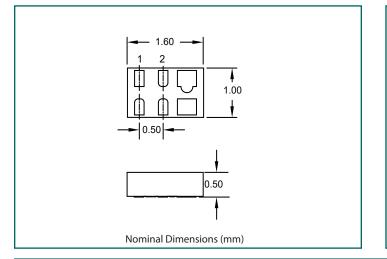
RClamp3382P

Low Capacitance RailClamp® 2-Line Surge and ESD Protection for Ethernet Interfaces

PROTECTION PRODUCTS


Description

RClamp^{*}3382P is a high performance TVS array designed to protect 2 differential lines from overvoltage events caused by ESD, lightning, CDE (Cable Discharge Events) and EFT (electrical fast transients). RClamp3382P features high surge current capability and may be used to protect Ethernet interfaces in MagJacks, communications equipment, security cameras, and industrial equipment.

RClamp3382P integrates low capacitance, surge-rated steering diodes with a high power transient voltage suppressor (TVS). The TVS utilizes snap-back or "crowbar" technology to minimize device clamping voltage and features high surge current capability of 10A (tp=8/20us). ESD characteristics are highlighted by high ESD withstand voltage (+/-25kV per IEC 61000-4-2) and extremely low dynamic resistance. Each device will protect two lines operating at 3.3 volts.

RClamp3382P is in a 6-pin SGP1610N4 package measuring 1.6 x 1.0mm with a nominal height of 0.50mm. Flow- through package design simplifies PCB layout and maintains signal integrity on high-speed lines. The combination of low clamping, high surge capability, and innovative package design enables this device to provide the highest level of transient protection.

Nominal Dimensions

Features

- Transient Protection to
 - IEC 61000-4-2 (ESD) 25kV (Air), 25kV (Contact)
 - IEC 61000-4-4 (EFT) 4kV (5/50ns)
 - IEC 61000-4-5 (Lightning) 10A (8/20µs)
- Very Small PCB Area
- Protects Two High-Speed Data Lines
- Working Voltage: 3.3V
- Low Capacitance: 0.25pF Typical
- Dynamic Resistance: 0.60 Ohms (Typ)
- Solid-State Silicon-Avalanche Technology

Mechanical Characteristics

- SGP1610N4 Package
- Pb-Free, Halogen Free, RoHS/WEEE Compliant
- Nominal Dimensions: 1.6 x 1.0 x 0.50 mm
- Lead Finish: NiPdAu
- Molding Compound Flammability Rating: UL 94V-0
- Marking : Marking Code + Date Code
- Packaging : Tape and Reel

Applications

- 1G/2.5G/5G/10G Ethernet
- Integrated Magnetics / RJ-45 Connectors
- Central Office Equipment
- Industrial Equipment
- IP Camera

Functional Schematic

Absolute Maximum Ratings

Rating	Symbol	Value	Units	
Peak Pulse Power (tp = $8/20\mu s$)	Р _{РК}	200	W	
Peak Pulse Current (tp = $8/20\mu$ s)	I _{PP}	10	А	
ESD per IEC 61000-4-2 (Contact) ⁽¹⁾	V	±25	kV	
ESD per IEC 61000-4-2 (Air) ⁽¹⁾	V _{ESD}	±25	r v	
Operating Temperature	T,	-40 to +125	°C	
Storage Temperature	T _{stg}	-55 to +150	°C	

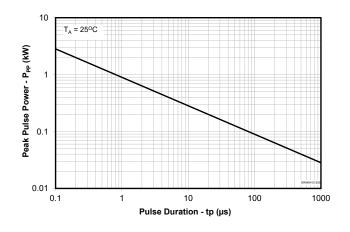
Electrical Characteristics (T=25°C unless otherwise specified)

Parameter	Symbol	Conditions		Min.	Тур.	Max.	Units
Reverse Stand-Off Voltage	V _{RWM}	-40°C to 125°C Pin 1 to Pin 2				3.3	V
Reverse Breakdown Voltage	V _{BR}	I _t = 10uA Pin 1 to Pin 2		6.5	10.2	12	V
Reverse Leakage Current	I _R	V _{RWM} = 3.3V Pin 1 to Pin 2	T = 25°C		0.01	0.050	μA
			T = 125°C		0.03	0.100	μA
Clamping Voltage ⁽²⁾	V _c	$I_{pp} = 10A$, tp = 8/20µs, Pin 1 to Pin 2			18.5	20	V
ESD Clamping Voltage ⁽³⁾	V _c	I _{pp} = 4A, tp = 0.2/100ns (TLP) Pin 1 to Pin 2			9.7		V
ESD Clamping Voltage ⁽³⁾	V _c	I _{PP} = 16A, tp = 0.2/100ns (TLP) Pin 1 to Pin 2			17		V
Dynamic Resistance ^{(3), (4)}	R _{DYN}	tp = 0.2/100ns (TLP) Pin 1 to Pin 2			0.60		Ohms
Junction Capacitance	C,	$V_{R} = 0V, f = 1MHz$ Pin 1 to Pin 2	$T = 25^{\circ}C$		0.25	0.35	pF

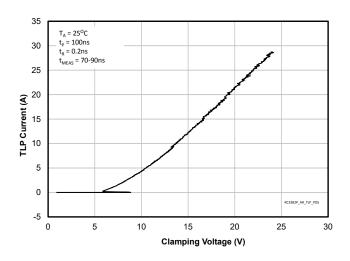
Notes:

(1): ESD Gun return path to Ground Reference Plane (GRP)

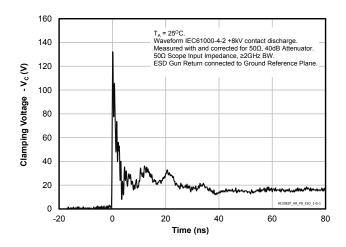
(2): Measured using a $1.2/50\mu$ s voltage, $8/20\mu$ s current combination waveform, $R_s = 2$ Ohms. Clamping is defined as the peak voltage across the device after the device snaps back to a conducting state.

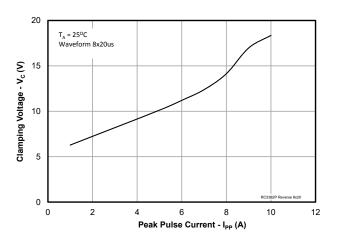

(3): Transmission Line Pulse Test (TLP) Settings: tp = 100ns, tr = 0.2ns, I_{TLP} and V_{TLP} averaging window: $t_1 = 70ns$ to $t_2 = 90ns$.

(4): Dynamic resistance calculated from $I_{TLP} = 4A$ to $I_{TLP} = 16A$

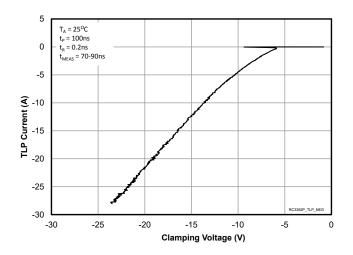

Typical Characteristics

Non-Repetitive Peak Pulse Power vs. Pulse Time

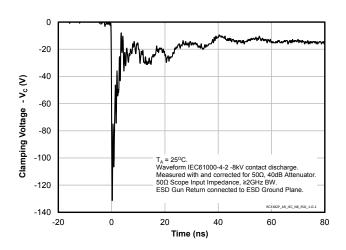

Clamping Voltage vs. Peak Pulse Current (8/20us Pulse)



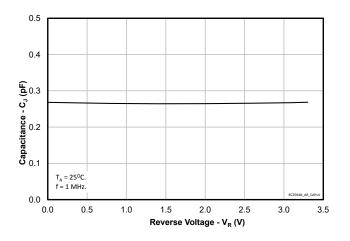
TLP IV Curve (Positive Pulse)

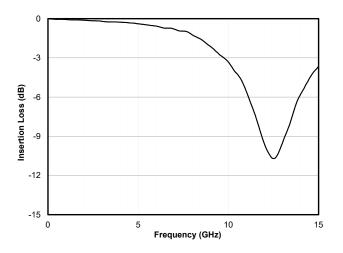


ESD Clamping (+8kV Contact per IEC 61000-4-2)

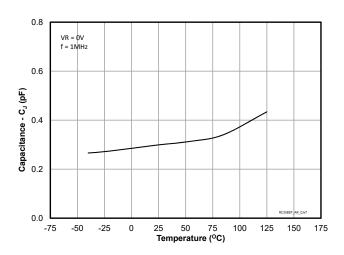


TLP IV Curve (Negative Pulse)


ESD Clamping (-8kV Contact per IEC 61000-4-2)


RClamp3382P Final Datasheet Rev 2.1 4/10/2018

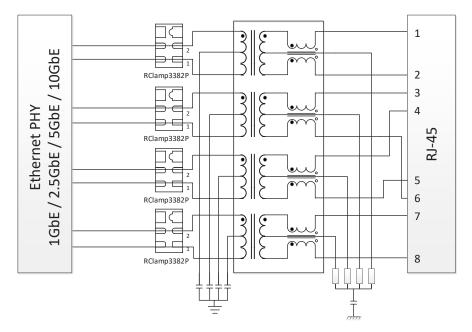
Typical Characteristics (Continued)


Capacitance vs. Reverse Voltage

Insertion Loss - S21

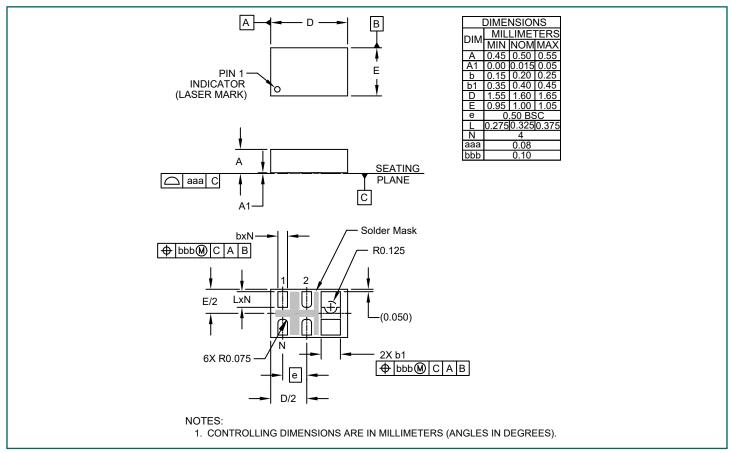
Capacitance vs. Temperature

Application Information


Ethernet Protection

Ethernet ports are exposed to external transient events in the form of ESD, EFT, lightning, and cable discharge events (CDE). Test standards that model these events include IEC 61000-4-2 for ESD, IEC 61000-4-4 for EFT, and IEC 61000-4-5 and GR-1089 for lightning. Any of these events can cause catastrophic damage to the PHY IC.

When designing Ethernet protection, the entire system must be considered. Over-voltage events can be common mode (with respect to ground) or differential (line-to-line). An Ethernet port includes interface magnetics consisting of transformers integrated with common mode chokes. The transformer center taps are connected to ground via an RC network or "Bob Smith" termination. The purpose of this termination is to reduce common mode emissions. The transformer provides common mode isolation to transient events, but no protection for differential surges. During a differential transient event, current will flow through the transformer, charging the windings on the line side. Energy is transferred to the secondary until the surge subsides or the transformer saturates.


A typical protection scheme which utilizes RClamp3382P is shown in Figure 1. Four each RClamp3382P are located on the PHY side of the transformer. Each device will protect one line pair (two lines). Parasitic inductance in the protection path should be minimized by locating RClamp3382P as physically close to the magnetics as possible, and preferably on the same side of the PCB. Reducing parasitic inductance is especially important for suppressing fast rise time transients such as ESD and EFT. Inductance in the path of the protection device increases the peak clamping voltage seen by the protected device (V = L di/dt). For example, 1nH of inductance can increase the peak clamping voltage by 30V for a 30A (8kV) ESD pulse with a 1ns rise time. Differential pairs are routed through pins 1 to 6, and 2 to 5. Pin 3 and 4 are not connected.

Placing the protection on the PHY side of the magnetics is advantageous in that the magnitude and duration of the surge is attenuated by the transformer windings. The amount of attenuation will vary by vendor and configuration of the magnetics. The Ethernet transformer must be able to support the impulse tests without failure. A typical Ethernet transformer can withstand a few hundred amperes (tp=8/20µs) before failure occurs, but this needs to be verified by testing. Alternatively, the protection can be placed on the line side of the transformer. However, the additional protection afforded by the transformer is lost, and the ability of the system to withstand high energy surges is limited to the capability of the protection device.

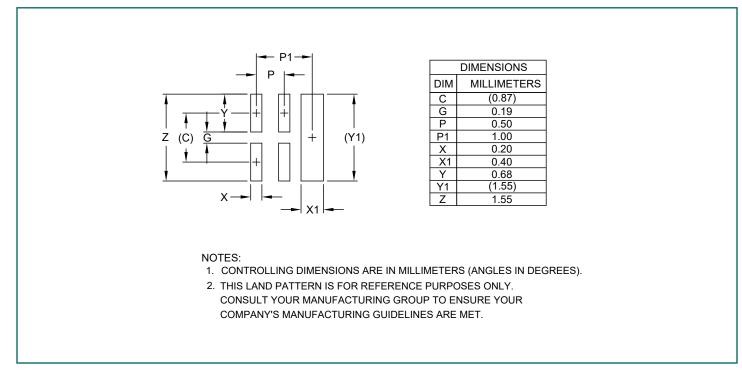
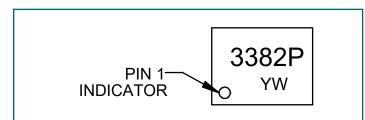
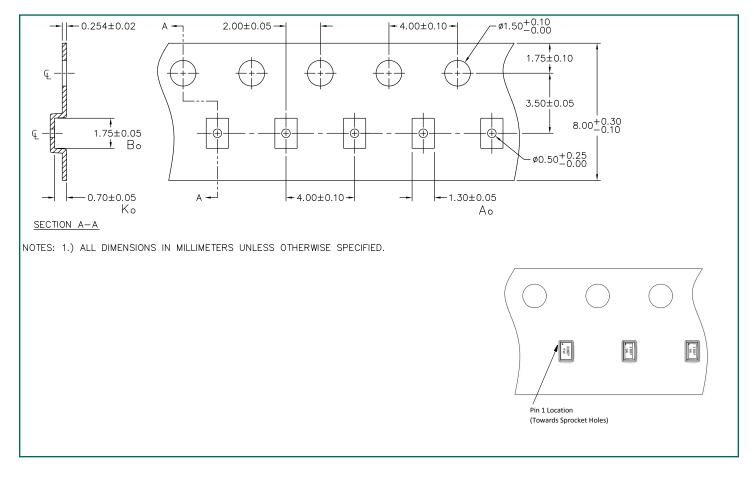


Figure 1 - Ethernet Protection Circuit


Outline Drawing - SGP1610N4

Land Pattern - SGP1610N4



Marking Code

Notes: Dot indicates Pin 1 Location

Tape and Reel Specification

Ordering Information

Part Number	Qty per Reel	Reel Size	Carrier Tape	Pitch			
RClamp3382P.TCT	3000	7 Inch	Plastic	4mm			
RailClamp and RClamp are registered trademarks of Semtech Corporation.							

IMPORTANT NOTICE

Information relating to this product and the application or design described herein is believed to be reliable, however such information is provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein. Semtech reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Semtech warrants performance of its products to the specifications applicable at the time of sale, and all sales are made in accordance with Semtech's standard terms and conditions of sale.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

The Semtech name and logo are registered trademarks of the Semtech Corporation. All other trademarks and trade names mentioned may be marks and names of Semtech or their respective companies. Semtech reserves the right to make changes to, or discontinue any products described in this document without further notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the suitability of its products for any particular purpose. All rights reserved.

© Semtech 2018

Contact Information

Semtech Corporation 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111, Fax: (805) 498-3804 www.semtech.com