

ATMX150RHA

Introduction

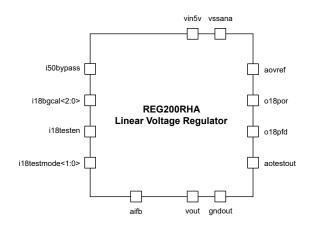
REG200RHA is a radiation-hardened linear voltage regulator including Power-on-Reset (POR) and Power Fail Detector (PFD) capability. It operates between 3V to 5.5V and provides a fixed 1.8V output voltage while sourcing up to 200 mA of load current.

A 470 nF external capacitor has to be connected to the regulator output V_{OUT} to ensure stability and noise rejection. The following table lists the physical parameters of the regulator.

Table 1. Physical Parameters

Parameter	Value
Supply Voltage	3V to 5.5V
Placement	Core (next to periphery)
Height	744.8 μm
Width	481.6
Area	0.359 mm ²

Table of Contents


Intr	oduction1	I
1.	Pin Description	3
2.	Operating Modes Description	1
3.	Bandgap Calibration	5
4.	Specifications	5
5.	Radiation Hardness7	7
6.	Typical Application	3
7.	Testability Requirements)
8.	Testability Information11	
9.	Integration Guidelines	2
	9.1. Placement and General Rules	2
	9.2. Supplies Routing and Decoupling12	2
	9.3. Analog Signals Routing)
	9.4. Routing Constraints	
10.	Revision History14	1
Mic	rochip Information15	
	The Microchip Website15	5
	Product Change Notification Service	5
	Customer Support15	5
	Microchip Devices Code Protection Feature15	5
	Legal Notice15	
	Trademarks	5
	Quality Management System	
	Worldwide Sales and Service	

1. Pin Description

The following figure shows the package diagram of the regulator.

Figure 1-1. Package Diagram

The following table lists the pin details of the package.

Pin Name	I/O	Related Supply	Description
vin5v	I/O	—	Input power supply
vssana	I/O	—	Input ground
i18bgcal<2:0>	I	vout	Internal bandgap voltage reference calibration bits, see Table 3-1
i50bypass	1	vin5v	Enables Bypass mode when set to 1
i18testen	I	vout	Enables Test mode when set to 1
i18testmode<1:0>	I.	vout	Test mode selection bits, see Table 4-1
vout	I/O	_	Regulated voltage output. Used as an input in Bypass mode
gndout	I/O	-	Regulated voltage ground
aifb	I	—	Regulated voltage sense input
aovref	0	-	Bandgap reference voltage output
o18por	0	vout	PoR signal equals to 1 during reset
o18pfd	0	vout	PFD equals to 1 when fail is detected
aotestout	0	_	Output pin in Test mode to get few regulator outputs

Table 1-1. Pinout

2. Operating Modes Description

The voltage regulator can operate in the following modes:

i50bypass	i18testen	Operating Mode
0	0	Normal mode: Regulator can provide full load. PoR and PFD functions are enabled. Bandgap reference voltage is available.
0	1	Test mode: Different voltages are accessible through aotestout pin, depending on i18testmode<1:0> setting. Full load capability is available. POR and PFD functions are disabled, $v(ol8por) = v(ol8pfd) = 0$. Bandgap reference voltage is available.
1	0	Bypass mode: No output regulated voltage, the 1.8V supply voltage is provided by an external source. POR and PFD functions are enabled. Bandgap reference voltage is available.
1	1	Bypass and Test mode: Useful to characterize internal blocks of the regulator, power supplied by vout. POR and PFD functions are disabled. Bandgap reference voltage is available.

Table 2-1. Operating Mode Table

Notes:

- The regulator must be supplied with power through the pin vin5v, even in Bypass mode.
- In Bypass mode, the power ON/OFF rising and falling edges, on the pin vout, induce charging current in the external decoupling capacitor C_L. This current must not be greater than I_{LOAD} max. (C_L and I_{LOAD} values are given in the section 4. Specifications.)

3. Bandgap Calibration

The voltage regulator embeds its own reference voltage. Three calibration bits are available to adjust the reference voltage (V_{REF}) and consequently the output regulated voltage (V_{OUT}). For precision applications, the calibration might be necessary to compensate the process fluctuation during the fabrication.

The dynamic adjustment of the output regulated voltage is not allowed. The calibration bits must be set before the voltage regulator start-up. The typical calibration step is vcal_step = 5 mV.

i18bgcal<2>	i18bgcal<1>	i18bgcal<0>	Reference Voltage
0	0	0	V _{REF} + (3 x vcal_step)
0	0	1	V _{REF} + (1 x vcal_step)
0	1	0	V _{REF} + (1 x vcal_step)
0	1	1	V _{REF}
1	0	0	V _{REF} - (1 x vcal_step)
1	0	1	V _{REF} - (2 x vcal_step)
1	1	0	V _{REF} - (3 x vcal_step)
1	1	1	V _{REF} - (4 x vcal_step)

Table 3-1. Reference Voltage

The calibration is done during the production final test. The relevant settings of i18bgcal<2:0> is stored in the product and used at each start-up.

4. Specifications

The following table lists the specification details over the operating temperature range (Tj = -55 °C to 145 °C), V_{IN} = 3.3V, and CL = 470 nF, unless otherwise noted. The listed typical values are at Tj = 25 °C.

Parameter		Test Condition	Min	Тур	Max	Unit
V _{IN}	Input voltage range	-	3	-	5.5	V
LOAD	Output rated current	—	0	—	200	mA
load_start_up ¹	Maximum load current during start-up	Vin > 3V	_	—	3	mA
CL	External decoupling capacitor	-	446.5	470	493.5	nF
R _{ESR}	Decoupling capacitor ESR	—	—	—	0.5	Ω
RISE	Input voltage rising	From 0V to V _{IN} min.	1e-6	—	1	s
V _{OUT}	Output regulated voltage	—	1.68	1.8	1.95	V
V _{REF}	Internal reference voltage	Tj = 25 °C	—	0.9	—	V
T _{COREF}	Reference temperature coefficient	-	—	121	_	ppm/°C
ΔV _{OUT(ΔVIN)}	Line regulation	$3V \le V_{IN} \le 5.5V$	_	1	_	%
	Transient line regulation	$\Delta V_{IN} / \Delta t = 1 V / \mu s$	_	5	_	%
ΔV _{OUT(ΔILOAD)}	Load regulation	$0 \text{ mA} \le I_{LOAD} \le 200 \text{ mA}$	_	1	_	%
	Transient load regulation	$\Delta I_{LOAD}/\Delta t = 100 \text{ mA}/\mu \text{s}$	—	5	—	%
V _{DO}	Dropout voltage (V _{IN} = V _{OUT} (nom) - 0.1V)	I _{LOAD} = 200 mA	-	-	500	mV
Z _{DO}	Output impedance in dropout	$3V \le V_{IN} \le V_{OUT} + V_{DO}$	_	1	-	Ω
PWR	Ground pins current	$0 \text{ mA} \le I_{LOAD} \le 200 \text{ mA},$ Normal mode	—	-	500	μΑ
FB	aifb pin current	—	—	—	10	μA
PSRR	Power Supply Rejection	F = 100 Hz, I _{LOAD} = 200 mA	40	—	—	dB
	Ratio	F = 10 kHz, I _{LOAD} = 200 mA	20	—	—	
t _{str}	Startup time	—	—	—	1	ms
V _{POR}	PoR threshold	—	—	1.60	—	V
t _{POR}	PoR delay time	-	—	—	500	μs
V _{PFDF}	PFD falling threshold	—	_	1.65	_	V
V _{PFDR}	PFD rising threshold	-	_	1.70	_	V

Note:

1. When o18por = 1, the regulator is in the start-up condition, meaning the POR threshold has not been reached.

Note: The output regulated voltage is $V_{OUT} = 1.8V$. It can vary between 1.68V and 1.95V because of IR drops, undershoots, and overshoots coming from the current consumption on the regulator output pin vout.

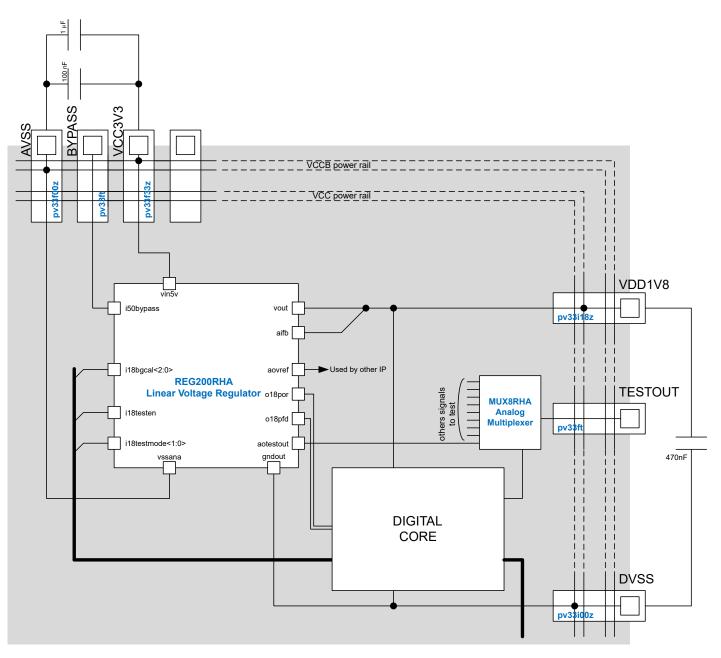
The minimum and maximum values of V_{OUT} have taken already into account the minimum and maximum variation of V_{REF}, T_{COREF}, $\Delta V_{OUT(\Delta VIN)}$, and $\Delta V_{OUT(\Delta ILOAD)}$. Typical values are given for information purpose only.

5. Radiation Hardness

The following table lists the radiation tolerance related specifications.

Parameter	Conditions	Range
TID	ESCC 22900 and MIL-STD-883 TM 1019 - RT Input supply voltage V _{IN} max and Dose Rate < 360 rad/h	100 krad(Si) RHA (tested 150 krad(Si))
SEL	ESCC 25100 and JESD57A Input supply voltage V _{IN} max and Tj = 125 °C	> 60 MeV.cm ² /mg
SET/SEU	Input supply voltage V_{IN} min and Tj = 25 °C	> 60 MeV.cm ² /mg

Table 5-1. Radiation Tolerance Specification


6. Typical Application

The following figures describe a 3.3V circuit with a 1.8V digital core power supplied by the REG200RHA. The voltages on the regulator pins (vin5v and i50bypass) must not exceed the I/O buffer power supply voltage (in this case, 3.3V).

The regulator output pin (vout) is connected to the VCC power rail and to the circuit power supply grid.

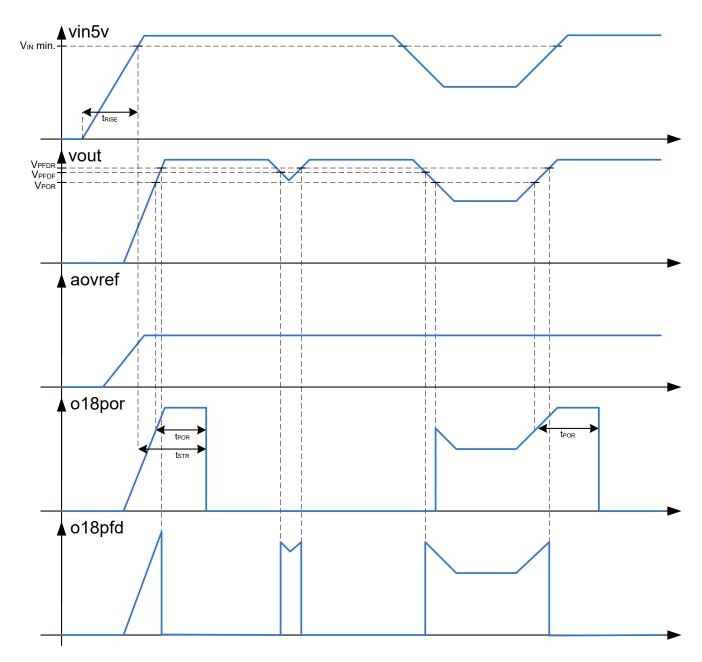

The external decoupling capacitors have to be connected to the power supply buffers of the regulator.

Figure 6-1. Typical Application Scheme

Figure 6-2. Typical Timing Characteristics

7. Testability Requirements

Unless otherwise specified at the DSR, the V_{OUT} parameter must be measured when the asic is in active and non-active mode and at the minmum and maximum values on the vin5v pin.

For this test, the pin oatestout must be accessible through a primary I/O.

8. Testability Information

The regulator have access to a test pin, aotestout, which allows to make measurement to characterize the regulator performance as listed in the following table.

 Table 8-1.
 Test Mode Output Selection

i18testmode<1>	i18testmode<0>	Information Available on aotestout
0	0	Internal bandgap reference voltage
0	1	Internal POR signal
1	0	Internal Power Fail Detector signal
1	1	Regulated voltage feedback signal

When i18testmode<1:0> = (0, 0), the internal bandgap reference voltage is available on aotestout. The measurement must be done with high impedance probe (active probe recommended).

When i18testmode<1:0> = (0, 1), the internal POR signal is available on aotestout while the POR pin, o18por, is forced to 0. Therefore, the product can run normally while the POR voltage is measured.

When i18testmode<1:0> = (1, 0), the internal PFD signal is available on aotestout while the PFD pin, o18pfd, is forced to 0. Therefore, the product can run normally while PFD voltage is measured.

When i18testmode<1:0> = (1, 1), the regulated voltage feedback signal is available on aotestout. Therefore, the regulated voltage coming from the core is accessible while a current sinks through the pin V_{OUT} of the regulator.

9. Integration Guidelines

The following sections describe the various integration guidelines.

9.1 Placement and General Rules

This cell is very sensitive to electrical noise. Therefore, it must be placed in the quietest part of the circuit. It is preferably placed close to the I/O buffers that are connected to vin5v and vssana, in order to reduce the resistivity of the power lines.

The wires used to connect the voltage regulator must be as wide as their corresponding pins.

Note: Never place several voltage regulators in parallel to increase the current capability.

9.2 Supplies Routing and Decoupling

The power supply and ground pins (vin5v and vssana) as well as the regulated output and the created ground pins (vout and gndout) must be star-routed to their corresponding I/O buffers with less than 0.1 Ω of parasitic resistance.

External decoupling capacitors must be connected to ensure performance. A 100 nF capacitor in parallel with a 1 μ F ceramic capacitor (X7R) is needed between the pins, vin5v and vssana. A 470 nF ceramic capacitor (X7R) is needed between the pins, vout and gndout. The ESR value must be kept within the boundary defined in Table 4-1.

All the decoupling capacitors must be as close as possible to the package.

All the decoupling capacitors must connect to a large area low impedance ground plane through or short trace to minimize inductance.

9.3 Analog Signals Routing

All the analog signals must be routed to have less than 1 Ω parasitic resistance, including associated I/O cell for core blocks.

All the analog signals must be routed to have less than 1 pF parasitic capacitance, not including associated I/O cell for core blocks.

The signal routed to the pin, aifb, is the regulated voltage feedback or FB signal. All the digital or the clock signals must be routed with 1 μ m spacing away from the FB signal. In case of crossing the digital or the clock signals, a shield must be added, connected to the analog ground line, between the noisy net and the FB signal.

The output pin, aovref, provides a reference voltage. All the digital or the clock signals must be routed with 1 μ m spacing away from the signal connected to aovref, V_{REF} signal. In case of crossing the digital or the clock signals, a shield must be added, connected to the analog ground line, between the noisy net and the V_{REF} signal.

In case of any of this condition is not met, contact the design group to investigate any potential performance impact.

9.4 Routing Constraints

The following table lists the routing constratints.

Table 9-1. Routing Constraints

Pin Name	Signal Type	Related Power Supply	Max DC Current Flowing (mA)	Max Allowed Routing Resistance (Ω)	Max Allowed Capacitance to Ground (pF)	Other constraints
vin5v	Supply	—	200	0.1	—	Star routed to power supply input
vssana	Ground	-	1	0.1	-	Star routed to power supply input
i18bgcal<2:0>	Digital	vout	—	—	_	-
i50bypass	Digital	vin5v	—	—	—	—
i18testen	Digital	vout	—	—	_	_
i18testmode<1:0>	Digital	vout	_	—	—	_
vout	Supply	—	200	0.1	_	Star routed to power supply input
gndout	Ground	-	1	0.1	-	Star routed to power supply input
aifb	Analog		0.01	10	0.1	No crossing with other signal, shielding to vssana must be inserted in that case. 1 um minimum spacing to other signal trace.
aovref	Analog	_	_		1	No crossing with other signal, shielding to vssana must be inserted in that case. 1 um minimum spacing to other signal trace.
o18por	Digital	vout	_	_	_	_
o18pfd	Digital	vout	-	_	_	_
aotestout	Analog	_	_	_	_	_

10. Revision History

Revision	Date	Description
В	09/2023	Added a new ${\sf I}_{\sf load_start_up}$ parameter in the Electrical Specification table. See Table 4-1.
A	07/2020	 The following is a summary of changes in revision A of this document. The template was updated. The document number was updated from 41068 to DS60001639. Bandgap table correction The "testability" paragraph was replaced with "testability requirements". For more information, see 7. Testability Requirements.

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure

that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/ client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2023, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-3181-1

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

MERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
orporate Office	Australia - Sydney	India - Bangalore	Austria - Wels
355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
andler, AZ 85224-6199	China - Beijing	India - New Delhi	Fax: 43-7242-2244-393
l: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
ax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
chnical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
ww.microchip.com/support	China - Chongqing	Japan - Osaka	Finland - Espoo
eb Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
ww.microchip.com	China - Dongguan	Japan - Tokyo	France - Paris
lanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
uluth, GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
l: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
nx: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
ustin, TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
l: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
oston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
estborough, MA	China - Nanjing	Malaysia - Penang	Tel: 49-7131-72400
el: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
ax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
hicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
asca, IL	China - Shanghai	Singapore	Tel: 49-89-627-144-0
l: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
ax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
allas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
ddison, TX	China - Shenzhen	Taiwan - Kaohsiung	Israel - Ra'anana
el: 972-818-7423	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 972-9-744-7705
ax: 972-818-2924	China - Suzhou	Taiwan - Taipei	Italy - Milan
etroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
ovi, MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
l: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-694-1351	Italy - Padova
ouston, TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 39-049-7625286
l: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drunen
dianapolis	China - Xiamen		Tel: 31-416-690399
oblesville, IN	Tel: 86-592-2388138		Fax: 31-416-690340
l: 317-773-8323	China - Zhuhai		Norway - Trondheim
ax: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
l: 317-536-2380			Poland - Warsaw
os Angeles			Tel: 48-22-3325737
ssion Viejo, CA			Romania - Bucharest
: 949-462-9523			Tel: 40-21-407-87-50
ix: 949-462-9608			Spain - Madrid
l: 951-273-7800			Tel: 34-91-708-08-90
aleigh, NC			Fax: 34-91-708-08-91
l: 919-844-7510			Sweden - Gothenberg
ew York, NY			Tel: 46-31-704-60-40
l: 631-435-6000			Sweden - Stockholm
an Jose, CA			Tel: 46-8-5090-4654
el: 408-735-9110			UK - Wokingham
el: 408-436-4270			Tel: 44-118-921-5800
anada - Toronto			Fax: 44-118-921-5820
l: 905-695-1980			