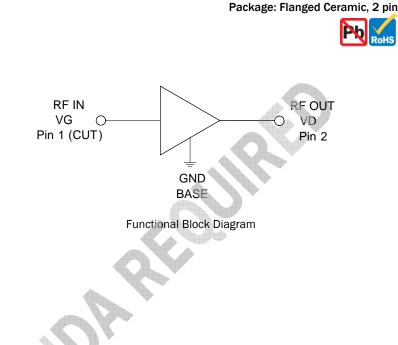


rfmd.com

# Proposed

## **300W GaN WIDE-BAND PULSED POWER AMPLIFIER**




#### **Features**

- Wideband Operation 2.8GHz to 3.4GHz
- Advanced GaN HEMT Technology •
- Advanced Heat-Sink Technology
- Optimized Evaluation Board Layout for 50ohm Operation
- Integrated matching components for high terminal impedances
- **50V Operation Typical Performance** .
  - Pulsed Output Power 300W
  - o Small Signal Gain 11dB
  - o Drain Efficiency 50%
  - o -40°C to 85°C Operating Temperature

#### **Applications**

- Radar
- Air Traffic Control and Surveillance
- **General Purpose Broadband Amplifiers**



#### **Product Description**

The RF3928 is a 50V 300W high power discrete amplifier designed for S-Band pulsed radar, Air Traffic Control and Surveillance and general purpose broadband amplifier applications. Using an advanced high power density Gallium Nitride (GaN) semiconductor process, these high-performance amplifiers achieve high output power, high efficiency and flat gain over a broad frequency range in a single package. The RF3928 is a matched GaN transistor packaged in a hermetic, flanged ceramic package. This package provides excellent thermal stability through the use of advanced heat sink and power dissipation technologies. Ease of integration is accomplished through the incorporation of simple, optimized matching networks external to the package that provide wideband gain and power performance in a single amplifier

#### **Ordering Information**

| -              |                                      |                          |                 |  |  |  |  |
|----------------|--------------------------------------|--------------------------|-----------------|--|--|--|--|
| RF3928         | 300W GaN Wide-Band Pu                | lsed Power Amplifier     |                 |  |  |  |  |
| RF3928PCBA-410 | Fully Assembled Evaluation           | on Board Optimized for 2 | 2.8-3.5GHz; 50V |  |  |  |  |
|                |                                      |                          |                 |  |  |  |  |
|                | Optimum Technology Matching® Applied |                          |                 |  |  |  |  |
| 🗌 GaAs HBT     | SiGe BiCMOS                          | 🗌 GaAs pHEMT             | 🔀 GaN HEMT      |  |  |  |  |
| GaAs MESFET    | Si BiCMOS                            | Si CMOS                  | RF MEMS         |  |  |  |  |
| 🗌 InGaP HBT    | SiGe HBT                             | 🗌 Si BJT                 |                 |  |  |  |  |

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity<sup>30</sup>, PowerStane®, POLARS<sup>10</sup> TOTAL, PAUIO<sup>10</sup> Worklawanakis of PRMD, LLC, BLIETOOTH is a trademarks owned by Bluetooth SiG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and the reported neuropean sciences. Sci200 RF Blueton Devices Inc.

Prelim DS100928

7628 Thorndike Road, Greensboro, NC 27409-9421 - For sales or technical Support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com

1 of 10



#### **Absolute Maximum Ratings**

| Parameter                                                                                                                             | ter Rating  |       |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|
| Drain Source Voltage                                                                                                                  | 150         | V     |
| Gate Source Voltage                                                                                                                   | -5 to +2    | V     |
| Gate Current (Ig)                                                                                                                     | 155         | mA    |
| Operational Voltage                                                                                                                   | 50          | V     |
| Ruggedness (VSWR)                                                                                                                     | 3:1         |       |
| Storage Temperature Range                                                                                                             | -55 to +125 | ۰C    |
| Operating Temperature Range $(T_L)$                                                                                                   | -40 to +85  | ۰C    |
| Operating Junction Temperature (T <sub>J</sub> )                                                                                      | 200         | ۰C    |
| Human Body Model                                                                                                                      | Class 1A    |       |
| MTTF (T <sub>J</sub> < 200 ° C)                                                                                                       | 3.0E + 06   | Hours |
| Thermal Resistance, Rth (junction to case)<br>T <sub>c</sub> =85°C, DC bias only<br>T <sub>c</sub> =85°C, 100MS pulse, 10% duty cycle | 0.89        | ° C/W |



Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

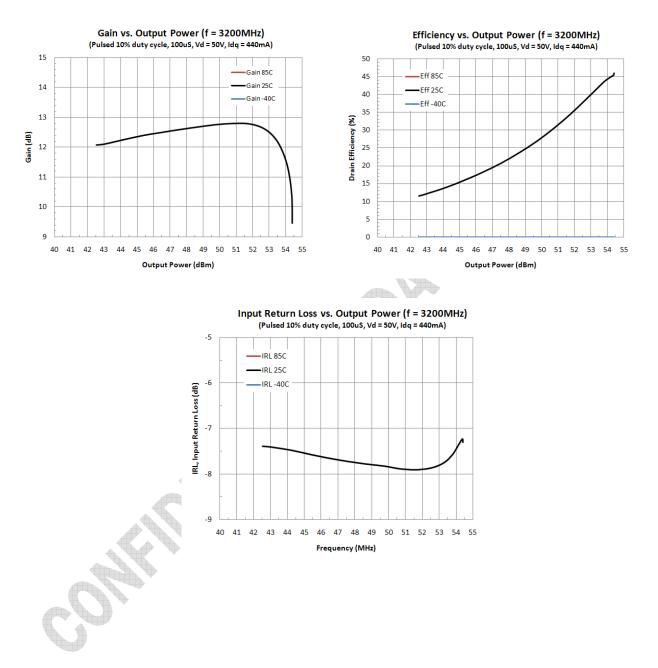
MTTF - median time to failure for wear-out failure mode (30% ldss degradation) which is determined by the technology process reliability. Refer to product qualification report for FIT(random) failure rate.

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page two.

Bias Conditions should also satisfy the following expression:  $P_{DISS} < (T_J - T_C) / R_{TH} J-C$  and  $T_C = T_{CASE}$ 

| Dovomotor                                | Specification |      | Unit   | Condition |                              |
|------------------------------------------|---------------|------|--------|-----------|------------------------------|
| Parameter                                | Min.          | Тур. | Max.   | Unit      | Condition                    |
| Recommended Operating Conditions         |               |      |        |           |                              |
| Drain Voltage (V <sub>dsq</sub> )        |               |      | 50     | V         |                              |
| Gate Voltage (Vgsq)                      | -5            | -3   | -2     | V         |                              |
| Drain Bias Current                       |               | 440  |        | mA        |                              |
| Frequency of Operation                   | 2800          | ¢    | 3400   | MHz       |                              |
| Capacitance                              |               |      |        |           |                              |
| Crss                                     |               | TBD  |        | pF        | Vg=-8V, Vd=0V                |
| Ciss                                     |               | TBD  |        | pF        | Vg= -8V, Vd = 0V             |
| Coss                                     |               | TBD  |        | pF        | Vg= -8V, Vd = 0V             |
| DC Functional Test                       |               |      |        |           |                              |
| lg (off) – Gate Leakage                  |               |      | 2      | mA        | Vg = -8V, Vd = 0V            |
| Id (off) – Drain Leakage                 |               | )    | 2.5    | mA        | Vg = -8V, Vd = 36V           |
| Vgs (th) – Threshold Voltage             |               | -4.2 |        | V         | Vd = 36V, Id = 40mA          |
| Vds (on) – Drain Voltage at high current |               | 0.13 |        | V         | Vg = 0V, Id = 1.5A           |
| RF Functional Test                       |               |      |        |           |                              |
| Small Signal Gain                        |               | 12   |        | dB        | f=2800MHz, Pin = 30dBm [1,2] |
| Power Gain                               | 9             | 9.9  |        | dB        | f=2800MHz, Pin = 45dBm [1,2] |
| Input Return Loss                        |               |      | -5.5   | dB        | f=2800MHz, Pin = 30dBm [1,2] |
| Output Power                             | 54            | 54.9 |        | dBm       | f=2800MHz, Pin = 45dBm [1,2] |
| Drain Efficiency                         | 45            | 53   |        | %         | f=2800MHz, Pin = 45dBm [1,2] |
| Small Signal Gain                        |               | 12   |        | dB        | f=3100MHz, Pin = 30dBm [1,2] |
| Power Gain                               | 9             | 9.5  |        | dB        | f=3100MHz, Pin = 45dBm [1,2] |
| Input Return Loss                        |               |      | -5.5   | dB        | f=3100MHz, Pin = 30dBm [1,2] |
| Output Power                             | 54            | 54.5 |        | dBm       | f=3100MHz, Pin = 45dBm [1,2] |
| Drain Efficiency                         | 45            | 56   |        | %         | f=3100MHz, Pin = 45dBm [1,2] |
| Small Signal Gain                        |               | 10   |        | dB        | f=3400MHz, Pin = 30dBm [1,2] |
| Power Gain                               | 9             | 9.3  |        | dB        | f=3400MHz, Pin = 45dBm [1,2] |
| Input Return Loss                        |               |      | -5.5   | dB        | f=3400MHz, Pin = 30dBm [1,2] |
| Output Power                             | 54            | 54.3 |        | dBm       | f=3400MHz, Pin = 45dBm [1,2] |
| Drain Efficiency                         | 45            | 52   |        | %         | f=3400MHz, Pin = 45dBm [1,2] |
| RF Typical Performance                   |               |      |        |           |                              |
| Frequency Range                          | 2800          |      | 3400   | MHz       |                              |
| Small Signal Gain                        | 1 1           | 11   |        | dB        | f=3200MHz, Pin = 30dBm [1,2] |
| Power Gain                               |               | 10   |        | dB        | Pout = 54.7dBm [1,2]         |
| Gain Variation with Temperature          | 1 1           |      | -0.015 | dB/0 C    | At peak output power [1,2]   |
| Output Power (Psat)                      |               | 54.7 |        | dBm       | Peak output power [1,2]      |
| • • • •                                  | 1 1           | 300  |        | W         | Peak output power [1,2]      |
| Drain Efficiency                         |               | 48   |        | %         | At peak output power [1,2]   |
| Drain Lindency                           | L I           | 40   |        | 70        | At year output power [1,2]   |

[1] Test Conditions: Pulsed Operation, PW=100usec, DC=10%, Vds=50V, Idq=440mA, T=25°C [2] Performance in a standard tuned test fixture


RF MICRO DEVICES8, RFMDI®, Optimum Technology Matching®, Enabling Wireless Connectivity<sup>334</sup>, PowerStartle, POLARG<sup>34</sup> TOTAL, RADIO<sup>14</sup> and UltimateBlue<sup>34</sup> are trademarks of RFMD. LL, BLIETGOTH is a trademarks owned by Bluetooth SiG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and redelevent trademarks are the romenter inducemarks. SciODIR & PRM mon Devices. Inc.

Prelim DS100928

7628 Thorndike Road, Greensboro, NC 27409-9421 - For sales or technical Support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com

2 of 10





#### Typical Performance in standard fixed tuned test fixture over temperature (pulsed at center band frequency)

RF MICRO DEVICES, RFMDB, Optimum Technology MatchingB, Enabling Wireless Connectivity<sup>10</sup>, PowerSizeB, PTALR, RADIO<sup>10</sup> VTTL4, RADIO<sup>10</sup> WillimianaBlum<sup>10</sup> are trademarks or RFMD, LLC, BLIETGOTH is a trademarks runed by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks rune defaunts are the property of their respective owners, Inc., SC200, RF Mount Devices, Inc.



0

-3

-6

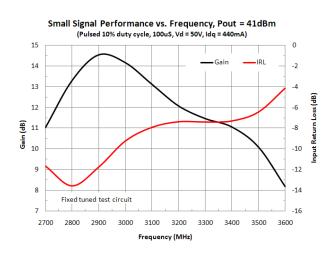
-9

-12

-15

-18

nput Return Loss (dB)


#### **300W GaN WIDE-BAND PULSED POWER AMPLIFIER**

-Gain

-IRL

Gain/IRL vs. Frequency, Pout = 54.5dBm

(Pulsed 10% duty cycle, 100uS, Vd = 50V, Idq = 440mA)



#### Typical Performance in standard fixed tuned test fixture (T=25°C, unless noted)

13

12

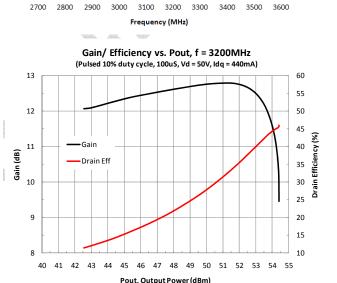
11

**ଞ୍ଚ** 10

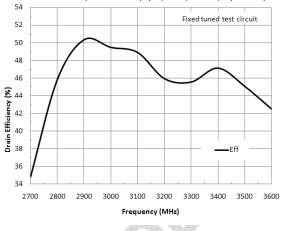
9

8

7

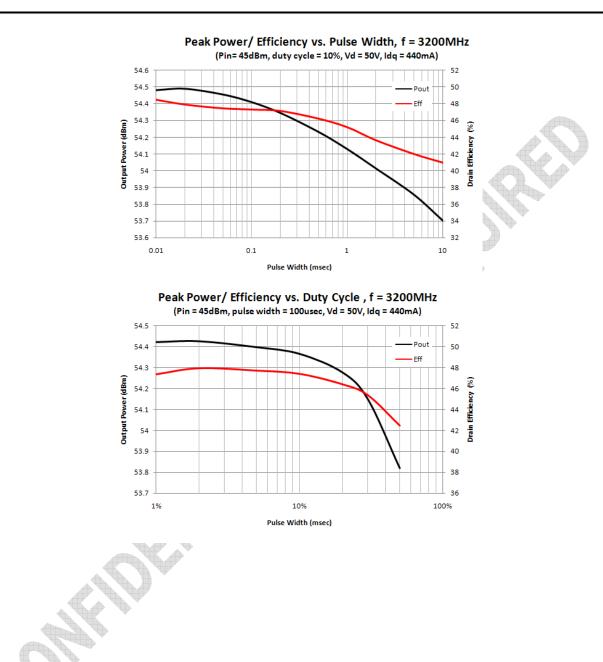

2700

2800


2900

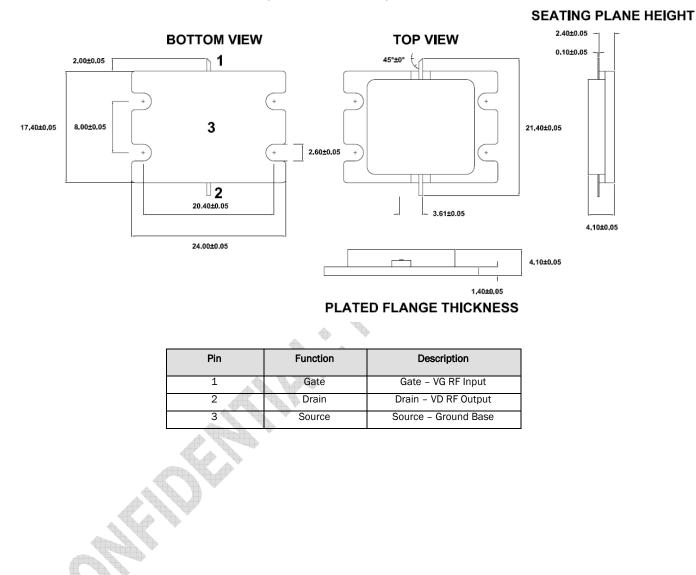
Gain

Fixed tuned test circuit




Drain Efficiency vs. Frequency, Pout = 54.5dBm (Pulsed 10% duty cycle, 100uS, Vd = 50V, Idg = 440mA)




RF MICRO DEVICES8, RFMD/8, Optimum Technology Matching9, Enabling Wireless Connectivity<sup>30</sup>, PoverStart9, POLABING<sup>11</sup> YOTAL PAULO<sup>10</sup> Williamabilium<sup>31</sup> are tundemarks of RFMD. LL. SLUETCOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A and licensed for use by RFMD. All other trade names, trademarks and interferences are the connectivity<sup>100</sup>. How thereinges are the connectivity<sup>100</sup> are tundemarks and interferences are the connectivity<sup>100</sup>.





RF MICRO DEVCES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity<sup>304</sup>, PowerStar®, POLARIS<sup>304</sup> TOTAL RADIO<sup>114</sup> and UtimateBlue<sup>314</sup> are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and redistanced trademarks are the property of their respective owners, 622008, RF Micro Devices, Inc.

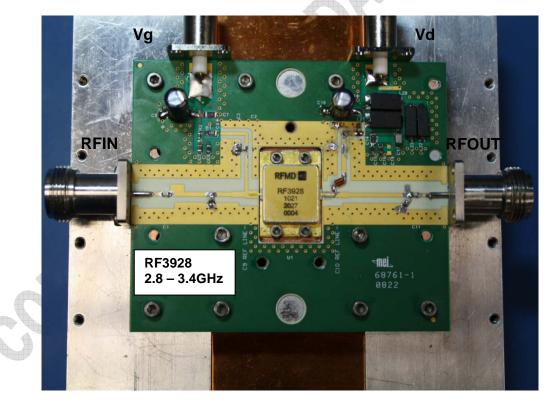




Package Drawing (All dimensions in mm)

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity<sup>104</sup>, PowerStar®, POLARIS<sup>104</sup> TOTAL RADIO<sup>104</sup> and UltimateBlue<sup>114</sup> are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2009, RF Micro Devices, Inc.




# **Bias Instruction for RF3928 Evaluation Board**

ESD Sensitive Material. Please use proper ESD precautions when handling devices of evaluation board. Evaluation board requires additional external fan cooling. Connect all supplies before powering evaluation board.

- 1. Connect RF cables at RFIN and RFOUT.
- 2. Connect ground to the ground supply terminal, and ensure that both the V<sub>G</sub> and V<sub>D</sub> grounds are also connected to this ground terminal.
- 3. Apply -6V to Vg.
- 4. Apply 50V to Vd.
- 5. Increase Vg until drain current reaches 440mA or desired bias point.
- 6. Turn on the RF input.


IMPORTANT NOTE: Depletion mode device, when biasing the device VG be applied BEFORE VD. When removing bias VD must be removed BEFORE VG is removed. Failure to follow sequencing will cause the device to fail.

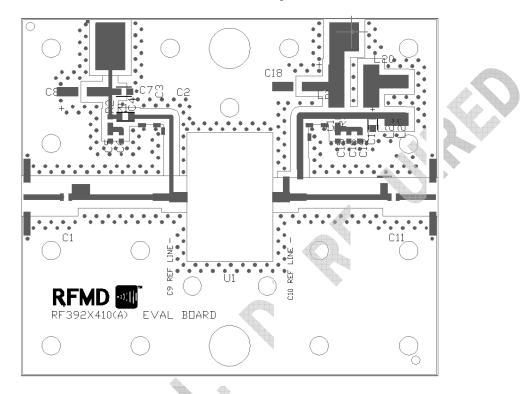
Note: For optimal RF performance, consistent and optimal heat removal from the base of the package is required. A thin layer of thermal grease should be applied to the interface between the base of the package and the equipment chassis. It is recommended a small amount of thermal grease is applied to the underside of the device package. Even application and removal of excess thermal grease can be achieved by spreading the thermal grease using a razor blade. The package should then be bolted to the chassis and input and output leads soldered to the circuit board.





### **Evaluation Board Schematic**



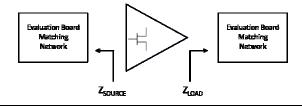

# **Evaluation Board Bill of Materials**

| Component            | Value         | Manufacturer | Part Number    |
|----------------------|---------------|--------------|----------------|
| R1                   | 10 ohms       | Panasonic    | ERJ-8GEYJ100V  |
| R2                   | 0 ohms        | Panasonic    | ERJ-3GEY0R00   |
| R3                   | 51 ohms       | Panasonic    | ERJ-8GEYJ510   |
| C1,C11               | 22pF          | ATC          | ATC100A220JT   |
| C2, C14              | 12pF          | ATC          | ATC100A120JT   |
| C5, C16              | 1000pF        | Panasonic    | ECJ-2VB1H102K  |
| C6,C15               | 10000pF       | Panasonic    | ECJ-2VB1H103K  |
| C7                   | 120 ohms      | Panasonic    | ERJ-6GEYJ120V  |
| C8,C18               | 10uF          | Panasonic    | ECA-2AM100     |
| C9                   | 0.7pF         | ATC          | ATC100A0R7BT   |
| C10                  | 0.2pF         | ATC          | ATC100A0R2BT   |
| C17                  | 62pF          | ATC          | ATC100B620JT   |
| 11                   | 22nH          | Coilcraft    | 0807SQ-22N_LC  |
| L20,L21              | 115 ohm, 10A  | Steward      | 28F0181-1SR-10 |
| L22,L23              | 75 ohm, 10A   | Steward      | 35F0121-1SR-10 |
| C3,C4,C7,C12,C13,C19 | NOT POPULATED |              |                |

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity<sup>TM</sup>, PowerStar@, POLARIS<sup>TM</sup> TOTAL RADIO<sup>TM</sup> and LititinateBlue<sup>TM</sup> are trademarks of RFMD, LLC. BLUETOOTH is a trademark somed by Bluetooth SiG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. (#2009, RF Micro Devices, Inc.)

Prelim DS100928






# **Evaluation Board Layout**

# **Device Impedances**

| Frequency | Z Source (Ω) | Z Load (Ω)    |
|-----------|--------------|---------------|
| 2800MHz   | 60.4 – j0.5  | 42.1 – j 30.5 |
| 3000MHz   | 51.9 – j13.5 | 33.8 – j 25.7 |
| 3200MHz   | 44.1 – j16.5 | 29.5 – j 8.9  |
| 3400MHz   | 38.3 – j16.7 | 17.0 – j9.0   |

\* Device impedances reported are the measured evaluation board impedances chosen for a tradeoff of peak power, peak efficiency and gain performance across the entire frequency bandwidth.



RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity<sup>10</sup>, PowerStar®, POLARIS<sup>10</sup> 1074L RADIO<sup>10</sup> and UtimateBlue<sup>10</sup> are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2009, RF Micro Devices, Inc.

Prelim DS100928

7628 Thorndike Road, Greensboro, NC 27409-9421 – For sales or technical Support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com



| REV | DESCRIPTION OF CHANGE                                                                                                                                                                                                                                                                                                   | MODIFIED<br>By | DATE       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|
| 1   | Initial release                                                                                                                                                                                                                                                                                                         | MP             | 3/17/2008  |
| 2   | Updated package photo and part description                                                                                                                                                                                                                                                                              | MP             | 6/7/2010   |
| 3   | Added new format graphs, source and load impedances<br>Updated evaluation board BOM                                                                                                                                                                                                                                     | МР             | 6/15/2010  |
| 4   | Added max gate current limit<br>Updated Rth based on RF pulse measurements<br>Added Output power and drain efficiency graphs detailing the<br>effects of pulse width and duty cycle<br>Updated source and load impedances<br>Updated evaluation board BOM<br>Test limits updated based on completion of validation data | MP             | 8/27/2010  |
| 5   | Updated Rth for pulse/DC, Max Vd, Min Eff, Min Pout, package picture size (front page)                                                                                                                                                                                                                                  | DR             | 9/28/2010. |
|     |                                                                                                                                                                                                                                                                                                                         |                |            |

RF MICRO DEVICES®, RFAID®, Optimum Technology Matching®, Enabling Wretess Connectivity<sup>10</sup>, PoweStar®, PolURIS<sup>10</sup> 10714, BAD(2) and UltimateDavid<sup>10</sup> are todemasks of FFAID 1. LL BLIETOOTH is a todemark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trademarks and Ref MICRO DEVICES®, RFAID®, Optimum Technology Matching®, Enabling Wretess Connectivity<sup>10</sup>, PoweStar®, PolURIS<sup>10</sup> 1074, BAD(2) and the trademarks and Micro Devices and Annotation and Ann

KANAAN