 5 July 2011 10 / 31 ### 4.3.2 Vcc Power Dip Condition Dip condition: $10.2V \le Vcc \le 11.1V$, $Td \le 20ms$ #### 4.3.3 BACKLIGHT UNIT | Parameter | Symbol | | Value | Unit | Note | | |----------------------|--------|-----------|------------|-------------|-----------|-------------------------| | i arameter | Symbol | Min. Typ. | | Max. | Offic | Note | | Lamp Input Voltage | V_L | 639 | 710 | 781 | V_{RMS} | $I_{L} = 4.2 \text{mA}$ | | Lamp Current | ال | 3.7 | 4.2 | 4.7 | mA_RMS | (1) | | Lamp Turn On Voltage | Vs | | 1065(0 °C) | 1330(0 °C) | V_{RMS} | (2) | | Lamp rum On voltage | VS | | 850(25 °C) | 1065(25 °C) | V_{RMS} | (2) | | Operating Frequency | F_L | 40 | | 60 | KHz | (3) | | Lamp Life Time | L_BL | 50,000 | | | Hrs | (4) | Note (1) Lamp current is measured by utilizing high frequency current meters as shown below: - Note (2) The voltage shown above should be applied to the lamp for more than 1 second after startup. Otherwise the lamp may not be turned on. - Note (3) The lamp frequency may produce interference with horizontal synchronous frequency from the display, and this may cause line flow on the display. In order to avoid interference, the lamp frequency should be detached from the horizontal synchronous frequency and its harmonics as far as possible. Version 2.1 5 July 2011 11 / 31 - Note (4) The lifetime of lamp can be defined as the time in which it continues to operate under the condition Ta = 25 ± 2 °C and I_L = 3.7~4.7 mA_{rms} until one of the following events occurs: - (a) When the brightness becomes or lower than 50% of its original value. - (b) When the effective ignition length becomes lower than 80% of its original value. (Effective ignition length is defined as an area that has less than 70% brightness compared to the brightness in the center point.) - Note (5) The waveform of the voltage output of inverter must be area-symmetric and the design of the inverter must have specifications for the modularized lamp. The performance of the Backlight, such as lifetime or brightness, is greatly influenced by the characteristics of the DC-AC inverter for the lamp. All the parameters of an inverter should be carefully designed to avoid producing too much current leakage from high voltage output of the inverter. When designing or ordering the inverter please make sure that a poor lighting caused by the mismatch of the Backlight and the inverter (miss-lighting, flicker, etc.) never occurs. If the above situation is confirmed, the module should be operated in the same manners when it is installed in your instrument. The output of the inverter must have symmetrical (negative and positive) voltage waveform and symmetrical current waveform.(Unsymmetrical ratio is less than 10%) Please do not use the inverter, which has unsymmetrical voltage and unsymmetrical current and spike wave. Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference. Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp. It shall help increase the lamp lifetime and reduce its leakage current. - a. The asymmetry rate of the inverter waveform should be 10% below; - b. The distortion rate of the waveform should be within $\sqrt{2 \pm 10\%}$; - c. The ideal sine wave form shall be symmetric in positive and negative polarities. * Asymmetry rate: $|I_{p} - I_{-p}| / I_{rms} * 100\%$ * Distortion rate $I_p (or I_{-p}) / I_{rms}$ 5 July 2011 Version 2.1 12 / 31 ### 4.3.4 INVERTER ELECTRICAL CHARATERISTIC | Item | Symbol | Description | Min. | Тур. | Max. | Unit | |------|------------------|-------------------------------------|------|------|------|------| | 1 | V_{in} | Input voltage | 11.4 | 12 | 12.6 | V | | 2 | l _{in} | Input current (@Vin=12V) | | 3.5 | | Α | | 3 | P _{in} | Input power | | 42 | | W | | 4 | BLON | Inverter On/Off control: OFF | 0 | | 0.8 | V | | 4 | BLON | Inverter On/Off control: ON | 2 | | 5 | V | | | | Output current control | | | | | | 5 | VDIM | VDIM: 0V, maximum brightness | 0 | | 3 | V | | | | VDIM: 3V, minimum brightness | | | | | | 6 | F _b | Burst Mode Frequency | 150 | 160 | 170 | Hz | | 7 | Freq. | Operating frequency | 52 | 55 | 58 | KHz | | 8 | l _{out} | Output current, VDIM=0V (high side) | 3.7 | 4.2 | 4.7 | mA | #### 4.3.5 INVERTER INPUT SIGNAL | Pin No. | Symbol | Description | |---------|--------|----------------------------------| | 1 | Vin | Input voltage | | 2 | Vin | Input voltage | | 3 | Vin | Input voltage | | 4 | Vin | Input voltage | | 5 | Vin | Input voltage | | 6 | Gnd | Ground | | 7 | Gnd | Ground | | 8 | Gnd | Ground | | 9 | Gnd | Ground | | 10 | Gnd | Ground | | 11 | VDIM | Brightness control (0~3V) | | 12 | BLON | Inverter On/Off control (5.0/0V) | Note (1) Connector Part No.: B12B-PH-SM4-TB (JST) or equivalent Note (2) User's connector Part No.:→ PHR-12 (JST) Version 2.1 5 July 2011 13 / 31 The following chart is the VDIM vs. Dimming Range for your reference. 5 July 2011 Version 2.1 14 / 31 ### 4.4 LVDS INPUT SIGNAL SPECIFICATIONS ### 4.4.1 LVDS DATA MAPPING TABLE #### **VESA MODE** | LVDS_SEL = Ground or Open | | | | | | | | | | |---------------------------|-------------|-----|-----|-----|-----|-----|-----|-----|--| | LVDS Channel O0 | LVDS output | D7 | D6 | D4 | D3 | D2 | D1 | D0 | | | LVD3 Channel Ou | Data order | OG0 | OR5 | OR4 | OR3 | OR2 | OR1 | OR0 | | | LVDS Channel O1 | LVDS output | D18 | D15 | D14 | D13 | D12 | D9 | D8 | | | LVD3 Channel O1 | Data order | OB1 | OB0 | OG5 | OG4 | OG3 | OG2 | OG1 | | | LVDS Channel O2 | LVDS output | D26 | D25 | D24 | D22 | D21 | D20 | D19 | | | LVD3 Channel 02 | Data order | DE | NA | NA | OB5 | OB4 | OB3 | OB2 | | | LVDS Channel O3 | LVDS output | D23 | D17 | D16 | D11 | D10 | D5 | D27 | | | LVDS Charmer OS | Data order | NA | OB7 | OB6 | OG7 | OG6 | OR7 | OR6 | | | LVDS Channel E0 | LVDS output | D7 | D6 | D4 | D3 | D2 | D1 | D0 | | | LVD3 Channel E0 | Data order | EG0 | ER5 | ER4 | ER3 | ER2 | ER1 | ER0 | | | LVDS Channel E1 | LVDS output | D18 | D15 | D14 | D13 | D12 | D9 | D8 | | | LVD3 Channel E1 | Data order | EB1 | EB0 | EG5 | EG4 | EG3 | EG2 | EG1 | | | LVDS Channel E2 | LVDS output | D26 | D25 | D24 | D22 | D21 | D20 | D19 | | | LVD3 Challiel E2 | Data order | DE | NA | NA | EB5 | EB4 | EB3 | EB2 | | | LVDS Channel E3 | LVDS output | D23 | D17 | D16 | D11 | D10 | D5 | D27 | | | LVD3 Channel E3 | Data order | NΔ | FR7 | FB6 | FG7 | FG6 | FR7 | FR6 | | #### **JEITA MODE** | LITA WIODE | | | | | | | | | |------------------|-------------|-----|-----|-----|-----|-----|-----|-----| | LVDS_SEL = 3.3V | | | | | | | | | | LVDS Channel O0 | LVDS output | D7 | D6 | D4 | D3 | D2 | D1 | D0 | | LVD3 Channel Ou | Data order | OG2 | OR7 | OR6 | OR5 | OR4 | OR3 | OR2 | | LVDS Channel O1 | LVDS output | D18 | D15 | D14 | D13 | D12 | D9 | D8 | | LVD3 Channel OT | Data order | OB3 | OB2 | OG7 | OG6 | OG5 | OG4 | OG3 | | LVDS Channel O2 | LVDS output | D26 | D25 | D24 | D22 | D21 | D20 | D19 | | LVD3 Channel 02 | Data order | DE | NA | NA | OB7 | OB6 | OB5 | OB4 | | LVDS Channel O3 | LVDS output | D23 | D17 | D16 | D11 | D10 | D5 | D27 | | LVD3 Channel O3 | Data order | NA | OB1 | OB0 | OG1 | OG0 | OR1 | OR0 | | LVDS Channel E0 | LVDS output | D7 | D6 | D4 | D3 | D2 | D1 | D0 | | LVD3 Chaillei Eu | Data order | EG2 | ER7 | ER6 | ER5 | ER4 | ER3 | ER2 | | LVDS Channel E1 | LVDS output | D18 | D15 | D14 | D13 | D12 | D9 | D8 | | LVD3 Channel E1 | Data order | EB3 | EB2 | EG7 | EG6 | EG5 | EG4 | EG3 | | LVDS Channel E2 | LVDS output | D26 | D25 | D24 | D22 | D21 | D20 | D19 | | LVD3 Channel E2 | Data order | DE | NA | NA | EB7 | EB6 | EB5 | EB4 | | LVDS Channel E3 | LVDS output | D23 | D17 | D16 | D11 | D10 | D5 | D27 | | LVD3 Challiel E3 | Data order | NA | EB1 | EB0 | EG1 | EG0 | ER1 | ER0 | Version 2.1 5 July 2011 15 / 31 Global LCD Panel Exchange Center # PRODUCT SPECIFICATION ### 4.4.2 COLOR DATA INPUT ASSIGNMENT The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input. | | | | | | | | | | | | | Da | ta S | Sign | al | | | | | | | | | | | |--------|----------------|-----|----|----------|------------|----|----|----|----|----|----|----|------|------|----|----|----|----|----|----|-----|----|----|----|----| | | Color | | | | Re | ed | | | | | | | Gr | een | | | | | | | Blu | ле | | | | | | _ | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | G7 | G6 | G5 | G4 | G3 | G2 | G1 | G0 | B7 | B6 | B5 | B4 | B3 | B2 | B1 | B0 | | | Black | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Basic | Blue | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | Colors | Cyan | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Magenta | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Yellow | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | White | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | Red(0) / Dark | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Gray | Red(2) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Scale | : | : | : | : | : | : | : | : | : | : | : | : | ÷ | | ÷ | • | : | : | : | : | : | : | : | : | : | | Of | : | : | : | : | : | : | : | : | : | : | : | : | • | | | : | : | : | : | : | : | : | : | : | : | | Red | Red(253) | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 1.00 | Red(254) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Red(255) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(0)/Dark | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Gray | Green(2) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Scale | : | : | : | : | : | : | : | | 4 |): | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Of | : | : | : | : | : | - | | | | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Green | Green(253) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Green(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Blue(0) / Dark | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Blue(1) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | Gray | Blue(2) | 0 < | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | Scale | : | : | | \vdots | / : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Of | : (250) | : | | | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | Blue | Blue(253) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | | • | Blue(254) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | | Blue(255) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | Note (1) 0: Low Level Voltage, 1: High Level Voltage ### 4.5 DISPLAY TIMING SPECIFICATIONS The input signal timing specifications are shown as the following table and timing diagram. | Signal | Item | Symbol | Min. | Тур. | Max. | Unit | Note | |-------------------------|-----------------------------------------------|------------------|----------------|------|--------------------|------|-------------------------| | | Frequency | F_c | 45.74 | 54 | 75.03 | MHz | - | | | Period | T _c | 13.33 | 18.5 | 21.86 | ns | | | | Input cycle to cycle jitter | T_{rcl} | -0.02*Tc | I | 0.02*Tc | ns | (1) | | | Input Clock to data skew | TLVCCS | | | 400 | ps | (2) | | LVDS Clock | Spread
spectrum
modulation
range | Fclkin_
mod | 0.97*Fc | | 1.03*Fc | MHz | (2) | | | Spread
spectrum
modulation
frequency | F _{SSM} | | | 200 | KHz | (3) | | | Frame Rate | F _r | 56 | 60 | 75 | Hz | $T_v = T_{vd} + T_{vb}$ | | | Total | T_v | 1034 | 1066 | 1124 | Th | - | | Vertical Display Term | Active
Display | T_{vd} | 1024 | 1024 | 1024 | Th | - | | | Blank | T_{vb} | $T_{v}-T_{vd}$ | 42 | T_{v} - T_{vd} | Th | - | | | Total | T_h | 790 | 844 | 890 | Tc | $T_h = T_{hd} + T_{hb}$ | | Horizontal Display Term | Active
Display | T_{hd} | 640 | 640 | 640 | Тс | - | | | Blank | T_hb | T_h-T_{hd} | 204 | T_h - T_{hd} | Tc | - | Note: Because this module is operated by DE only mode, H_{sync} and V_{sync} input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally. ### INPUT SIGNAL TIMING DIAGRAM Version 2.1 5 July 2011 17 / 31 Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I $T_1 - TI$ Note (2) Input Clock to data skew is defined as below figures. Note (3) The SSCG (Spread spectrum clock generator) is defined as below figures. Version 2.1 5 July 2011 18 / 31 19 / 31 # PRODUCT SPECIFICATION ### 4.6 POWER ON/OFF SEQUENCE The power sequence specifications are shown as the following table and diagram. #### Timing Specifications: | Parameters | | Units | | | |-------------|-----|-------|-----|--------| | i arameters | Min | Тур. | Max | Office | | T1 | 0.5 | - | 10 | ms | | T2 | 0 | - / | 50 | ms | | T3 | 450 | - | ı | ms | | T4 | 90 | - | - | ms | | T5 | 0 | - | 50 | ms | | T6 | 5 | - | 100 | ms | | T7 | 500 | - | - | ms | Note. Version 2.1 - (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc. - (2) Apply the lamp voltage within the LCD operation range. When the backlight turns on before the LCD operation of the LCD turns off before the backlight turns off, the display may momentarily become abnormal screen. - (3) In case of V_{CC} = off level, please keep the level of input signals on the low or keep a high impedance. - (4) T7 should be measured after the module has been fully discharged between power of and on - (5) Interface signal shall not be kept at high impedance when the power is on. - (6) It is not guaranteed that products are damaged which is caused by not following the Power Sequence. - (7) It is suggested that Vcc falling time follows T6 specification; else slight noise is likely to occur when LCD is turned off (even backlight is already off). ### **5. OPTICAL CHARACTERISTICS** ### **5.1 OPTICAL SPECIFICATIONS** The relative measurement methods of optical characteristics are shown in 5.1. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (5). | Item | | Symbol | Condition | Min. | Тур. | Max. | Unit | Note | |-------------------|------------------------|-----------------|---|------|-------|-------|-------------------|------------| | | Red | R _x | | | 0.640 | | | | | | | R _y | | | 0.330 | | | | | Color | Green | G _x | | Тур | 0.298 | | | | | Chromaticity | | G _y | | | 0.600 | Typ.+ | - | (1), (5) | | (CIE 1931) | Blue | B_x | θ_x =0°, θ_Y =0° | 0.03 | 0.150 | 0.03 | | ('), () | | (5.2.55.) | ыйе | B _y | CS-1000T | | 0.060 | | | | | | White | W_x | | | 0.313 | | | | | | vviiite | W_y | | | 0.329 | | | | | Center Luminan | ce of White | L _C | 4 | 550 | 650 | | cd/m ² | (4), (5) | | Contrast Ratio | | CR | | 700 | 900 | | - | (2), (5) | | Response Time | | T_R | $\theta_x=0^\circ$, $\theta_Y=0^\circ$ | | 15 | 25 | ms | (3) | | response nine | | T_F | θ_{x} -0, θ_{Y} -0 | | 10 | 15 | ms | (3) | | White Variation(a | adjacent) | δW_a | θ_x =0°, θ_Y =0°
USB2000 | 90 | | | - | (5), (6) | | White Variation(t | White Variation(total) | | θ_x =0°, θ_Y =0°
USB2000 | 70 | | | - | (5), (6) | | | | Θ_{y+} | | 80 | 88 | | | | | Viewing Angle | | ⊖ _{y-} | CR ≥ 10 | 80 | 88 | | Das | (4) (5) | | | 0 0 | | USB2000 | 80 | 88 | | Deg. | (1), (5) | | | | ⊖ _{x-} | | 80 | 88 | | | | Note (1)Definition of Viewing Angle (θx , θy): Version 2.1 5 July 2011 20 / 31 Note (2) Definition of Contrast Ratio (CR): The contrast ratio can be calculated by the following expression. Contrast Ratio (CR) = L255 / L0 L255: Luminance of gray level 255 L 0: Luminance of gray level 0 CR = CR (5) CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (4). ### Note (3) Definition of Response Time (T_R, T_F) : Note (4) Definition of Luminance of White (L_C): Measure the luminance of gray level 255 at center point $$L_{C} = L (5)$$ $L\left(x\right)$ is corresponding to the luminance of the point X at the following figure. #### Note (5) Measurement Setup: The LCD module should be stabilized at given temperature for 60 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 60 minutes in a windless room. Unless otherwise specified, the ambient conditions are as following. Ambient Temperature: 25 ± 2 (degreeC) Ambient Humidity: 25 ~ 85 (%) Atmospheric Pressure: $86.0 \sim 104.0 \text{ (kP}_a)$ Version 2.1 5 July 2011 22 / 31 Global LCD Panel Exchange Center # PRODUCT SPECIFICATION Note (6) There is the Uniformity Measurement below: 'L_{bright}' represents the Luminance of the point that is brighter than the other point to be compared. 'Ldark' represents the Luminance of the point that is darker than the other point to be compared. Measuring points are shown in the following Fig. When the backlight is on with all pixels in the white (maximum gray) level, the luminance uniformity is defined as follows; #### Where: L_{bright}: The luminance of the brightness part of the area L_{dark}: The luminance of the darkest part of the area #### 1. Adjacent Area Luminance Uniformity = $$\frac{L_{dark}}{L_{bright}} \ge 0.90$$ over a circular area of 10mm diameter placed anywhere on the screen. ### 2. Screen Total Luminance Uniformity = $$\frac{L_{dark}}{L_{bright}} \ge 0.70$$ over the entire screen. Version 2.1 5 July 2011 23 / 31 ### 6. RELIABILITY TEST ITEM | Items | Required Condition | Note | |-----------------------------------|---|------| | Temperature Humidity Bias (THB) | Ta= 50℃,80%RH, 240hours | | | High Temperature Operation (HTO) | Ta= 55℃, 240hours | | | Low Temperature Operation (LTO) | Ta= 0℃ , 240hours | | | High Temperature Storage (HTS) | Ta= 60℃ , 240hours | | | Low Temperature Storage (LTS) | Ta= -20°C , 240hours | | | Vibration Test
(Non-operation) | Acceleration: 1.5 G _{rms} Wave: Half-sine Frequency: 10 - 300 Hz Sweep: 30 Minutes each Axis (X, Y, Z) | | | Shock Test
(Non-operation) | Acceleration: 50 G Wave: Half-sine Active Time: 11 ms Direction: ± X, ± Y, ± Z.(one time for each Axis) | | | Thermal Shock Test (TST) | -20 $^{\circ}$ C/30min , 60 $^{\circ}$ C / 30min , 100 cycles | | | ESD (Electro Static Discharge) | Contact Discharge: ± 8KV,
150pF(330Ω) | | | | Air Discharge: ± 15KV, 150pF(330Ω) | | Note (1) criteria: Normal display image with no obvious non-uniformity and no line defect. Note (2) Evaluation should be tested after storage at room temperature for more than two hour Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture. The fixing condition is shown as below: ### 7. PACKING #### 7.1 PACKING SPECIFICATIONS (1) 5 LCD modules / 1 Box (2) Box dimensions: 485(L) X 365(W) X 430(H) mm (3) Weight: approximately: 11.75kg (5 modules per box) #### 7.2 PACKING METHOD (1) Carton Packing should have no failure in the following reliability test items. | Test Item | Test Conditions | Note | |---------------|---|---------------| | | ISTA STANDARD | | | Vibration | Random, Frequency Range: 1 – 200 Hz | | | | Top & Bottom: 30 minutes (+Z), 10 min (-Z), | Non Operation | | | Right & Left: 10 minutes (X) | | | | Back & Forth 10 minutes (Y) | | | Dropping Test | 1 Corner, 3 Edge, 6 Face, 61cm | Non Operation | Figure. 7-1 Packing method Version 2.1 5 July 2011 25 / 31 ### 7.3 PALLET For ocean shipping Sea and land transportation Version 2.1 5 July 2011 26 / 31 For air transport # Air transportation Figure. 7-2 Packing method Version 2.1 5 July 2011 27 / 31 ### 8. CMI MODULE LABEL The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation. (a) Model Name: R190E6-L01 (b) Revision: Rev. XX, for example: A0, A1... B1, B2... or C1, C2...etc. (c) CMI barcode definition: Serial ID: XX-XX-XX-YMD-L-NNNN | Code | Meaning | Description | |------|--|---| | XX | CMI internal use | - | | XX | Revision | Cover all the change | | Х | CMI internal use | - | | XX | CMI internal use | - | | YMD | Year, month, day | Year: 0~9, 2001=1, 2002=2, 2003=32010=0, 2011=1, 2012=2
Month: 1~12=1, 2, 3, ~, 9, A, B, C Day: 1~31=1, 2, 3, ~, 9, A, B, C, ~, W, X, Y, exclude I, O, and U. | | L | Product line # Line 1=1, Line 2=2, Line 3=3, | | | NNNN | Serial number | Manufacturing sequence of product | ### 9. PRECAUTIONS #### 9.1 ASSEMBLY AND HANDLING PRECAUTIONS - (1) Do not apply rough force such as bending or twisting to the module during assembly. - (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer. - (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged. - (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up. - (5) Do not pull the I/F connector in or out while the module is operating. - (6) Do not disassemble the module. - (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched. - (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating. - (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions. - (10)When ambient temperature is lower than 10°C may reduce the display quality. For example, the response time will become slowly. #### 9.2 STORAGE PRECAUTIONS - (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0° C to 35° C and relative humidity of less than 70% - (2) Do not store the TFT LCD module in direct sunlight - (3) The module should be stored in dark place. It is prohibited to apply sunlight or fluorescent light in storing #### 9.3 OPERATION PRECAUTIONS (1) The LCD product should be operated under normal condition. Normal condition is defined as below: Temperature : 20±15℃ Humidity: 65±20% Display pattern: continually changing pattern (Not stationary) (2) If the product will be used in extreme conditions such as high temperature, high humidity, high altitude ,display pattern or operation time etc...It is strongly recommended to contact CMO for application engineering advice. Otherwise, Its reliability and function may not be guaranteed. Version 2.1 5 July 2011 29 / 31 ### 9.4 SAFETY PRECAUTIONS - (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap. - (2) After the module's end of life, it is not harmful in case of normal operation and storage. ### 9.5 SAFETY STANDARDS The LCD module should be certified with safety regulations as follows: - (1) UL60950-1 or updated standard. - (2) IEC60950-1 or updated standard. #### **9.6 OTHER** When fixed patterns are displayed for a long time, remnant image is likely to occur. Version 2.1 5 July 2011 30 / 31