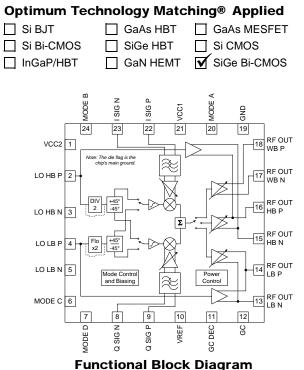
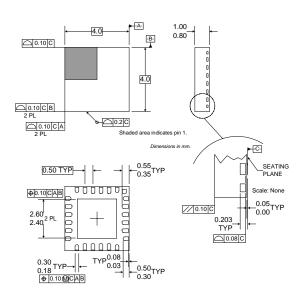


LOW NOISE, MULTI-MODE, QUAD-BAND, QUADRATURE MODULATOR AND PA DRIVER

RoHS Compliant & Pb-Free Product


Typical Applications

- EDGE/GSM (GSM850/900) Handsets
- EDGE/GSM (DCS/PCS) Handsets
- W-CDMA Handsets/Data Cards


Product Description

The RF2705 is a low noise, multi-mode, guad-band direct I/Q to RF modulator and PA driver designed for handset applications where multiple modes of operation are required. Frequency doublers, dividers and LO buffers are included to support a variety of LO generation options. Dynamic power control is supported through a single analog input giving 90dB of power control range for the W-CDMA mode and 40dB of power control in the other two modes. Three sets of RF outputs are provided: high band and low band low noise EDGE/GMSK outputs, as well as one wideband W-CDMA output. The device is designed for 2.7V to 3.3V operation, and is assembled in a plastic, 24-pin, 4mmx4mm QFN.

Optimum Technology Matching® Applied

 W-CDMA/GSM/EDGE Multimode Handsets and Data Cards

Package Style: QFN, 24-Pin, 4x4

Features

- W-CDMA High/Mid/Low Power Modes
- Quad-Band Direct Quadrature Modulator
- Variable Gain PA Drivers
- GMSK Bypass Amplifiers
- LO Frequency Doubler and Divider
- Baseband Filtering

Ordering Information

RF2705G	Low Noise, Multi-Mo	Low Noise, Multi-Mode, Quad-Band, Quadrature					
	Modulator and PA D	Iriver					
RF2705GPCBA	-41XFully Assembled E	Evaluation Board					
		T (000) 00 (1000					
RF Micro Device	s, Inc.	Tel (336) 664 1233					
7628 Thorndike I	Road	Fax (336) 664 0454					
Greensboro, NC	27409, USA	http://www.rfmd.com					

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to 3.6	V
Storage Temperature	-40 to +150	°C
Operating Ambient Temperature	-40 to +85	°C
Input Voltage, any pin	-0.5 to +3.6	V
Input Power, any pin	+5	dBm

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. RoHS marking based on EUDirective2002/95/EC (at time of this printing). However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Min. Typ. Max. Output Performance with Modulated Baseband Inputs Low Band EDGE 8PSK Mode (GSM850/GSM900) Maximum Other Power Konde (SM850/GSM900) Maximum Outprower with BYSK Modulated Signal* Vacc=2.7V, T=+25°C Maximum VGC Gain Range 0 +2.5 dBm While meeting spectral mask While meeting spectral mask Out-of-Band Emission Spectrum Emission Mask* 42 BB dBm While meeting spectral mask Uifference between output power at Gain Range 200kHz -36 TBD dBc 30kHz BW 250kHz -36 TBD dBc 30kHz BW 200kHz -36 TBD dBc 30kHz BW 200kHz -73 dBc 30kHz BW 200kHz -73 dBc 100kHz BW 200kHz -75 dBc 100kHz BW 200kHz -75 dBc 100k	Paramatar		Specificatio	n	Unit	Condition
Low Band EDGE 8PSK Mode (GSM850/GSM900) Mode=Low Band F _{Lock} (see Control Logic Truth Table for Mode Control Settings) Viculated Signal* Maximum Output Power with 8PSK Modulated Signal* Value Maximum VGC 0 +2.5 -37 dBm While meeting spectral mask Maximum VGC 0 +2.5 -37 dBm While meeting spectral mask While meeting spectral mask Maximum VGC 0 +2.5 -37 dBm While meeting spectral mask Spectrum Emission 42 -36 TBD dBc 30kHz BW Spectrum Emission Mask* -36 TBD dBc 30kHz BW 30kHz BW 200kHz -36 TBD dBc 30kHz BW 30kHz BW 300kHz to 600kHz -73 dBc 30kHz BW 30kHz BW 300kHz to 6000kHz -73 dBc 100kHz BW 30kHz BW 200kHz -75 dBc 100kHz BW 30kHz BW 200kHz to 6000kHz -75 dBc 100kHz BW 30kHz BW 20100kHz to 3000k	Parameter	Min.	Тур.	Max.	Unit	Condition
Mode=Low Band FLox1 (see Control Logic Truth Table for Mode Control Settings) Output Power Maximum Output Power with BPSK Modulated Signal* Maximum VGC Gain Range 0 +2.5 -37 dBm dBm dBm dB V _{CC} =2.7V, T=+25*C Maximum VGC Gain Range 0 +2.5 -38 dBm dB While meeting spectral mask While meeting spectral mask Difference between output power at GB Out-of-Band Emission Spectrum Emission Mask* Frequency Spacing -36 TBD dBc 30kHz BW 200kHz -36 TBD dBc 30kHz BW 200kHz -67 TBD dBc 30kHz BW 200kHz 600kHz to 1800kHz -73 dBc 30kHz BW 3000kHz to 000kHz -73 dBc 100kHz BW 2000kHz -73 dBc 100kHz BW 3000kHz to 6000kHz -75 dBc 100kHz BW 2000kHz -156 dBc 100kHz BW 2010put Noise At Fg±20Mz* -156 dBm GC=2.0V, IQ=1.2V_{P,P} 8PSK <	Output Performance with	n Modula	ted Basebar	nd Inputs		
Output Power Output Power with BPSK Modulated Signal* Maximum VGC Gain Range 0 ± 2.5 -39 -37 dBm dBm dBm dB $V_{CC}=2.7V, T=\pm 25^{\circ}C$ Maximum VGC Gain Range 0 ± 2.5 -37 dBm dB While meeting spectral mask While meeting spectral mask Difference between output power at GC=2.0V and GC=0.2V. Out-of-Band Emission Spectrum Emission Mask* Frequency Spacing -36 TBD dBc $30 kHz BW$ 250kHz -36 TBD dBc $30 kHz BW$ $30 kHz BW$ 250kHz -43 TBD dBc $30 kHz BW$ $30 kHz BW$ 3000kHz to 1000kHz -73 dBc $30 kHz BW$ $30 kHz BW$ 3000kHz to 6000kHz -73 dBc $100 kHz BW$ 3000kHz to 6000kHz -73 dBc $100 kHz BW$ 3000kHz to 6000kHz -75 dBc $100 kHz BW$ 3000kHz to 6000kHz -75 dBc $100 kHz BW$ 26000kHz -75 dBc $100 kHz BW$ 00tput Noise At $F_{C} \pm 20 MHz^*$ -156 dBm $GC=2.0V, IQ=1.2V_{P,P}$ BPSK <tr< td=""><td>Low Band EDGE 8PSK M</td><td>lode (GS</td><td>M850/GSM9</td><td>00)</td><td></td><td></td></tr<>	Low Band EDGE 8PSK M	lode (GS	M850/GSM9	00)		
Maximum Output Power with BPSK Modulated Signal' Maximum VGC Gain Range 42 0 0 0 0 +2.5 -37 dB dB dB dB dB dB dB dB dB dB	Mode=Low Band F _{LO} x1 (see Con	trol Logic Tr	uth Table for Mo	de Control S	ettings)	
8PSK Modulated Signal* Maximum VGC Gain Range 0 +2.5 -37 dBm While meeting spectral mask While meeting spectral mask Out-of-Band Emission Spectrum Emission Mask* Frequency Spacing 200kHz -36 TBD dBc 30kHz BW 200kHz -36 TBD dBc 30kHz BW 30kHz BW 200kHz -43 TBD dBc 30kHz BW 400kHz -67 TBD dBc 30kHz BW 600kHz to 1800kHz -73 dBc 100kHz BW 3000kHz to 3000kHz -73 dBc 100kHz BW 2600kHz -73 dBc 100kHz BW 26000kHz -73 dBc 100kHz BW 26000kHz -73 dBc 100kHz BW 26000kHz -73 dBc 00kHz BW Peak* 4 9 % Output Noise At F _C ±20MHz* -156 dBc/Hz GC=2.0V, IQ=1.2V _{P.P} 8PSK General Conditions Local Oscillator -156 dBm GC=2.0V, IQ=1.2V _{P.P} 8PSK General Conditions Local Oscillator 824 915 MHz IQ Level 1.2 <td>Output Power</td> <td></td> <td></td> <td></td> <td></td> <td>V_{CC}=2.7V, T=+25°C</td>	Output Power					V _{CC} =2.7V, T=+25°C
Minimum VGC Gain Range -39 42 -37 42 dBm dB While meeting spectral mask Difference between output power at GC=2.0V and GC=0.2V. Out-of-Band Emission Spectrum Emission Mask* Frequency Spacing 200KHz -36 TBD dBc 30KHz BW 200KHz -43 TBD dBc 30KHz BW 30KHz BW 250KHz -43 TBD dBc 30KHz BW 600KHz to 1800KHz -67 TBD dBc 30KHz BW 600KHz to 1800KHz -73 dBc 100KHz BW 3000KHz to 6000KHz -73 dBc 100KHz BW 3000KHz to 6000KHz -75 dBc 100KHz BW 2000KHz -75 -40 -34 dB Pak* 4 9 % GC=2.0V, IQ=1.2Vp.p. 8PSK GC=2.0V I I AV	Maximum Output Power with 8PSK Modulated Signal*					
Gain Range 42 dB Difference between output power at GC=2.0V and GC=0.2V. Out-of-Band Emission Spectrum Emission Mask* Frequency Spacing 200KHz -36 TBD dBc 30KHz BW 200KHz -43 TBD dBc 30KHz BW 30KHz BW 250KHz -43 TBD dBc 30KHz BW 400KHz -67 TBD dBc 30KHz BW 600KHz to 1800KHz -73 dBc 100KHz BW 3000KHz to 3000KHz -73 dBc 100KHz BW 2000KHz -73 dBc 100KHz BW 2000KHz -75 dBc 100KHz BW 2000KHz -40 -34 dB Peak* -40 -34 <td></td> <td>0</td> <td>-</td> <td></td> <td>-</td> <td></td>		0	-		-	
Out-of-Band Emission Spectrum Emission Mask* Frequency Spacing GC=2.0V and GC=0.2V. 200kHz -36 TBD dBc 30kHz BW 200kHz -43 TBD dBc 30kHz BW 200kHz -67 TBD dBc 30kHz BW 400kHz -67 TBD dBc 30kHz BW 3000kHz to 1800kHz -73 dBc 100kHz BW 3000kHz -73 dBc 100kHz BW 3000kHz -73 dBc 100kHz BW 3000kHz -75 dBc 100kHz BW 26000kHz -75 dBc 100kHz BW 200kHz -40 -34 dBc 100kHz BW 200kHz 4 9 % 0 Output Noise - - 4 9 6 At Fotsoite at: Maximum Gain				-37		
Spectrum Emission Mask* Frequency Spacing200kHz-36TBDdBc30kHz BW250kHz-43TBDdBc30kHz BW400kHz-67TBDdBc30kHz BW600kHz to 1800kHz-73dBc30kHz BW1800kHz to 3000kHz-73dBc100kHz BW3000kHz to 6000kHz-73dBc100kHz BW3000kHz to 6000kHz-73dBc100kHz BW3000kHz to 6000kHz-73dBc100kHz BW26000kHz-75dBc100kHz BWSmorth23%Output Noise-40-34dBPeak*49%Output Noise-156dBc/HzGC=2.0V, IQ=1.2V _{P-P} 8PSKRelative Noise at: Maximum Gain-156dBmGC=2.0V, IQ=0V _{P-P} Absolute Noise at: Maximum Gain-156dBmGC=2.0V, IQ=0V _{P-P} , 8PSKCeneral Conditions Local Oscillator824915MHzIQ Baseband Inputs824915MHzIQ Baseband Inputs12.2VVIQ Common Mode1.2VInput IQ signal driven differentially and in quadrature.IQ Common Mode1.2VVIQ Lovel1.2VInput IQ signal driven differentially and in quadrature.	Gain Range		42		dB	
Frequency Spacing-36TBDdBc30kHz BW200kHz-36TBDdBc30kHz BW200kHz-67TBDdBc30kHz BW400kHz to 1800kHz-73dBc30kHz BW1800kHz to 3000kHz-73dBc100kHz BW300kHz to 6000kHz-73dBc100kHz BW26000kHz-75dBc100kHz BWStoopkHz-75dBc100kHz BWMS*23%Origin Offset*-40-34dBPeak*49%Output Noise At F _C ±20MHz*-156dBc/HzGC=2.0V, IQ=1.2V _{P-P} 8PSKGeneral Conditions Local Oscillator-156dBmGC=2.0V, IQ=1.2V _{P-P} 8PSKLocal Oscillator824915MHzIQ Baseband Inputs824915MHzIQ Common Mode1.2VInput IQ signal driven differentially and in quadrature.IQ Common Mode1.2VVIQ Common Mode1.2VIQ Common Mode1.2VIQ Common Mode1.2VIQ Common Mode0.71.0IQ Common Mode1.2VIQ Common Mode1.2VIQ Common Mode1.2VIN the Bandwidth0.71.0IN the Bandwidth0.71.0	Out-of-Band Emission					
200kHz 250kHz -36 -43 TBD TBD dBc dBc 30kHz BW 30kHz BW 400kHz -67 TBD dBc 30kHz BW 600kHz to 1800kHz -73 dBc 30kHz BW 1800kHz to 3000kHz -73 dBc 100kHz BW 3000kHz to 6000kHz -73 dBc 100kHz BW 26000kHz -73 dBc 100kHz BW 26000kHz -73 dBc 100kHz BW 26000kHz -75 dBc 100kHz BW 2600kHz 2 3 % GC=2.0V, IQ=1.2Vp.p 8PSK Gereat -156 dBm GC=2.0V, IQ=0Vp.p GC=2.0V, IQ=0Vp.p All Gain Settings -154 dBm IQ=1.2Vp.p 8PSK General Conditions </td <td>Spectrum Emission Mask*</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Spectrum Emission Mask*					
250kHz 400kHz -43 TBD dBc 30kHz BW 400kHz -67 TBD dBc 30kHz BW 600kHz to 1800kHz -73 dBc 30kHz BW 1800kHz to 3000kHz -73 dBc 100kHz BW 3000kHz to 6000kHz -73 dBc 100kHz BW 2600kHz -75 -40 -34 dBc Maximum Gain -156 dBc/Hz GC=2.0V, IQ=1.2V _{P.P} 8PSK Gereal Conditions -156 dBm IQ=2.0V to 1.4V Absolute Noise at: -156 dBm IQ=1.2V _{P.P} 8PSK General Conditions -154 dBm IQ=1.2V _{P.P} 8PSK Local Oscillator -154 dBm IQ=1.2V _{P.P} 8PSK Local Oscillator -0.0 -3.0 dBm <td>Frequency Spacing</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Frequency Spacing					
400kHz -67 TBD dBc 30kHz BW 600kHz to 1800kHz -73 dBc 30kHz BW 3000kHz to 6000kHz -73 dBc 100kHz BW 3000kHz to 6000kHz -73 dBc 100kHz BW ≥6000kHz -75 dBc 100kHz BW ≥6000kHz -75 dBc 100kHz BW Error Vector Magnitude -75 dBc 100kHz BW Crigin Offset* -40 -34 dBc 100kHz BW Peak* 4 9 % 9 0 Output Noise At F _C ±20MHz* -40 -34 dBc GC=2.0V, IQ=1.2Vp.p 8PSK Maximum Gain -156 dBc/Hz GC=2.0V, IQ=1.2Vp.p 8PSK Maximum Gain -156 dBm IQ=1.2Vp.p 8PSK General Conditions -154 dBm IQ=1.2Vp.p 8PSK Local Oscillator -154 dBm IQ=1.2Vp.p 8PSK IQ bupt Frequency 824 915 MHz IQ Lovel -6.0 0.0 +3.0	200kHz		-36	TBD	dBc	30kHz BW
600kHz to 1800kHz -73 dBc 30kHz BW 1800kHz to 3000kHz -73 dBc 100kHz BW 3000kHz to 6000kHz -73 dBc 100kHz BW ≥6000kHz -75 dBc 100kHz BW ≥6000kHz -75 dBc 100kHz BW Error Vector Magnitude 2 3 % RMS* 2 3 % Origin Offset* -40 -34 dB Peak* 4 9 % Output Noise -156 dBc/Hz GC=2.0V, IQ=1.2Vp.p 8PSK Maximum Gain -156 dBc/Hz GC=2.0V, IQ=1.2Vp.p 8PSK Absolute Noise at: -156 dBc/Hz GC=2.0V, IQ=1.2Vp.p 8PSK General Conditions -156 dBm IQ=1.2Vp.p 8PSK Local Oscillator -154 dBm IQ=1.2Vp.p 8PSK Local Oscillator -154 dBm IQ=1.2Vp.p 8PSK Local Oscillator -154 BBm 8PSK IQ Baseband Inputs IQ Level 1.2	250kHz		-43	TBD	dBc	30kHz BW
1800kHz to 3000kHz 3000kHz to 6000kHz-73 -73dBc dBc100kHz BW 100kHz BW $\geq 6000kHz$ -75dBc dBc100kHz BWError Vector Magnitude RMS*2 -753%RMS*2 -40-34 -34dBPeak*4 99%Output Noise At F _C ±20MHz*-156 -152dBc/Hz dBc/HzGC=2.0V, IQ=1.2V _{P-P} 8PSK GC=2.0V to 1.4VRelative Noise at: Maximum Gain-156 -152dBm dBmGC=2.0V, IQ=1.2V _{P-P} 8PSK GC=2.0V to 1.4VGeneral Conditions Local Oscillator IQ Baseband Inputs824 -12915 -134MHz -130IQ Baseband Inputs1.2 IQ Level1.2 -1.2V v -NHz8PSK -120 -130IQ Common Mode Input Bandwidth0.7 -1.01.0WHz	400kHz		-67	TBD	dBc	30kHz BW
3000kHz to 6000kHz -73 dBc 100kHz BW Error Vector Magnitude RMS* 2 3 % Origin Offset* -40 -34 dB Peak* 4 9 % Output Noise At F _C ±20MHz* -156 dBc/Hz GC=2.0V, IQ=1.2V _{P-P} 8PSK Ge=2.0V, IQ=1.2V _{P-P} 8PSK -152 dBm GC=2.0V, IQ=0V _{P-P} Absolute Noise at: Maximum Gain -156 dBm GC=2.0V, IQ=0V _{P-P} All Gain Settings -154 dBm IQ=1.2V _{P-P} 8PSK General Conditions Local Oscillator 824 915 MHz IQ Baseband Inputs 6.0 0.0 +3.0 dBm IQ Common Mode Input Bandwidth 0.7 1.0 WHz V	600kHz to 1800kHz		-73		dBc	30kHz BW
≥6000kHz -75 dBc 100kHz BW Error Vector Magnitude RMS* 2 3 % RMS* 2 3 % Origin Offset* -40 -34 dB Peak* 4 9 % Output Noise At F _C ±20MHz* 4 9 % Relative Noise at: Maximum Gain -156 dBc/Hz GC=2.0V, IQ=1.2V _{P-P} 8PSK Absolute Noise at: Maximum Gain -156 dBr/Hz GC=2.0V to 1.4V Absolute Noise at: Maximum Gain -156 dBm GC=2.0V, IQ=0V _{P-P} All Gain Settings -154 dBm IQ=1.2V _{P-P} 8PSK General Conditions Local Oscillator LO LB Input Frequency RF LB Output Frequency Input Power 824 915 MHz IQ Baseband Inputs 1.2 V V P-P IQ Common Mode Input Bandwidth 0.7 1.0 MHz 8PSK	1800kHz to 3000kHz		-73		dBc	100kHz BW
Error Vector Magnitude RMS* Origin Offset* 2 3 % Origin Offset* -40 -34 dB Peak* 4 9 % Output Noise Peak* 4 9 % Output Noise Peak* 4 9 % Output Noise At F _C ±20MHz* Relative Noise at: Maximum Gain All Gain Settings -156 dBc/Hz GC=2.0V, IQ=1.2V _{P-P} 8PSK General Conditions Local Oscillator LO LB Input Frequency RF LB Output Frequency IQ Baseband Inputs 824 915 MHz IQ Common Mode Input Bandwidth 1.2 V NHz 8PSK			-			100kHz BW
RMS* Origin Offset* Peak* 2 3 % -40 3 % dB Output Noise Peak* 4 9 % Output Noise Peak* 4 9 % Output Noise At F _C ±20MHz* Relative Noise at: Maximum Gain -156 dBc/Hz GC=2.0V, IQ=1.2V _{P-P} 8PSK Maximum Gain All Gain Settings -156 dBc/Hz GC=2.0V, IQ=0V _{P-P} 8PSK General Conditions Local Oscillator -156 dBm IQ=1.2V _{P-P} 8PSK General Conditions Local Oscillator 824 915 MHz 915 MHz MHz RF LB Output Frequency 824 824 915 MHz 915 MHz MIz 8PSK IQ Level 1.2 V V V P.P Input IQ signal driven differentially and in quadrature.			-75		dBc	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•					8PSK Modulation
Peak*49%Output Noise At F _C ±20MHz* Maximum Gain	RMS*		2	3		
Output Noise At F _C ±20MHz* Relative Noise at: Maximum Gain -156 dBc/Hz GC=2.0V, IQ=1.2V _{P-P} 8PSK Absolute Noise at: Maximum Gain -156 dBc/Hz GC=2.0V, IQ=1.2V _{P-P} 8PSK Absolute Noise at: Maximum Gain -156 dBm GC=2.0V, IQ=0V _{P-P} All Gain Settings -154 dBm IQ=1.2V _{P-P} 8PSK General Conditions dBm IQ=1.2V _{P-P} 8PSK Local Oscillator 824 915 MHz Input Frequency 824 915 MHz IQ Baseband Inputs 1.2 V _{P-P} Numerator IQ Common Mode 1.2 V Numerator IQ Common Mode 1.2 V NHz	•		-	-	-	
At F _C ±20MHZ* Relative Noise at: Maximum Gain -156 Maximum Gain -152 Absolute Noise at: Maximum Gain -156 All Gain Settings Local Oscillator LO LB Input Frequency RF LB Output Frequency RF LB Output Frequency Input Power IQ Level IQ Level IQ Level IQ Common Mode Input Bandwidth 0.7 1.0 MHZ MHZ MHZ MHZ MHZ MHZ MHZ MHZ			4	9	%	
Relative Noise at: Maximum Gain-156dBc/HzGC=2.0V, IQ=1.2V _{P-P} 8PSK GC=2.0V to 1.4VAbsolute Noise at: Maximum Gain-152dBc/HzGC=2.0V, IQ=0V_P.P GC=2.0V, IQ=0V_P.PAll Gain Settings-154dBmGC=2.0V, IQ=0V_P.PAll Gain Settings-154dBmIQ=1.2V_P.P 8PSKGeneral Conditions Local Oscillator I D LB Input Frequency Input Power824915MHzIQ Baseband Inputs824915MHzIQ Level1.2V8PSKIQ Common Mode Input Bandwidth1.2VIQ Common Mode Input Bandwidth1.2V <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>	•					
Maximum Gain Absolute Noise at: Maximum Gain All Gain Settings-156 -152dBc/HzGC=2.0V, IQ=1.2V _{P-P} &PSK GC=2.0V to 1.4VAbsolute Noise at: Maximum Gain All Gain Settings-156 -154dBmGC=2.0V, IQ=0V _{P-P} dBmGeneral Conditions Local Oscillator LO LB Input Frequency Input Power IQ Level824 -824915 -915MHz MHz dBmIQ Baseband Inputs IQ Level1.2V -6.0V -1.2NHz -1.2IQ Common Mode Input Bandwidth1.2V MHzV MHz	°					
Absolute Noise at: Maximum Gain-152dBc/HzGC=2.0V to 1.4VAbsolute Noise at: Maximum Gain-156dBmGC=2.0V, IQ=0V_{P-P}All Gain Settings-154dBmIQ=1.2V_{P-P} & BPSKGeneral Conditions Local Oscillator LO LB Input Frequency824915MHzInput Power6.00.0+3.0dBmIQ Baseband Inputs1.2VVIQ Common Mode Input Bandwidth1.2VMQ Common Mode Input Bandwidth1.2VMaseband Input Bandwidth0.71.0MHz			156		dDo/Uz	
Absolute Noise at: Maximum Gain-156dBmGC=2.0V, IQ=0V_{P-P}All Gain Settings-154dBmIQ=1.2V_{P-P} & BPSKGeneral Conditions Local Oscillator LO LB Input Frequency Input Power824915MHzRF LB Output Frequency Input Power824915MHzInput Power IQ Level-6.00.0+3.0dBmIQ Common Mode Input Bandwidth1.2VNHzInput Bandwidth0.71.0MHz	Maximum Gain					
Maximum Gain All Gain Settings-156dBmGC=2.0V, IQ=0V_{P.P}General Conditions Local Oscillator LO LB Input Frequency Input Power824915MHzRF LB Output Frequency Input Power824915MHzIQ Baseband Inputs-6.00.0+3.0dBmIQ Common Mode Input Bandwidth1.2VNHzInput Bandwidth0.71.0MHz	Absolute Noise at:		-152		aBC/HZ	GC=2.0 V to 1.4 V
All Gain Settings-154dBmIQ=1.2V _{P-P} 8PSKGeneral Conditions Local Oscillator LO LB Input Frequency Input Power824915MHzRF LB Output Frequency Input Power824915MHzInput Power IQ Level-6.00.0+3.0dBmIQ Baseband InputsIQ Level1.2VNP-PIQ Common Mode Input Bandwidth0.71.0V			-156		dBm	$GC = 2.0 V IQ = 0 V_{P P}$
General Conditions 824 915 MHz Local Oscillator 824 915 MHz LO LB Input Frequency 824 915 MHz Input Power -6.0 0.0 +3.0 dBm IQ Baseband Inputs IQ Level 1.2 V _{P-P} Input IQ signal driven differentially and in quadrature. IQ Common Mode 1.2 V Input Bandwidth 0.7 1.0 MHz						
Local Oscillator 824 915 MHz LO LB Input Frequency 824 915 MHz RF LB Output Frequency 824 915 MHz Input Power -6.0 0.0 +3.0 dBm IQ Baseband Inputs IQ Level 1.2 V _{P-P} Input IQ signal driven differentially and in quadrature. IQ Common Mode 1.2 V Input Bandwidth 0.7 1.0 MHz	General Conditions		-			17
LO LB Input Frequency RF LB Output Frequency Input Power824915MHz824915MHz9150.0+3.0dBmIQ Baseband Inputs1.2VP-PInput IQ signal driven differentially and in quadrature.IQ Common Mode1.2VInput Bandwidth0.71.0MHz	Local Oscillator					
RF LB Output Frequency Input Power 824 915 MHz Input Power -6.0 0.0 +3.0 dBm IQ Baseband Inputs IQ Level 1.2 V _{P-P} Input IQ signal driven differentially and in quadrature. IQ Common Mode 1.2 V Input Bandwidth 0.7 1.0 MHz		824		915	MHz	
Input Power -6.0 0.0 +3.0 dBm 8PSK IQ Baseband Inputs IQ Level 1.2 V _{P-P} Input IQ signal driven differentially and in quadrature. IQ Common Mode 1.2 V Input Bandwidth 0.7 1.0 MHz		-				
IQ Baseband Inputs IQ Level 1.2 8PSK IQ Common Mode 1.2 V _{P-P} Input IQ signal driven differentially and in quadrature. IQ Common Mode 1.2 V Input Bandwidth 0.7 1.0 MHz		-	0.0			
IQ Common Mode1.2VInput Bandwidth0.71.0MHz	IQ Baseband Inputs					8PSK
IQ Common Mode1.2VInput Bandwidth0.71.0MHz			1.2		V _{P-P}	
Input Bandwidth 0.7 1.0 MHz	IQ Common Mode		1.2		V	
		0.7			MHz	
	•	20			dB	At 20MHz offset

Deremeter		Specificatio	n	11:0:1	Condition	
Parameter	Min.	Тур.	Max.	Unit	Condition	
Output Performance with					•	
High Band EDGE 8PSK N	/lode (DC	S1800/PCS	61900)			
$Mode = High Band F_{LO} x1$ (see Cor	ntrol Logic T	ruth Table for M	ode Control S	Settings)		
Output Power					V _{CC} =2.7V, T=+25°C	
Maximum Output Power with						
8PSK Modulated Signal*						
Maximum VGC	-1	+1.5		dBm	While meeting spectral mask	
Minimum VGC		-40	-38	dBm	While meeting spectral mask	
Gain Range		42		dB	Difference between output power at	
					GC=2.0V and GC=0.2V.	
Out-of-Band Emission						
Spectrum Emission Mask*						
Frequency Spacing		~~	TOO			
200kHz		-36	TBD	dBc	30kHz BW	
250kHz		-43	TBD	dBc	30kHz BW	
400kHz		-67	TBD	dBc	30kHz BW	
600kHz to 1800kHz		-73		dBc	30kHz BW	
1800kHz to 3000kHz		-73		dBc	100kHz BW	
3000kHz to 6000kHz		-73		dBc	100kHz BW	
<u>>6000kHz</u>		-75		dBc	100kHz BW 8PSK Modulation	
Error Vector Magnitude		1.0	2	0/	or SK Modulation	
RMS*		1.3	3	% dB		
Origin Offset* Peak*		-37 3	-30 11	ав %		
Output Noise		5		70		
At F _C ±20MHz*						
Relative Noise at:						
Maximum Gain		-154		dBc/Hz	GC=2.0V, IQ=1.2V _{P-P} 8PSK	
		-				
Absolute Noise at:		-150		dBc/Hz	GC=2.0V to 1.4V	
Absolute Noise at. Maximum Gain		-153		dBm	$GC=2.0V, IQ=0V_{P,P}$	
All Gain Settings		-151		dBm	$IQ=1.2V_{P-P}$ 8PSK	
General Conditions		-131		UDIII		
Local Oscillator	1710		1010			
LO HB Input Frequency	1710 1710		1910 1910	MHz MHz		
RF HB Output Frequency	-	0.0	1910 +3.0	dBm		
Input Power	-6.0	0.0	+3.0	UDIII	8PSK	
IQ Baseband Inputs		1.2		V _{P-P}	Input IQ signal driven differentially and in	
		1.2		×P-P	quadrature.	
IQ Common Mode		1.2		V	1	
Input Bandwidth	0.7	1.0		MHz		
Baseband Filter Attenuation	20			dB	At 20MHz offset	

Parameter		Specificatio	n	Unit	Condition
Falameter	Min.	Тур.	Max.	Unit	Condition
Output Performance with	n Modula	ted Baseba	nd Inputs		
W-CDMA Mode					
$Mode=Wideband F_{LO}x2$ (see Cor	trol Logic T	ruth Table for Mo	ode Control S	ettings)	
Output Power					V _{CC} =2.7V, T=+25°C, while meeting 48dBc ALCR
Maximum Output Power with W-CDMA Modulated Signal*					
High Power Mode	3	6		dBm	GC=2.0V
Medium Power Mode	-4	-1		dBm	GC=1.5V
Gain Range					Difference between output power at $GC=2.0V$ and $GC=0.2V$.
High Power Mode		90		dB	
Gain Step					Gain step when switching between power modes in either direction.
High Power to Medium Power		±0.5		dB	GC=1.4V
Medium Power to Low Power		TBD		dB	GC=TBD
Out-of-Band Emission					
Adjacent Channel Leakage Power Ratio (ALCR)*					
Channel Spacing					
±5MHz		50		dBc	3.84MHz relative to channel power
±10MHz		65		dBc	3.84MHz relative to channel power
Error Vector Magnitude					
RMS*		1.4		%rms	3GPP W-CDMA
Output Noise					
At F _C ±40MHz*		-152	-146	dBc/Hz	GC=2.0V
			-146	dBc/Hz	GC=2.0V to 1.5V
General Conditions					
Local Oscillator					
LO LB Input Frequency	960		990	MHz	
RF WB Output Frequency	1920		1980	MHz	
Input Power	-10.0	0.0	+3.0	dBm	
IQ Baseband Inputs					3GPP W-CDMA
IQ Level		0.0		V	HQPSK, 1DPCCH+1DPDCH
		0.8		V _{P-P}	Input IQ signal driven differentially and in quadrature.
IQ Common Mode		1.2		V	
Input Bandwidth	8	11		MHz	
* Not tested in Production	10			dB	At 40MHz offset

Deremeter	Ś	Specificatio	n	11	
Parameter	Min.	Тур.	Max.	Unit	Condition
Output Performance with	n CW Bas	eband Inpu	ıts		-
Wideband Mode					
$Mode=Wideband F_{LO}x2$ (see Con	trol Logic Tr	uth Table for Mo	ode Control S	ettings)	
VGA and PA Driver		_			V_{CC} =2.7V, T=+25°C, LO=975MHz to 990MHz at -10dBm, IQ=540mV _{P-P} ** at 100kHz, unless otherwise noted
Output Power W-CDMA Modu- lated*		5		dBm	GC=2.0V, IQ=0.8V _{P-P} at HQPSK
Output Power CW	2	5	8	dBm	GC=2.0V
Gain Control Voltage Range	0.2	Ũ	2.0	V	00-2:01
Gain Control Range		92		dB	Difference between output power at GC=2.0V and GC=0.2V
Gain Control Slope		73		dB/V	Calculated between GC=1.0V and 0.5V
Modulator					
Sideband Suppression		-48	-30	dBc	GC=2.0V, No I/Q adjustment
*		-50	-30	dBc	GC=1.5V, No I/Q adjustment
*		-50	-30	dBc	GC=1.0V, No I/Q adjustment
*		-50	-30	dBc	GC=0.5V, No I/Q adjustment
Carrier Suppression		-42	-30	dBc	GC=2.0V, No I/Q adjustment
		-41	-30	dBc	GC=1.5V, No I/Q adjustment
		-38	-30	dBc	GC=1.0V, No I/Q adjustment
		-23	-10	dBc	GC=0.5V, No I/Q adjustment
3rd Harmonic of Modulation Suppression at F _C -3x300kHz		-55	-50	dBc	GC=2.0V
Spurious Outputs					
Spurious Output at Integer Multi- ples of FLO LB*					GC=2.0V, I/Q=540mV _{P-P} at 100kHz
FLO LB		-60.0		dBm	FLO LB leakage
4xFLO LB		-14.0	0	dBm	Second harmonic of carrier
6xFLO LB		-47.0	0	dBm	Third harmonic of carrier
Output Compression					
Output P1dB*		+11.5		dBm	I/Q=100kHz
Intermodulation					
Output IP3*		+20		dBm	GC=2.0V. Extrapolated from IM3 with two baseband tones at 90kHz and 110kHz applied differentially, in quadrature, at both I and Q inputs, each tone 400mV _{P-P}
Intermodulation IM3 tone at F_{C} +70kHz and F_{C} +130kHz relative to tones at F_{C} +90kHz and F_{C} +110kHz		-37		dBc	GC=2.0V
		-40		dBc	GC=1.5V

* Not tested in Production ** Provides the same output power as modulated signal with associated crest factor.

Demonstration		Specificatio	n	11	
Parameter	Min.	Тур.	Max.	Unit	Condition
Output Performance with	CW Bas	seband Inpu	ıts		
Low Band Mode (GSM85	0/GSM9	00)			
Mode=Low Band F _{LO} x1 (see Con	trol Logic Ti	ruth Table for Mo	de Control S	ettings)	
					V _{CC} =2.7V, T=+25°C,
VGA and PA Driver					LO=824MHz to 915MHz at 0dBm, IQ=800mV _{P-P} ** at 100kHz,
					unless otherwise noted
Output Power 8PSK Modulated*		+2.5		dBm	GC=2.0V, IQ=1.2V _{P-P} 8PSK
Output Power CW	0	2.2	+5	dBm	GC=2.0V, IQ=800mV _{P-P} at 100kHz
		-1.2		dBm	GC=1.5V, IQ=800mV _{P-P} at 100kHz
*		-13.5		dBm	GC=1.0V, IQ=800mV _{P-P} at 100kHz
		-30		dBm	GC=0.5V, IQ=800mV _{P-P} at 100kHz
	-44	-40	-37	dBm	GC=0.2V, IQ=800mV _{P-P} at 100kHz
Gain Control Voltage Range	0.2		2.0	V	
Gain Control Range		42		dB	Difference between output power at GC=2.0V and GC=0.2V
Gain Control Slope		28		dB/V	Calculated between GC=0.5V and 1.5V
Modulator					
Sideband Suppression		-36	-30	dBc	GC=2.0V, No I/Q adjustment
*		-36	-30	dBc	GC=1.5V, No I/Q adjustment
*		-36	-30	dBc	GC=1.0V, No I/Q adjustment
*		-36	-30	dBc	GC=0.5V, No I/Q adjustment
*		-36	-30	dBc	GC=0.2V, No I/Q adjustment
Carrier Suppression		-44	-34	dBc	GC=2.0 V, No I/Q adjustment
		-44	-34	dBc	GC=1.5V, No I/Q adjustment
*		-44	-34	dBc	GC=1.0V, No I/Q adjustment
		-44	-34	dBc	GC=0.5V, No I/Q adjustment
		-40	-34	dBc	GC=0.2V, No I/Q adjustment
3rd Harmonic of Modulation		10	10	-10 -	
Suppression at F _C -3x300kHz		-49	-40	dBc	GC=2.0V
Spurious Outputs					F _{LO} /2 Mode
Spurious Outputs at Integer Harmonics of 1/2xFLOHB*					GC=2.0V, I/Q=800mV _{P-P} at 100kHz
FLO HB		-62.0		dBm	Second harmonic of carrier and LO leakage
(3/2)xFLO LB		-19.0		dBm	Third harmonic of carrier
Output Compression					
Output P1dB* * Not tested in Production		+7.0		dBm	I/Q=100kHz

* Not tested in Production ** Provides the same output power as modulated signal with associated crest factor.

Deverseter	,	Specificatior	า	11	Condition
Parameter	Min.	Тур.	Max.	Unit	Condition
Output Performance with	CW Bas	seband Input	ts		-
Low Band Mode (GSM85	0/GSM9	00), cont'd			
Mode=Low Band FLOX1 (see Con	trol Logic Ti	ruth Table for Mod	de Control S	ettings)	
Intermodulation					
Output IP3*		+20.0		dBm	GC=2.0V. Extrapolated from IM3 with two baseband tones at 90kHz and 110kHz applied differentially, in quadrature, at both I and Q inputs, each tone $400mV_{P-P}$
Intermodulation IM3 tone at					
F_{C} +70kHz and F_{C} +130kHz					
relative to tones at F _C +90kHz and F _C +110kHz		-48		dBc	GC=2.0V
Low Band Bypass Mode	(GSM85	0/GSM900)	1		
Mode=Low Band Bypass (see Co	•	,	ode Control	Settings)	
PA Driver					V _{CC} =2.7V
GMSK Input Power*	-3	0	+3	dBm	At LO LB input from a 50 Ω source.
GMSK Output Power	5.0	7.5	10.0	dBm	At RF LB output
Output Impedance*		50		Ω	
Output Noise					
At F _C ±20MHz*		-161	-159	dBc/Hz	AM+PM noise, LO=0dBm
* Not tostad in Production		•			•

Desemptor	:	Specificatio	n	11	O an dition
Parameter	Min.	Тур.	Max.	Unit	Condition
Output Performance with	CW Bas	seband Inpu	its		
High Band Mode (DCS18	00/PCS1	900)			
Mode=High Band F _{LO} x1 (see Cor	ntrol Logic T	ruth Table for M	ode Control S	ettings)	
VGA and PA Driver					V_{CC} =2.7V, T=+25°C, LO=1710MHz to 1910MHz at 0dBm, IQ=800mV _{P-P} ** at 100kHz, unless otherwise noted
Output Power 8PSK Modulated*	0	2.2		dBm	GC=2.0V, IQ=1.2V _{P-P} 8PSK
Output Power CW	0	2	+6.0	dBm	GC=2.0V, IQ=800mV _{P-P} at 100kHz
		-1.6		dBm	GC=1.5V, IQ=800mV _{P-P} at 100kHz
*		-17.6		dBm	GC=1.0V, IQ=800mV _{P-P} at 100kHz
		-30		dBm	GC=0.5V, IQ=800mV _{P-P} at 100kHz
	-44	-40	-37	dBm	GC=0.2V, IQ=800mV _{P-P} at 100kHz
Gain Control Voltage Range	0.2		2.0	V	
Gain Control Range	0.2	42	2.0	dB	Difference between output power at $GC=2.0V$ and $GC=0.2V$
Gain Control Slope		28		dB/V	Calculated between GC=0.5V and 1.5V
Modulator					
Sideband Suppression		-45	-30	dBc	GC=2.0V, No I/Q adjustment
*		-45	-30	dBc	GC=1.5V, No I/Q adjustment
*		-45	-30	dBc	GC=1.0V, No I/Q adjustment
*		-45	-30	dBc	GC=0.5V, No I/Q adjustment
*		-45	-30	dBc	GC=0.2V, No I/Q adjustment
Carrier Suppression		-40	-34	dBc	GC=2.0V, No I/Q adjustment
		-40	-34	dBc	GC=1.5V, No I/Q adjustment
*		-40	-33	dBc	GC=1.0V, No I/Q adjustment
		-39	-30	dBc	GC=0.5V, No I/Q adjustment
		-37	-30	dBc	GC=0.2V, No I/Q adjustment
3rd Harmonic of Modulation Suppression at F _C -3x300kHz		-50	-40	dBc	GC=2.0V
Spurious Outputs					F _{LO} x2 Mode
Spurious Outputs at Integer Harmonics of 1/2xFLOHB					GC=2.0V, I/Q=800mV _{P-P} at 100kHz
FLO LB		-70.0		dBm	FLO LB leakage
4xFLO LB		-25.0		dBm	Second harmonic of carrier
6xFLO LB		-40.0		dBm	Third harmonic of carrier
Output Compression					
Output P1dB* * Not tested in Production		+8.0		dBm	I/Q=100kHz

* Not tested in Production

** Provides the same output power as modulated signal with associated crest factor.

Deromotor		Specificatior	า 🗌	11	O an dition
Parameter	Min.	Тур.	Max.	Unit	Condition
Output Performance with	CW Bas	seband Input	ts		
High Band Mode (DCS18	00/PCS1	900), cont'd			
Mode=High Band FLOx1 (see Cor			de Control S	ettings)	
Intermodulation					
Output IP3*		+20		dBm	GC=2.0V. Extrapolated from IM3 with two baseband tones at 90kHz and 110kHz applied differentially, in quadrature, at both I and Q inputs, each tone $400mV_{P-P}$
Intermodulation IM3 tone at F _C +70kHz and F _C +130kHz relative to tones at					
F_{C} +90kHz and F_{C} +110kHz		-53	-42	dBc	GC=2.0V
Output Performance with	CW Ba	seband Innui	ts		
Wideband Mode			.0		
Mode=Wideband $F_{LO}x^2$ (see Con	trol Logio T	ruth Tabla for Ma	do Control S	ottingo)	
Mode=Wideband FLox2 (see Con	lii oi Logic Ti			ettings)	V _{CC} =2.7V, T=+25°C, LO=975MHz to
VGA and PA Driver					990MHz at -10dBm, IQ=540mV _{P-P} ** at 100kHz, unless otherwise noted
Output Power W-CDMA Modu- lated*		5		dBm	$GC=2.0V$, $IQ=0.8V_{P-P}$ at HQPSK
Output Power CW	2	5	8	dBm	GC=2.0V
Gain Control Voltage Range	0.2		2.0	V	
Gain Control Range		92		dB	Difference between output power at GC=2.0V and GC=0.2V
Gain Control Slope		73		dB/V	Calculated between GC=1.0V and 0.5V
Modulator					
Sideband Suppression		-48	-30	dBc	GC=2.0V, No I/Q adjustment
*		-50	-30	dBc	GC=1.5V, No I/Q adjustment
*		-50	-30	dBc	GC=1.0V, No I/Q adjustment
		-50	-30	dBc	GC=0.5V, No I/Q adjustment
Carrier Suppression		-42	-30	dBc	GC=2.0V, No I/Q adjustment
		-41	-30	dBc	GC=1.5V, No I/Q adjustment
		-38	-30	dBc	GC=1.0V, No I/Q adjustment
Ord Llarmania of Madulatian		-23	-10	dBc	GC=0.5V, No I/Q adjustment
3rd Harmonic of Modulation Suppression at F _C -3x300kHz		-55	-50	dBc	GC=2.0V
Spurious Outputs					
Spurious Output at Integer Multi- ples of FLO LB*					GC=2.0V, I/Q=540mV _{P-P} at 100kHz
FLO LB		-60.0		dBm	FLO LB leakage
4xFLO LB		-14.0	0	dBm	Second harmonic of carrier
6xFLO LB		-47.0	0	dBm	Third harmonic of carrier
Output Compression					
Output P1dB*		+11.5		dBm	I/Q=100kHz
Intermodulation					
Output IP3*		+20		dBm	GC=2.0V. Extrapolated from IM3 with two baseband tones at 90kHz and 110kHz applied differentially, in quadrature, at both and Q inputs, each tone 400mV_{P-P}
Intermodulation IM3 tone at F_{C} +70kHz and F_{C} +130kHz relative to tones at F_{C} +90kHz and F_{C} +110kHz		-37		dBc	GC=2.0V
		-40		dBc	GC=1.5V
* Not tested in Production	l	-+0		uDu	00-1.0 V

* Not tested in Production

** Provides the same output power as modulated signal with associated crest factor.

Parameter		Specification			Condition
Farameter	Min.	Тур.	Max.	Unit	Condition
High Band Bypass Mode	(DCS18	00/PCS1900))		
Mode=High Band Bypass (see Co	ontrol Logic	Truth Table for Me	ode Control	Settings)	
PA Driver					V _{CC} =2.7V
GMSK Input Power*	-3	0	+3	dBm	At LO LB input from a 50 Ω source.
GMSK Output Power	4.0	6.8	9.0	dBm	At RF LB output
Output Impedance*		50		Ω	
Output Noise					
At F _C ±20MHz*		-161	-159	dBc/Hz	AM+PM noise, LO=0dBm

Doromator		Specificatior	า	11 !4	O an all the m
Parameter	Min.	Тур.	Max.	Unit	Condition
General Specifications	<u> </u>				
Operating Range	1				
Supply Voltage	2.7		3.3	V	
Temperature	-40		+85	°C	
Current Consumption					Refer to Logic Control Truth Table for Mode
-					Control Pin Voltages.
Sleep		<1	10	μA	
Wideband F _{LO} x1 (high power)		114		mA	GC=2.0V
*		85		mA	GC=0.2V
(medium power)	l	89		mA	GC=2.0V
*		54		mA	GC=0.2V
(low power)		63		mA	GC=2.0V. See Note 1.
*	l	42		mA	GC=0.2V. See Note 1.
Wideband F _{LO} x2 (high power)	1	110		mA	GC=2.0V
	1	84		mA	GC=0.2V
(medium power)	1	80		mA	GC=2.0V
	l	53		mA	GC=0.2V
(low power)	l	54		mA	GC=2.0V. See Note 1.
	l	41		mA	GC=0.2V. See Note 1.
High Band F _{LO} x2		72		mA	GC=2.0V
Low Band F _{LO} /2		82		mA	GC=2.0V
High Band Bypass	l	23		mA	
Low Band Bypass	l	23		mA	
High Band F _{LO} x1		76		mA	GC=2.0V
Low Band FLOX1		74		mA	GC=2.0V
Logic Levels		74		ША	00-2.07
•	~		0.4		
Input Logic 0	0		0.4	V V	
Input Logic 1	1.4		V _{CC}		
Logic Pins Input Current		<1.0		μA	CMOS inputs
LO Input Ports					
LO LB Input Frequency Range	800		1000	MHz	
LO HB Input Frequency Range	1600		2000	MHz	
Input Impedance	L	50		Ω	Externally matched
I/Q Baseband Inputs					
Baseband Input Voltage	1.15		1.25	V	Common mode voltage
Baseband Input Level					
EDGE		1.2		V _{P-P}	Differential
W-CDMA		0.8		V _{P-P}	1DPCCH+1DPDCH. See Note 1.
GMSK	1		1.0	V _{P-P}	Differential
Baseband Input Impedance	1	100k 1pF		Ω	Measured at 100kHz
Input Bandwidth	1				
EDGE	0.7	1.0		MHz	
W-CDMA	8.0	11.0		MHz	
Baseband Filter Attenuation	=				
EDGE	20			dB	At 20MHz
W-CDMA	10			dB	At 40MHz
Baseband Input DC Current	-10	0	10	μA	
Gain Control					
Gain Control Voltage	0.2		2.2	V	
Gain Control Impedance		10		kΩ	
	·		<u> </u>		⊥ IO level is >0.4V this mode should be used

 Gain Control Impedance
 10
 kΩ

 Note 1: In low power mode it is recommended that the IQ level be reduced to 0.4V_{P-P} If IQ level is >0.4V_{P-P} this mode should be used for W-CDMA TX power levels below -20dBm (measured at antenna).

Pin	Function	Description	Interface Schematic
1	VCC2	Supply for LO buffers, frequency doubler and dividers.	Modulator and VGA
2	LO HB P	High band local oscillator input (1800MHz). In "low band $F_{LO}/2$ " modes the signal (LOHBP-LOHBN) undergoes a frequency division of 2 to provide the low band LO signal for the modu- lator. In "high band $F_{LO}x1$ " modes the signal (LOHBP-LOHBN) is used as the high band LO signal for the modulator. In "high band bypass" a modulated DCS1800/PCS1900 signal (LOHBP-LOHBN) is switched into the RF signal path. The modulator is disabled and the signal is routed to the RFOutHb outputs through a differential PA driver amplifier. The LOHBP input is AC-coupled internally. The noise performance, carrier suppression at low output powers and sideband suppression all vary with LO power. The optimum LO power is between -3dBm and +3dBm. The device will work with LO powers as low as -20dBm however this is at the expense of higher phase noise in the LO circuitry and poorer sideband suppression. The input impedance should be externally matched to 50Ω. The port can be driven either differentially or single ended. The port impedance does not vary significantly between active and power down modes. The RF2705 is intended for use with the RF6002. This performs the GSM GMSK modulation within a Frac-N synthesizer loop. The 8PSK EDGE and W-CDMA signal modulations are performed in the RF2705 and uses the RF6002's synthesizers to generate the LO signals. The LO signal for EDGE900 mode is derived by frequency division by 2 of the RF6002's DCS1800 VCO. This helps protect the system against PA pulling.	
3	LO HB N	The complementary LO input for both LOHBP LO signals. In any of the modes the LOHB input may be driven either single ended or differentially. If the LO is driven single ended then the PCB board designer can ground this pin. It is recommended that if this pin is grounded that it is kept isolated from the GND1 pin and the die flag ground. All connections to any other ground should be made through a ground plane. Poor routing of this ground signal can significantly degrade the LO leakage performance.	See pin 2.

Pin	Function	Description	Interface Schematic
4	LO LB P	Low band local oscillator input (900MHz). In "wideband $F_{LO}x^2$ " and "high band $F_{LO}x^2$ " modes the signal (LOLBP-LOLBN) is doubled in frequency to provide the LO signal for the modulator. In "Low band $F_{LO}x^1$ " modes the signal (LOLBP-LOLBN) is used as the LO signal for the modulator. In "Low band Bypass" a modulated GSM900 signal (LOLBP-LOLBN) is switched into the RF signal path. The modulator is disabled and the signal is routed to the RFOutLb outputs through a differential PA driver amplifier. This LOLBP input is AC-coupled internally. The noise performance, carrier suppression at low output powers and sideband suppression performance are functions of LO power. The optimum LO power is between -3dBm and +3dBm. The device will work with LO powers as low as -20dBm however this is at the expense of higher noise performance at high output powers and poorer side- band suppression. The input impedance should be externally matched to 50 Ω . The port impedance does not vary significantly between active and powered modes. The RF2705 is intended for use with the RF6002 which performs the GSM GMSK modulation within a Frac-N synthesizer loop. The 8PSK EDGE and W-CDMA signal modulations are performed in the RF2705 and uses the RF6002's synthesizers to generate the LO signals. The LO signal for DCS1800 mode is derived by frequency doubling RF6002's GSM900 VCO. This helps protect the system against PA pull- ing.	
5	LO LB N	The complementary LO input for both LOLBP LO signals. In any of the modes the LOLB input may be driven either single ended or differentially. If the LO is driven single ended then the PCB board designer can ground this pin. It is recommended that if this pin is grounded that it is kept isolated from the GND1 pin and the die flag ground. All connections to any other ground should be made through a ground plane. Poor routing of this GndLO signal can significantly degrade the LO leakage performance.	See pin 4.
6	MODE C	Chip enable control pin. See the Logic Truth table. CMOS Logic inputs: Logic $0=0V$ to $0.4V$; Logic $1=1.4V$ to V_{CC} .	
7	MODE D	Mode control pin. See the Logic Truth table. CMOS Logic inputs: Logic $0=0V$ to $0.4V$; Logic $1=1.4V$ to V_{CC} .	See pin 6.

Pin	Function	Description	Interface Schematic
8	Q SIG N	Quadrature Q channel negative baseband input port. Best performance is achieved when the QSIGP and QSIGN are driven differentially with a 1.2V common mode DC voltage. The recommended differential drive level (V_{QSIGP} - V_{QSIGN}) is 1.2 V_{P-P} for EDGE, 0.8 V_{P-P} for W-CDMA modulation and 1.0 V_{P-P} for GMSK modulation. This input should be DC-biased at 1.2V. In sleep mode an internal FET switch is opened, the input goes high impedance and the modulator is de-biased. Phase or amplitude errors between the QSIGP and QSIGN signals will result in a common-mode signal which may result in an increase in the even order distortion of the modulation in the output spectrum. DC offsets between the QSIGP and QSIGN signals will result in increased carrier leakage. Small DC offsets may be deliberately applied between the ISIGP/ISIGN and QSIGP/QSIGN inputs to cancel out the LO leakage. The optimum corrective DC offsets will change with mode, frequency and gain control. Common-mode noise on the QSIGP and QSIGN should be kept low as it may degrade the noise performance of the modulator. Phase offsets from quadrature between the I and Q baseband signals results in degraded sideband suppression.	
9	Q SIG P	Quadrature Q channel negative baseband input port. See pin 8.	See pin 8.
10	VREF	Voltage reference decouple. External 10nF decoupling capacitor to ground. The voltage on this pin is typically 1.67V when the chip is enabled. The voltage is 0V when the chip is powered down. The purpose of this decoupling capacitor is to filter out low frequency noise (20MHz) on the gain control lines. Poor positioning of the VREF decoupling capacitor can cause a degra- dation in LO leakage. A voltage of around 2.5V on this pin indicates that the die flag under the chip is not grounded and the chip is not biased correctly.	
11	GC DEC	Gain control voltage decouple with an external 1 nF decoupling capaci- tor to ground. The voltage on this pin is a function of gain control (GC) voltage when the chip is enabled. The voltage is 0V when the chip is powered down. The purpose of this decoupling capacitor is to filter out low frequency noise (20MHz) on the gain control lines. The size capacitor on the GC DEC line will effect the settling time response to a step in gain control voltage. A 1nF capacitor equates to around 200ns settling time and a 0.5nF capacitor equates to a 100ns settling time. There is a trade-off between settling time and noise contributions by the gain control cir- cuitry as gain control is applied. Poor positioning of the VREF decoupling capacitor can cause a degra- dation in LO leakage.	
12	GC	Gain control voltage. Maximum output power at 2.0V. Minimum output power at 0V. When the chip is enabled the input impedance is $10k\Omega$ to $1.67V_{DC}$. When the chip is powered down a FET switch is opened and the input goes high impedance.	

Pin	Function	Description	Interface Schematic
13	RF OUT LB N	Differential low band PA driver amplifier output. This output is intended for low band (GSM850/900) operation and drives a differential SAW. A bypass mode allows the low band PA driver amplifier's input to be switched between the signal from the modulator and the signal applied at LOLB. This enables a GMSK-modulated signal on the LOLB input to be switched into the RF signal path. The output is an open collector. The outputs are matched off-chip.	V _{cc} V _{cc} V _{cc} V _{cc} O RF OUT LB P O RF OUT LB N U U U U U U U U U U U U U U U U U U U
14	RF OUT LB P	Complementary differential low band PA driver amplifier output. See pin 13.	See pin 13.
15	RF OUT HB N	Differential high band PA Driver amplifier output. This output is intended for DCS1800/PCS1900 band operation. A bypass mode allows the high band PA driver amplifier's input to be switched between the signal from the modulator and the signal applied at LOHB. This enables a GMSK-modulated DCS1800/PCS1900 signal on the LOHB input to be switched into the RF signal path. The output is an open collector. The outputs are matched off-chip.	V _C V _C V _C V _C V _C V _C V _C ORFOUT HB P ORFOUT HB N U U
16	RF OUT HB P	Complementary differential high band PA driver amplifier output. See pin 15.	See pin 15.
17	RF OUT WB N	Differential high band PA driver amplifier output. This output is intended for wide band (W-CDMA) applications. The output is an open collector. The output are matched off-chip.	V _{CC} V _{CC} V _C V
18	RF OUT WB P	Complementary differential wideband PA driver amplifier output. See pin 17.	See pin 17.
19	GND	Ground.	
20	MODE A	Mode control pin. See the Logic Truth table. CMOS Logic inputs: Logic $0=0V$ to $0.4V$; Logic $1=1.4V$ to V_{CC} .	See pin 6.
21	VCC1	Supply for modulator, VGA and PA driver amplifiers.	VCC1 LO Quadrature Generator and Buffers GND1

Pin	Function	Description	Interface Schematic
22	I SIG P	In-phase I channel positive baseband input port. Best performance is achieved when the ISIGP and ISIGN are driven differentially with a 1.2V common mode DC voltage. The recom- mended differential drive level (V_{ISIGP} - V_{ISIGN}) is 1.2 $V_{P,P}$ for EDGE, 0.8 V_{P-P} W-CDMA modulation and 1.0 $V_{P,P}$ for GMSK modulation. This input should be DC-biased at 1.2V. In sleep mode an internal FET switch is opened, the input goes high impedance and the modulator is de-biased. Phase or amplitude errors between the ISIGP and ISIGN signals will result in a common-mode signal which may result in an increase in the even order distortion of the modulation in the output spectrum. DC offsets between the ISIGP and ISIGN signals will result in increased carrier leakage. Small DC offsets may be deliberately applied between the ISIGP/ISIGN and QSIGP/QSIGN inputs to can- cel out the LO leakage. The optimum corrective DC offsets will change with mode, frequency and gain control. Common-mode noise on the ISIGP and ISIGN should be kept low as it may degrade the noise performance of the modulator. Phase offsets from quadrature between the I and Q baseband signals results in degrades sideband suppression.	
23	I SIG N	In-phase I channel negative baseband input port. See pin 22.	See pin 22.
24	MODE B	Mode control pin. See the Logic Truth table. CMOS Logic inputs: Logic $0=0V$ to $0.4V$; Logic $1=1.4V$ to V_{CC} .	See pin 6.
Pkg Base	DIE FLAG	Ground for LO section, modular, biasing, variable gain amplifier, and substrate.	

LO Frequency Planning Options for European 3GPP W-CDMA/EDGE

Recommended Frequency Plan: Frequency Doubler/Divide by 2/GMSK Modulator Bypass Modes

Output Frequency Band			Modulation Format	LO Port	LO Frequency Range		Comments
Band	Lower Limit	Upper Limit			Lower Limit	Upper Limit	
GSM850	824MHz	849MHz	EDGE 8PSK	LOHB	1648MHz	1698MHz	F _{LO} /2 Divide by 2
GSM850	824MHz	849MHz	GSM GMSK	LOLB	824MHz	849MHz	F _{LO} _bypass Bypass, GMSK-modulated LO
GSM900	880MHz	915MHz	EDGE 8PSK	LOHB	1760MHz	1830MHz	F _{LO} /2 Divide by 2
GSM900	880MHz	915MHz	GSM GMSK	LOLB	880MHz	915MHz	F _{LO} _bypass Bypass, GMSK-modulated LO
DCS1800	1710MHz	1785MHz	EDGE 8PSK	LOLB	855 MHz	892.5MHz	F _{LO} x2 Frequency Doubler
DCS1800	1710MHz	1785MHz	GSM GMSK	LOHB	1710MHz	1785MHz	F _{LO} _bypass Bypass, GMSK-modulated LO
PCS1900	1850MHz	1910MHz	EDGE 8PSK	LOLB	925 MHz	955 MHz	F _{LO} x2 Frequency Doubler
PCS1900	1850MHz	1910MHz	GSM GMSK	LOHB	1850MHz	1910MHz	F _{LO} _bypass Bypass, GMSK-modulated LO
W-CDMA1950	1920MHz	1980MHz	3GPP W-CDMA	LOLB	960MHz	990MHz	F _{LO} x2 Frequency Doubler

On Frequency LO with GMSK Modulator Bypass Modes

Output Frequency Band			Modulation Format	LO Port	LO Frequency Range		Comments
Band	Lower Limit	Upper Limit			Lower Limit	Upper Limit	
GSM850	824MHz	849MHz	EDGE 8PSK	LOLB	824 MHz	849MHz	F _{LO} x1 On Frequency
GSM850	824MHz	849MHz	GSM GMSK	LOLB	824MHz	849MHz	F _{LO} _bypass Bypass, GMSK-modulated LO
GSM900	880MHz	915MHz	EDGE 8PSK	LOLB	880MHz	915MHz	F _{LO} x1 On Frequency
GSM900	880MHz	915MHz	GSM GMSK	LOLB	880MHz	915MHz	F _{LO} _bypass Bypass, GMSK-modulated LO
DCS1800	1710MHz	1785MHz	EDGE 8PSK	LOHB	1710MHz	1785MHz	F _{LO} x1 On Frequency
DCS1800	1710MHz	1785MHz	GSM GMSK	LOHB	1710MHz	1785MHz	F _{LO} _bypass Bypass, GMSK-modulated LO
PCS1900	1850MHz	1910MHz	EDGE 8PSK	LOHB	1850MHz	1910MHz	F _{LO} x1 On Frequency
PCS1900	1850MHz	1910MHz	GSM GMSK	LOHB	1850MHz	1910MHz	F _{LO} _bypass Bypass, GMSK-modulated LO
W-CDMA1950	1920MHz	1980MHz	3GPP W-CDMA	LOHB	1920MHz	1980MHz	F _{LO} x1 On Frequency

Control Logic Truth Table

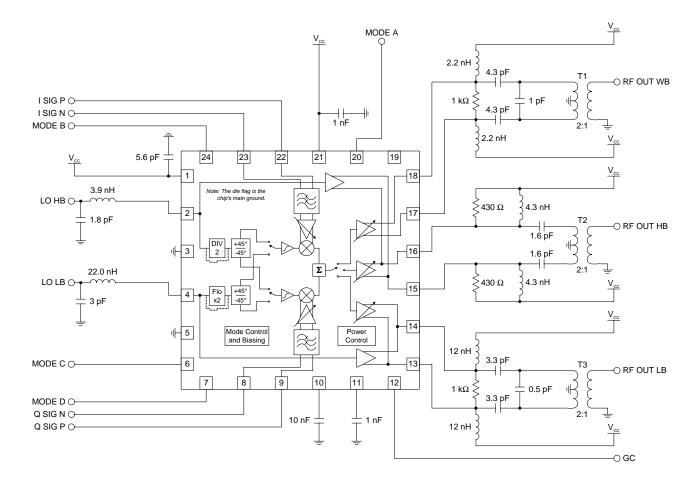
Mode Description	Input Logic				Active RF I/Os	Comment
	Mode A	Mode B	Mode C	Mode D		Expected Mode of Operation
			Sleep Mo	ode		operation
Sleep	Х	0	0	0		Sleep
	Free	quency Do	oubler/Div	/ide by 2	Options	
Wideband F _{LO} x2 (High Power) Modulator and frequency doubler enabled	1	0	1	0	LoLbP LoLbN RFOutWb P RFOutWb N	Bands: 1920MHz to 1980MHz Modulation: 3GPP W-CDMA
Wideband F _{LO} x2 (Medium Power) Modulator and frequency doubler enabled	1	0	1	1	LoLbP LoLbN RFOutWb P RFOutWb N	Bands: 1920MHz to 1980MHz Modulation: 3GPP W-CDMA
Wideband F _{LO} x2 (Low Power) Modulator and frequency doubler enabled	1	0	0	1	LoLbP LoLbN RFOutWb P RFOutWb N	Bands: 1920MHz to 1980MHz Modulation: 3GPP W-CDMA
High Band F _{LO} x2 Modulator and frequency doubler enabled	1	1	1	1	LoLbP LoLbN RFOutHb P RFOutHb N	Bands: DCS1800 or PCS1900 Modulation: GMSK, TDMA and 8PSK EDGE
Low Band F _{LO} /2 Modulator and divide by 2 enabled	1	1	0	1	LoHbP LoHbN RFOutLb P RFOutLb N	Bands: GSM900 or GSM850 Modulation: GMSK, TDMA and 8PSK EDGE
	GMSK Modulator Bypass Options					
Low Band Bypass Modulator bypass enabled	X	1	0	0	LoLbP LoLbN RFOutLb P RFOutLb N	Bands: GSM850 or GSM900 Modulation: GMSK
High Band Bypass Modulator bypass enabled	X	1	1	0	LoHbP LoHbN RFOutHb P RFOutHb N	Bands: DCS1800 or PCS1900 Modulation: GMSK
	On-Frequency LO Options					
Wideband F _{LO} x1 (High Power) Modulator and on-frequency LO enabled	0	0	1	0	LoHbP LoHbN RFOutWb P RFOutWb N	Bands: 1920MHz to 1980MHz Modulation: 3GPP W-CDMA
Wideband F _{LO} x1 (Medium Power) Modulator and on-frequency LO enabled	0	0	1	1	LoHbP LoHbN RFOutWb P RFOutWb N	Bands: 1920MHz to 1980MHz Modulation: 3GPP W-CDMA
Wideband F _{LO} x1 (Low Power) Modulator and on-frequency LO enabled	0	0	0	1	LoHbP LoHbN RFOutWb P RFOutWb N	Bands: 1920MHz to 1980MHz Modulation: 3GPP W-CDMA
High Band F _{LO} x1 Modulator and on-frequency LO enabled	0	1	1	1	LoHbP LoHbN RFOutHb P RFOutHb N	Bands: DCS1800 or PCS1900 Modulation: GMSK, TDMA and 8PSK EDGE
Low Band F _{LO} x1 Modulator and on-frequency LO enabled	0	1	0	1	LoLbP LoLbN RFOutLb P RFOutLb N	Bands: GSM900 to GSM850 Modulation: GMSK, TDMA and 8PSK EDGE

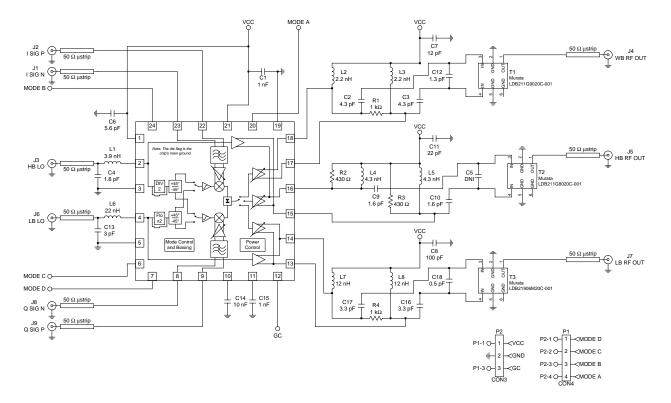
Application Information

The baseband inputs of the RF2705 must be driven with balanced signals. Amplitude and phase matching <0.5dB and <0.5 degrees are recommended. Phase or gain imbalances between the complementary input signals will cause additional distortion including some second order baseband distortion.

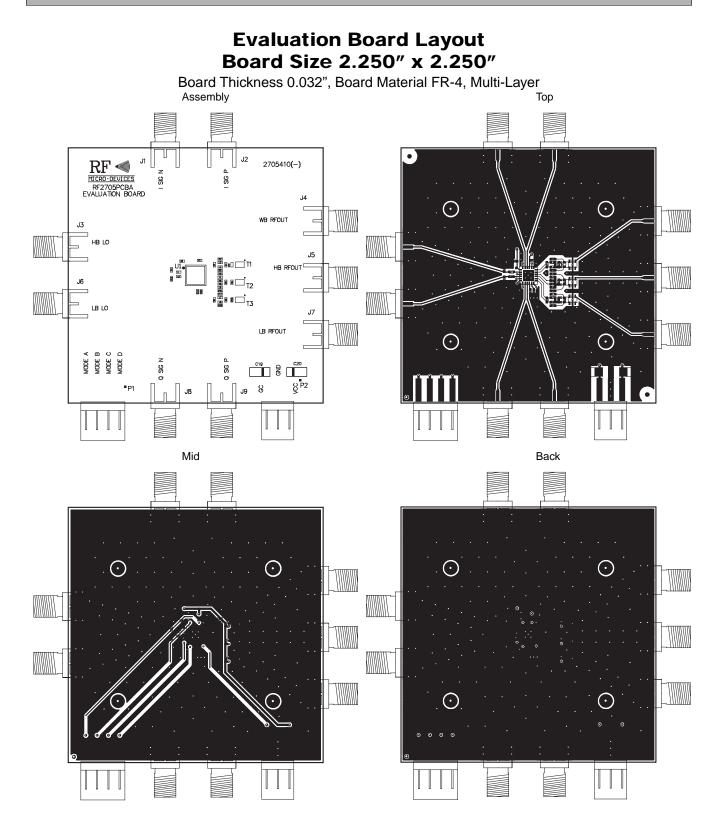
The RF2705 is designed to be driven with either single-ended or differential LO signals. Driving the chip differentially is beneficial in improving the LO leakage performance. Decreasing the LO drive level will also improve LO leakage, but the output noise performance will be degraded. Driving the LO level too high will degrade linearity.

The ground lines for the LO sections are brought out of the chip independently from the ground to the RF and modulator sections. This is intended to give the board design the independence of isolating the LO signals from the RF output sections.


The RF2705 includes frequency doubler and divider modes that allow the LO to operate at half or twice the frequency depending on the application. This provides some flexibility in improving VCO isolation and LO leakage through frequency translation.


The RF outputs use open collector architecture and may be biased at voltages higher than V_{CC} . In practice, biasing at a higher voltage may improve the intermodulation performance. The load resistors are selected to provide sufficient output power while maintaining good linearity.

The GC DEC and V_{REF} output pins should be decoupled to ground. A 10nF capacitor on V_{REF} and a 1nF capacitor on GC CEC are recommended. The purpose of these capacitors is to filter out low frequency noise (20MHz) in the gain control lines that may cause noise on the RF signal. The capacitor on the GC DEC line will effect the settling time of the step response in power control voltage. A 1nF capacitor equates to around a 200ns settling time; a 0.5nF capacitor equates to a 100ns settling time. There is a trade-off between setting time and phase noise as gain control is applied.


As with any RF circuit, the RF2705 is sensitive to PC board layout. The suggested schematic and board layout is included as a guideline. Proper grounding of the die flag under the chip is essential in achieving acceptable RF performance. A symmetric output structure will maintain signal balance while keeping the RF lines short will reduce losses. Proper routing and bypassing of the supply lines will improve stability and performance, especially under low gain control settings where carrier suppression becomes crucial. The location and value of the bypass capacitor on pin 1 is critical in promoting good carrier suppression and is designated to resonate out the series wire bond and PC board inductance.

Application Schematic

Evaluation Board Schematic

PCB Design Requirements

PCB Surface Finish

The PCB surface finish used for RFMD's qualification process is Electroless Nickel, immersion Gold. Typical thickness is 3µinch to 8µinch Gold over 180µinch Nickel.

PCB Land Pattern Recommendation

PCB land patterns are based on IPC-SM-782 standards when possible. The pad pattern shown has been developed and tested for optimized assembly at RFMD; however, it may require some modifications to address company specific assembly processes. The PCB land pattern has been developed to accommodate lead and package tolerances.

PCB Metal Land Pattern

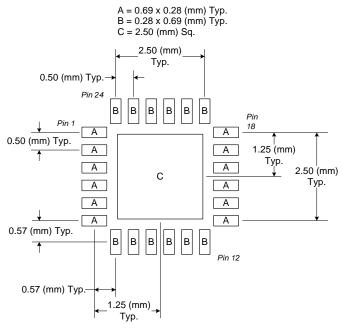


Figure 1. PCB Metal Land Pattern (Top View)

PCB Solder Mask Pattern

Liquid Photo-Imageable (LPI) solder mask is recommended. The solder mask footprint will match what is shown for the PCB Metal Land Pattern with a 2mil to 3mil expansion to accommodate solder mask registration clearance around all pads. The center-grounding pad shall also have a solder mask clearance. Expansion of the pads to create solder mask clearance can be provided in the master data or requested from the PCB fabrication supplier.

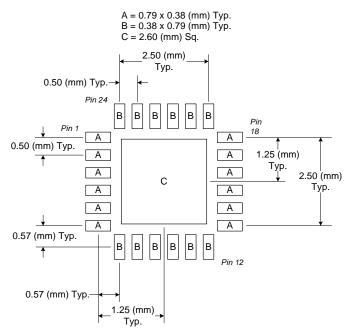


Figure 2. PCB Solder Mask Pattern (Top View)

Thermal Pad and Via Design

The PCB land pattern has been designed with a thermal pad that matches the exposed die paddle size on the bottom of the device.

Thermal vias are required in the PCB layout to effectively conduct heat away from the package. The via pattern shown has been designed to address thermal, power dissipation and electrical requirements of the device as well as accommodating routing strategies.

The via pattern used for the RFMD qualification is based on thru-hole vias with 0.203mm to 0.330mm finished hole size on a 0.5mm to 1.2mm grid pattern with 0.025mm plating on via walls. If micro vias are used in a design, it is suggested that the quantity of vias be increased by a 4:1 ratio to achieve similar results.