

May. 2005

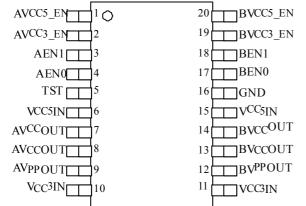
PCMCIA Power Controller

■DESCRIPTION

The R5534V switches between the three Vcc voltages (0V/3.3V/5.0V) and the VPP voltages (off/0V/3.3V/5.0V). The R5534V has two sets of Vcc output and VPP output each, therefore it fits dual slot models. If Vcc pin or VPP pin may be clamped to the GND, short current limit works at 1A(Min.) for VCC and 0.15A(Min.) for VPP. The R5534V is suitable for standard PCMCIA power controllers.

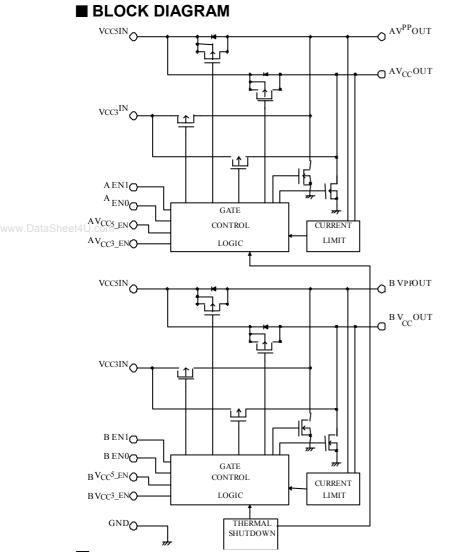
R5534V

FEATURES


Low on resistance P-channel MOSFET Switch

- Dual Slot Power Supply Control
- Over- Current Limit Protection
- Thermal Shutdown Protection
- Low Consumption Current
- Break-Before-Make Switching
- SSOP-20 pin Package

■APPLICATIONS


- Dual Slot PC card Power Supply Pin Voltage Switch
- Card-bus Slot Power Supply Control
- PC Card Reader/Writer

■ PIN CONFIGURATION

*Note: Same name pins should be connected one another. Connect TST pin to $V_{\rm CC}5IN$ pin.

PIN DESCRIPTION

Symbol	Pin description			
VCC5IN	5V Input Pin			
VCC3IN	3V Input Pin			
GND	Ground Pin			
VCC5_EN	Logic Input Pin			
VCC3_EN	Logic Input Pin			
EN1	Logic Input Pin			
EN0	Logic Input Pin			
VCCOUT	Vcc Output Pin			
VPPOUT	VPP Output Pin			
TST	Test Pin			

ABSOLUTE MAXIMUM RATINGS

			Topt=25°C	
Item	Symbol	Conditions	Ratings	Unit
Input Voltage (5V)	Vcc5IN		-0.3 to 6.0	V
Input Voltage (3V)	Vcc3IN		-0.3 to 6.0	V
Logic Input Voltage	VIN		-0.3 to 6.0	V
TST Input Voltage	VTST		-0.3 to 6.0	V
Output Current	I _{O (VCC)}	Each Slot	>1A, Internal Limited	
Output Current	I _{O (VPP)}	Each Slot	>150mA, Internal Limited	
Power Dissipation	P _D		Internal Limited	
Operating Temperature Range	Topt		-40 to 85	°C
Storage Temperature Range	Tstg		-55 to 125	°C

vw.DataSheet4U.com

*Note: Absolute maximum ratings are threshold limit values that must not be exceeded even for any moment under any conditions. More over, such values for any two or more items of the ratings must not be reached simultaneously. Operation above these absolute maximum ratings may cause degradation or fatal damage to the device. These mean stress ratings and do not necessarily imply functional operation below these limits.

ELECTRICAL CHARACTERISTICS

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vcc5	Supply Voltage (5V)		3.0	5.0	5.5	V
Vcc3	Supply Voltage (3V)		3.0	3.3	5.5	V
Icc5		Vcc OUT = $5V$ or $3.3V$		60	120	μA
ISLP5	Supply Current	Vcc OUT = 0V (sleep mode)		0.2	10.0	μA
Icc3		Vcc OUT = $5V$ or $3.3V$		20	60	μΑ
ISLP3		Vcc $OUT = 0V$ (sleep mode)		0.1	10	μΑ
		Select Vcc OUT=5V, Vcc5IN=5.0V		110	170	mΩ
RoVcc	Vcc OUT switch resistance	Select Vcc OUT=3.3V, Vcc3IN=3.3V		130	180	mΩ
		Select Vcc OUT=0V, Vcc5IN=5.0V		500	3900	Ω
U.com		Select Vpp OUT=5V, Vcc5IN=5.0V		2.1	3.5	Ω
RoVpp	Vpp OUT switch resistance	Select Vpp OUT=3.3V, Vcc3IN=3.3V		3.3	5.5	Ω
		Select Vpp OUT=0V, Vcc5IN=5.0V		2500	3900	Ω
IPPL	Vpp OUT Leakage Current	Select Vpp OUT=Hi-Z		1	10	μA
ICCSC	Short Current Limit	Vcc OUT=0V	1	1.5		A
IPPSC	Short Current Linit	VPP OUT=0V	0.15	0.40		Α
Vih	Logic Input "H" Voltage		2.2		6.0	V
VIL	Logic Input "L" Voltage		-0.3		0.8	V
Iin	Logic Input Current		-1		1	μA
TSD	Thermal Shutdown Temperature			135		°C
t1	Vcc Turn-on Delay Time	Vcc OUT=0V to 10% of 3.3V(Select 3.3V)		200		μs
t2	(*Note 2)	Vcc OUT=0V to 10% of 5.0V(Select 5V)		400		μs
t3	Vac Dising Time (*Note 2)	Vcc OUT=10% to 90% of 3.3V(Select 3.3V)		800		μs
t4	Vcc Rising Time (*Note 2)	Vcc OUT=10% to 90% of 5.0V(Select 5V)		2300		μs
t7	Vcc Turn-off Delay Time	Vcc OUT=3.3V to Hi-Z		2.3		ms
t8	(*Note1,2,4)	Vcc OUT=5V to Hi-Z		2.8		ms
t5	Vcc Falling Time (*Note 3)	Vcc OUT=90% to 10% of 3.3V(Select 3.3V)		800		μs
t6	vec Failing Time (Note 5)	Vcc OUT=90% to 10% of 5.0V(Select 5V)		700		μs
t9	Vpp Turn-on Delay Time	Vpp OUT=0V to 10% of 3.3V(Select 3.3V)		5		μs
t10	(*Note 3)	Vpp OUT=0V to 10% of 5.0V(Select 5V)		12		μs
t11	Vpp Rising Time (*Note 3)	Vpp OUT=10% to 90% of 3.3V(Select 3.3V)		300		μs
t12	vpp Kising Time (Trole 3)	Vpp OUT=10% to 90% of 5.0V(Select 5V)		360		μs
t15	Vpp Turn-off Delay Time	Vpp OUT=3.3V to Hi-Z		0.1		μs
t16	(*Note 1,3)	Vpp OUT=5V to Hi-Z		0.1		μs
t13	Vpp Falling Time (*Note 3)	Vpp OUT=90% to 10% of 3.3V(Select 3.3V)		0.05		μs
t14	vpp ranning rine (*Note 5)	Vpp OUT=90% to 10% of 5.0V(Select 5V)		0.05		μs

(*Note1) Delay from commanding Hi-Z or 0V to beginning slope

(*Note2) t1 to t8 Test Condition: RL=10 Ω

(*Note3) t9 to t15 Test Condition: $RL=100\Omega$ (*Note4) Do not apply to current limit or thermal shutdown conditions during these terms

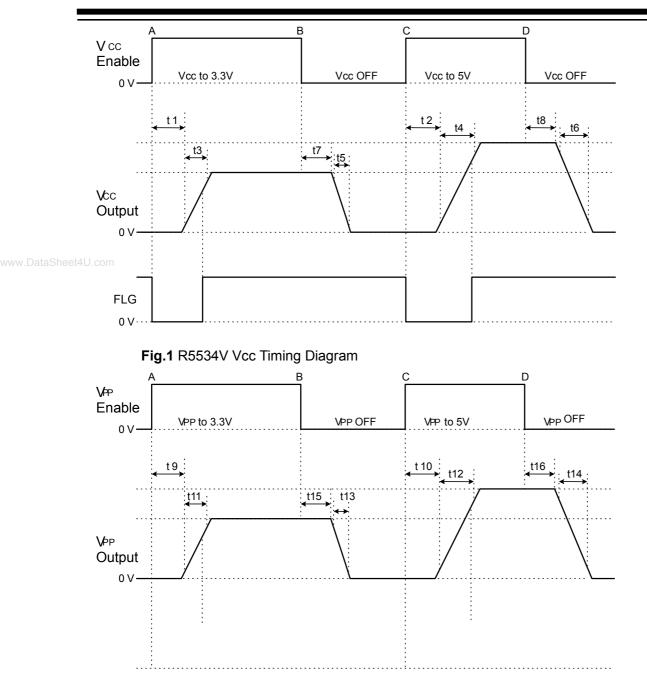


Fig. 2 R5534V VPP Timing Diagram

R5534V Control Logic Table

Vcc5_en	Vcc3_en	EN1	EN0	Vcc OUT	Vpp оит
0	0	0	0	0V	0V
0	0	0	1	0V	Hi-Z
0	0	1	0	0V	Hi-Z
0	0	1	1	0V	Hi-Z
0	1	0	0	5V	0V
0	1	0	1	5V	5V
0	1	1	0	5V	Hi-Z
0	1	1	1	5V	Hi-Z
1	0	0	0	3.3V	0V
1	0	0	1	3.3V	3.3V
1	0	1	0	3.3V	Hi-Z
eet 4 U.com	0	1	1	3.3V	Hi-Z
1	1	0	0	0V	0V
1	1	0	1	0V	Hi-Z
1	1	1	0	0V	Hi-Z
1	1	1	1	0V	Hi-Z

OPERATION

When the Vccout =0V is selected, the IC switches into the sleep mode, and draws only some nano-amperes of leakage current. Without being V_{CCOUT} =0V, if commanded to immediately switch from 5V to 3.3V or vice versa, enhancement of the second switch begins after the first is OFF, realizing break-before-make protection.

In case that an OUT pin may be clamped to the GND, if over-current would continue, the temperature of the IC would increase drastically. If the temperature of the IC is beyond 135°C, the switch transistor turns off. Then, when the temperature of the IC decreases equal or lower than 125°C, the switch transistor turns on. Unless the abnormal situation of OUT pin is removed or turned off, the switch transistor repeats on and off.

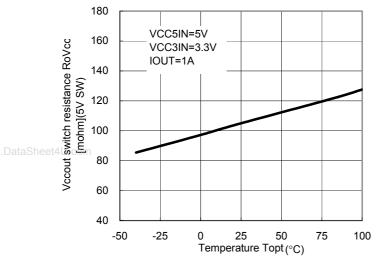
Short over-current level is set internally in the IC. There are two types of response against over-current: Under the condition that OUT pin is short or large capacity is loaded, if the IC is enabled, the IC becomes constant current state immediately. Current level of constant current is short current limit. While the switch transistor is on, if OUT pin is short or large capacity is loaded, until the current limit circuit responds, large transient current flows. The transient current depends on the impedance between the power supply circuit, VCC5IN/VCC3IN and load capacitance. In other words, the transient current depends on the transient response characteristics of the power supply circuit, VCC5IN/VCC3IN, PCB layout, and the connector of the card. After the transient current is beyond the current limit threshold and current limit circuit responds, the IC becomes into the constant current mode, and the current level is equal to short current limit.

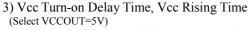
■APPLICATION NOTES

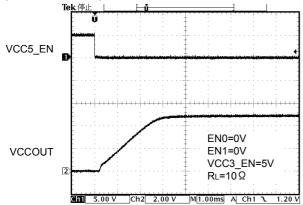
* VCC5IN voltage should be equal or more than VCC3IN.

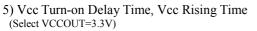
* Same name pins should be connected one another.

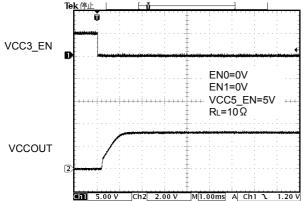
* There is a parasitic diode between source and drain of the switch transistors. (Refer to the block diagram.) Therefore, even If the switch may be disabled, in case the OUT voltage is higher than VCC5IN, some current flows from OUT to VCC5IN.

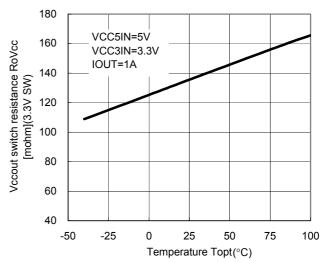

* Connect TST pin to Vcc5IN

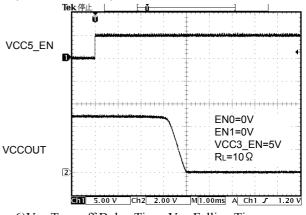

* Set a bypass capacitor with capacitance ranging from $0.1\mu F$ to $1.0\mu F$ between VCC5IN pin and GND pin, and between VCC3IN and GND pin each.

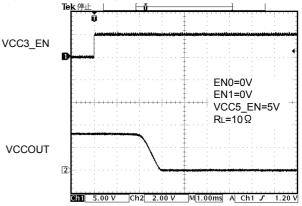



TYPICAL CHARACTERISTICS


1)VCCOUT Switch Resistance vs. Temperature (Select VCCOUT=5V)






2)VCCOUT Switch Resistance vs. Temperature (Select VCCOUT=3.3V)

4)Vcc Turn-off Delay Time, Vcc Falling Time (Select VCCOUT=5V)

6)Vcc Turn-off Delay Time, Vcc Falling Time (Select VCCOUT=3.3V)

