RICOH

R5523N SERIES

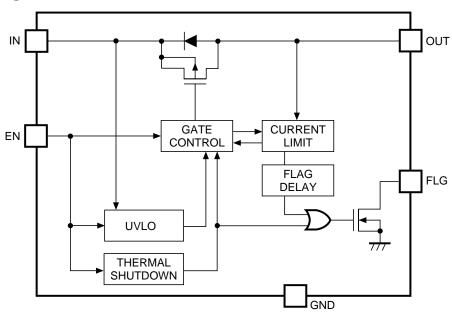
USB HIGH-SIDE POWER SWITCH

NO.EA-168-120921

OUTLINE

The R5523N Series is CMOS-based high-side MOSFET switch IC for Universal Serial Bus (USB) applications. Low ON Resistance (Typ.130m Ω) and low supply current (Typ.20 μ A at active mode) are realized in this IC.

An over-current limit circuit, a thermal shutdown circuit, and an under voltage lockout (UVLO) circuit are built-in as protection circuits. Further, a delay circuit for flag signal after detecting over-current, is embedded to prevent miss-operation of error flag because of inrush current. The R5523N Series is ideal for applications of protection for USB power supply. Since the package is small SOT-23-5, high density mounting on board is possible.


FEATURES

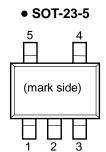
- Built-in P-channel MOSFET Switch
- Supply CurrentTyp. 20μA (at Active Mode)
- Switch ON ResistanceTyp. 130mΩ
- Output CurrentMin. 500mA
- Flag Delay TimeTyp. 10ms.
- PackageSOT-23-5
- Over- Current Limit / Short Circuit Protection
- Built-in Under Voltage Lockout (UVLO) Function
- Built-in Thermal Shutdown Protection
- Built-in Soft-start Function

APPLICATIONS

- USB Peripherals
- Notebook PCs

BLOCK DIAGRAM

SELECTION GUIDE


The logic of the enable pin for the ICs can be selected at the user's request.

Product Name	Package	Quantity per Reel Pb Free		Halogen Free	
R5523N001*-TR-FE	SOT-23-5	3,000 pcs	Yes	Yes	

^{* :} Designation of the logic of the enable pin.

- (A) "L" active (B) "H" active

PIN CONFIGURATIONS

PIN DESCRIPTION

Pin No	Symbol	Pin Description	
1	EN	Enable Pin	
2	GND	Ground Pin	
3	FLG	FLG pin (Open Drain Output)	
4	Vin	Power Supply Pin	
5	Vouт	Output Pin	

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
Vin	Input Voltage	6.5	V
Ven	Enable Pin Input Voltage	-0.3 to V _{IN} +0.3	V
V_{FLG}	Flag Voltage	-0.3 to 6.5	V
I FLG	Flag Current	14	mA
Vout	Output Voltage	-0.3 to V _{IN} +0.3	V
І оит	Output Current	Internal Limited	
PD	Power Dissipation (SOT-23-5) *Note1	420	mW
Topt	Operating Temperature	-40 to +85	°C
Tstg	Storage Temperature	-55 to +125	°C

^{*}Note1) For Power Dissipation please refer to PACKAGE INFORMATION to be described.

ABSOLUTE MAXIMUM RATINGS

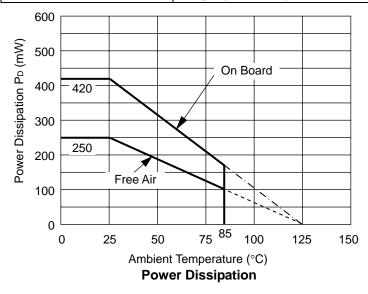
Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.

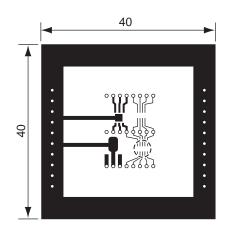
The functional operation at or over these absolute maximum ratings is not assured.

POWER DISSIPATION (SOT-23-5)

This specification is at mounted on board. Power Dissipation (P_D) depends on conditions of mounting on board. This specification is based on the measurement at the condition below:

(Power Dissipation (SOT-23-5) is substitution of SOT-23-6.)

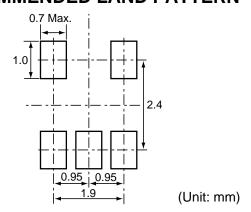

Measurement Conditions


	Standard Land Pattern	
Environment	Mounting on Board (Wind velocity=0m/s)	
Board Material	Glass cloth epoxy plastic (Double sided)	
Board Dimensions	40mm × 40mm × 1.6mm	
Copper Ratio	Top side: Approx. 50%, Back side: Approx. 50%	
Through-holes	φ0.5mm × 44pcs	

Measurement Results

(Topt=25°C, Tjmax=125°C)

	Standard Land Pattern	Free Air
Power Dissipation	420mW	250mW
Thermal Resistance	θja=(125–25°C)/0.42W=238°C/W	400°C/W



Measurement Board Pattern

() IC Mount Area (Unit: mm)

RECOMMENDED LAND PATTERN

ELECTRICAL CHARACTERISTICS

• R5523N001A/B

(Topt=25°C)

Symbol	Item	Conditions	MIN.	TYP.	MAX.	Unit
Vin	Input Voltage		2.2		5.5	V
I _{DD1}	Supply Current 1 (Enabled)	Vout=open *1		20	45	μА
I _{DD2}	Supply Current 2 (Disabled)	Vout=open *2		0.1	1.0	μA
Ron	Switch On Resistance	VIN=5V, IOUT=500mA		130	180	mΩ
ton	Output Turn-on Delay	$V_{IN}=5V$, $RL=60\Omega$		1400		μS
toff	Output Turn-off Delay	$V_{IN}=5V$, $RL=60\Omega$		5		μS
Vuvlo	UVLO Threshold	V _{IN} =increasing	1.6	1.9		V
V _{HYS}	UVLO Hysteresis Range	V _{IN} =decreasing		0.1		٧
Ітн	Current Limit Threshold			1.0	1.5	Α
llim	Short Current Limit	VIN=5V, 5ms after Vout=0V	0.5	0.75	1.3	Α
t FD	Over Current Flag Delay	V _{IN} =5V, From Over Current to FLG= "L"	5	10	20	ms
T _{TS}	Thermal Shutdown Temperature Threshold	TJ=increasing		135		°C
ITS		TJ=decreasing		120		°C
len	Enable Pin Input Current			0.01	1.0	μA
V _{EN1}	Enable Pin Input Voltage 1	V _{EN} =increasing	2.0			V
V _{EN2}	Enable Pin Input Voltage 2	V _{EN} =decreasing			0.8	V
ILO	Output Leakage Current			0.1	1.0	μA
V _L F	Flag "L" Output Voltage	Isink=1mA			0.4	V
I FOF	Flag Off Current	V _{FLG} =5.5V		0.01	1.0	μA

^{*1)} EN= "L" (R5523NxxxA), EN= "H" (R5523NxxxB)

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions.

The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge.

And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

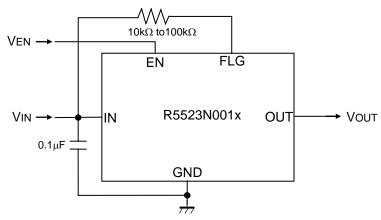
^{*2)} EN= "H" (R5523NxxxA), EN= "L" (R5523NxxxB)

R5523N

OPERATION

This explanation is based on the typical application.

- There is a parasitic diode between source and drain of the switch transistor. (Refer to the block diagram.) Because of this, in both cases of enable and disable, if the voltage of Vout pin is higher than VIN pin, current flows from Vout to VIN.
- In case that Vout pin and GND is short, if over-current would continue, the temperature of the IC would increase drastically. If the temperature of the IC is beyond 135°C, the switch transistor turns off and the FLG pin level becomes "L". Then, when the temperature of the IC decreases equal or lower than 120°C, the switch transistor turns on and FLG becomes "H". Unless the abnormal situation of Vout pin is removed, the switch transistor repeats on and off. Refer to the 24) Thermal Shutdown operation in the typical characteristics.
- Over-current level is set internally in the IC. There are three types of response against over-current: Under the condition that V_{OUT} pin is short or large capacity is loaded, if the IC is enabled, the IC becomes constant current state. After the flag delay time passes, FLG becomes "L", that means over current state. Refer to the 23) current limit transient response of typical characteristics. While the switch transistor is on, if V_{OUT} pin is short or large capacity is loaded, until the current limit circuit responds, large transient current flows. After the transient current is beyond the over-current detector threshold and delay time of the flag passes, FLG becomes "L", that means over current state. Refer to the 25), 26) over-current limit transient response of typical characteristics. In the case that load current gradually increases, the IC is not into the constant current state until the current is beyond over current limit. Once the level is beyond the over current detector threshold, load current is limited into over current limit level. Note that load current continuously flows until the load current is beyond the over-current detector threshold.
- FLG pin is Nch Open drain output. If the over-current or over-temperature is detected, FLG becomes "L". If
 over-current is detected, FLG becomes "L" after the flag delay time t_{FD} passes. Therefore flag signal is not
 out with inrush current.
- UVLO circuit prevents that the switch transistor turns on until the input voltage is beyond 1.9V. UVLO circuit
 can operate when the IC is enabled.


TYPICAL APPLICATION AND TECHNICAL NOTES

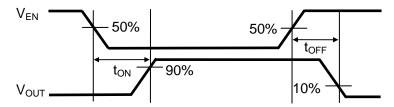
Bypass capacitor

• Put a capacitance range from 0.1µF to 1µF bypass capacitor between V_{IN} pin and GND pin of the IC. Without a bypass capacitor, in case of output short, because of the high side inductance of V_{IN} pin, the ringing may be generated and it might be a cause of an unstable operation.

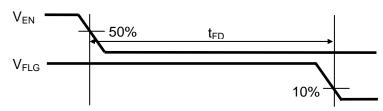
• Pull-up resistance value range of flag pin

• Recommended pull-up resistance value range of flag pin is from $10k\Omega$ to $100k\Omega$.

R5523N001x Typical Application

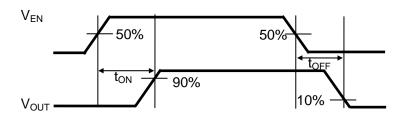

Over-current limit Function

In case that Vout pin and GND is short, if over-current would continue, the temperature of the IC would increase drastically. If the temperature of the IC is equal or more than 135°C (Typ.), the switch transistor turns off because of thermal shutdown protection. In other words, when the temperature of the IC becomes equal or more than 135°C(Typ.), both the over-current limit circuit and thermal shutdown circuit work for the protection of the IC.


TIMING CHART

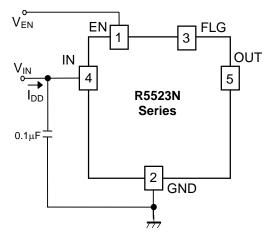
• R5523N001A

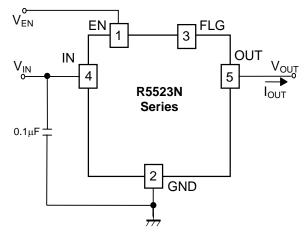
Output On time/ Output Off time

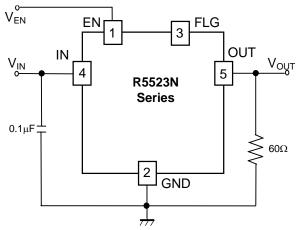


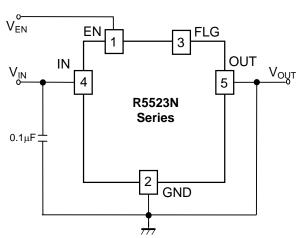
FLG Output Delay Time

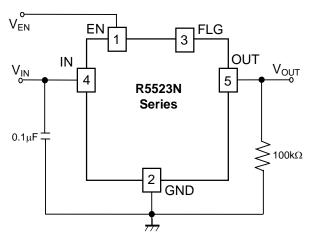
• R5523N001B

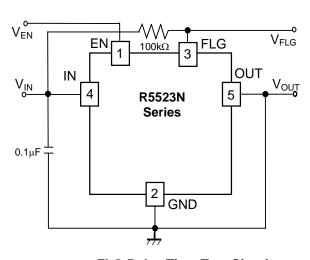

Output On time/ Output Off time


FLG Output Delay Time

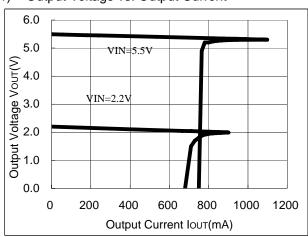

TEST CIRCUITS

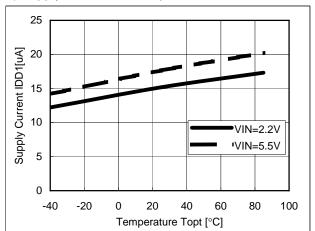

Supply Current Test Circuit


Switch On Resistance
/ Over Current Limit Threshold Test Circuit

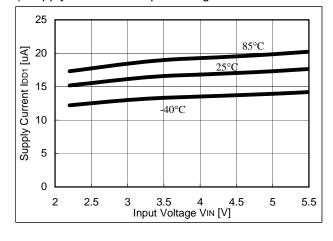

Turn ON Speed/ Turn OFF Speed Test Circuit

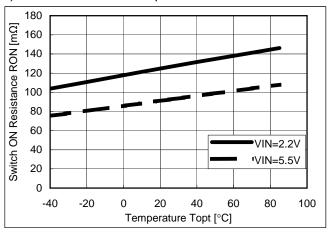
Short Current Limit Test Circuit

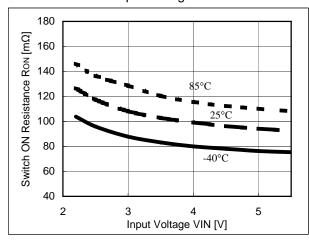

Enable Input Voltage
/ UVLO Threshold Test Circuit


FLG Delay Time Test Circuit

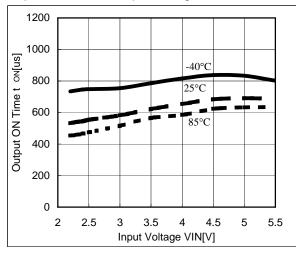
TYPICAL CHARACTERISTICS

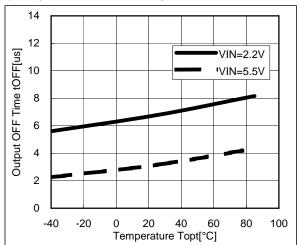

1) Output Voltage vs. Output Current

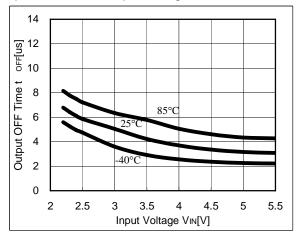

2) Supply Current vs. Temperature

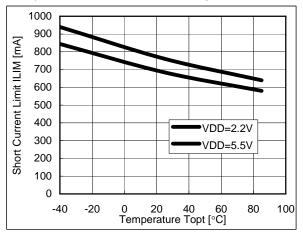

3) Supply Current vs. Input Voltage

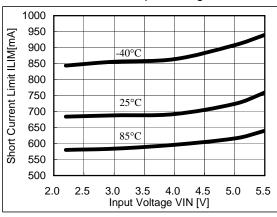
4) On Resistance vs. Temperature

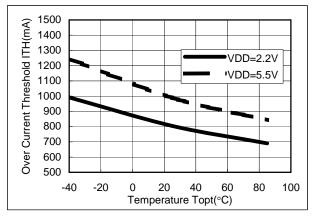

5) On Resistance vs. Input Voltage


6) Output On Time vs. Temperature

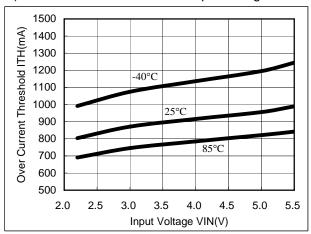

7) Output On Time vs. Input Voltage


8) Output Off Time vs. Temperature

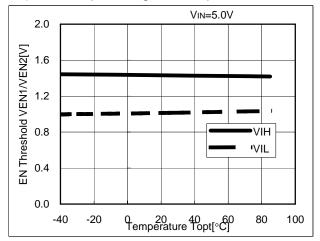

9) Output Off Time vs. Input Voltage


10) Short-current Limit vs. Temperature

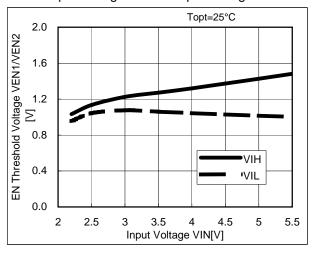
11) Short Current Limit vs. Input Voltage

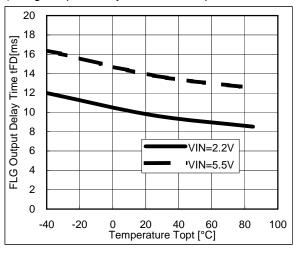


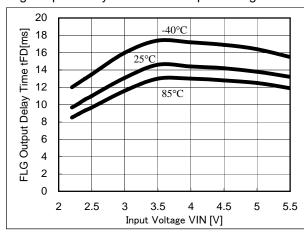
12) Over Current Threshold vs. Temperature

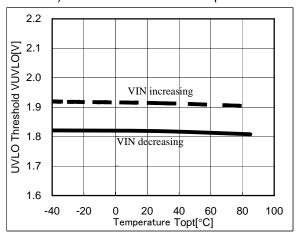


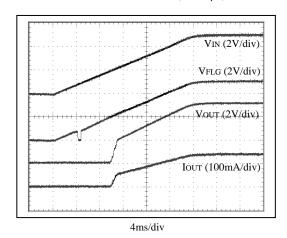
R5523N

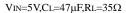

13) Over Current Threshold vs. Input Voltage

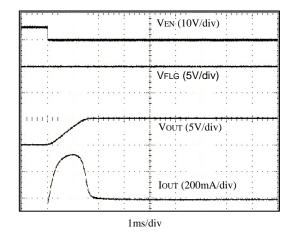

14) Enable Input Voltage vs. Temperature


15) Enable Input Voltage vs. VIN Input Voltage

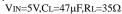

16) Flag Output Delay Time vs. Temperature

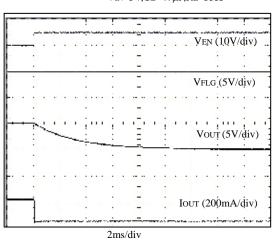

17) Flag Output Delay Time vs. VIN Input Voltage

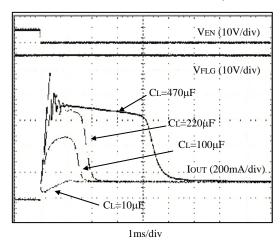

18) UVLO Threshold vs. Temperature



19) UVLO Characteristic at VIn increasing $v_{EN=0}$ V,CL=47 μ F,RL=35 Ω

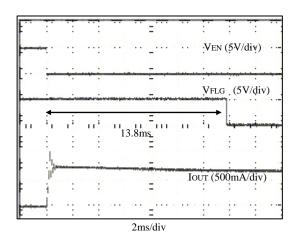


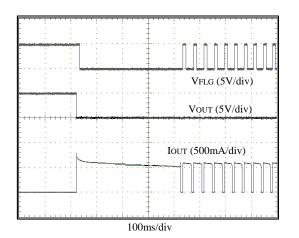

20) Turn on Response


21) Turn off Response

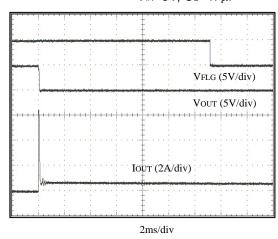
22) Inrush current

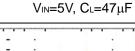
 $V_{IN}=5V$, $R_L=35\Omega$

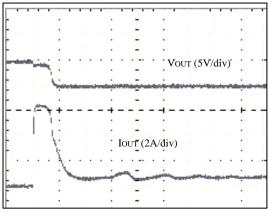



23) Current Limit Transient Response (Case: Enable to Short)

24) Thermal Shutdown Operation


 $V_{IN}=5V$, $C_L=47\mu F$




R5523N

25) Current Limit Transient Response (Case: Output short during enable) V_{IN} =5V, C_{L} =47 μ F

26) Zoomed in 25)

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment.

Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

http://www.e-devices.ricoh.co.jp/en/

Sales & Support Offices

RICOH ELECTRONIC DEVICES CO., LTD. Higashi-Shinagawa Office (International Sales) 3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V. Semiconductor Support Centre

Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309

RICOH ELECTRONIC DEVICES KOREA CO., LTD. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: 482-2135-700 Fax: 482-22051-5713

RICOH ELECTRONIC DEVICES SHANGHAI CO., LTD.
Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203,

People's Republic of China
Phone: +86-21-5027-3299

RICOH ELECTRONIC DEVICES CO., LTD.

Taipei officeRoom 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.)
Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623