

RFOS601X

GaAs Optical Receiver 45MHz to 1200MHz

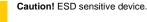
RFOS601X is a hybrid high dynamic range optical receiver module. Two of the module pins are for connection to 24V (DC), one for amplifier supply voltage, the other for the PIN diode bias. The module contains a single mode optical input suitable for wavelengths from 1290nm to 1600nm, a terminal to monitor the PIN diode current and an electrical output with an impedance of 75 Ω .

Ordering Information

RFOS6012	Box with 3 Pieces	
RFOS6013	Box with 3 Pieces	
See Page 3		

Absolute Maximum Ratings

Parameter	Rating	Unit
Optical Input Power	5	mW
DC Supply Over-Voltage (5 minutes)	30	V
ESD Sensitivity, Acc. MIL-Standard 1686C (human body model; R = $1.5k\Omega$, C = 100pF)	500	V
Storage Temperature	-40 to +85	°C
Operating Mounting Base Temperature	-20 to +85	°C
Minimum Fiber Bending Radius	35	mm
Maximum Tensile Strength	5	N


Package: SOT-115J

Features

- Superior Return Loss Performance
- Extremely Low Distortion
- Optimal Reliability
- Very Low EINC
- 30.0dB A/W Min. at 1200MHz
- 250mA Max. at 24V+

Applications

 45MHz to 1200MHz CATV Amplifier Systems

RoHS (Restriction of Hazardous Substances): Compliant per EU Directive 2011/65/EU.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS140306

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. RF MICRO DEVICES® and RFMD® are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks, and registered trademarks are the property of their respective owners. ©2013, RF Micro Devices, Inc.

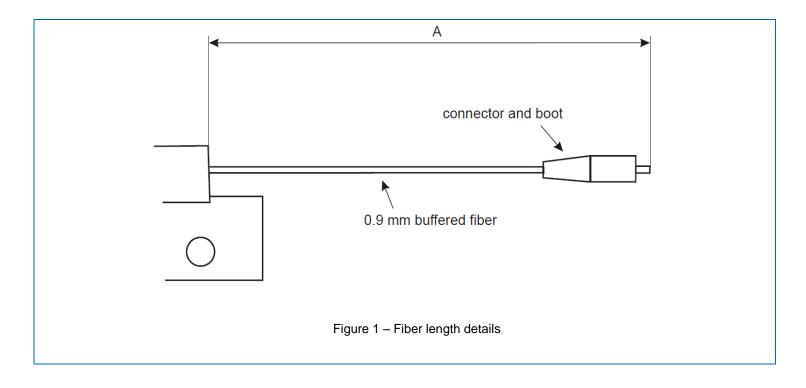
Nominal Operating Parameters

Devemeter	Specification		11-14		
Parameter	Min	Тур	Max	Unit	Condition
General Performance					V+ = 24V; T _{MB} = 30°C; Z _L = 75Ω
Deepenaivity	2400	2650		V/W	f (2000MUL)) (240mm
Responsivity	30.0	31.0		dB A/W	f = 1200MHz, λ = 1310nm
Slope ^[1]	0		2	dB	f = 45MHz to 1200MHz
Flatness of O/E Response		<0.7	1.0	dB	f = 45MHz to 1200MHz (peak to valley)
Optical Return Loss	45			dB	
Output Return Loss	15	17		dB	f = 45MHz to 1200MHz
Equivalent Input Noise		4.2	4.6	pA/ √Hz	f = 50MHz to 1200MHz
Spectral Sensitivity	0.90			A/W	$\lambda = (1310 \pm 20)$ nm
Spectral Sensitivity	0.90			A/W	$\lambda = (1550 \pm 20)$ nm
Optical Wavelength	1290		1600	nm	
Total DC Current		245	250	mA	module pin 4 and pin 5 connected to V+
PIN Diode Bias Current		1.5	5	mA	
Distortion Data					$V_{+} = 24V; T_{MB} = 30^{\circ}C; Z_{L} = 75\Omega$
Second Order Distortion ^[2]		-75	-71	dBc	fm = 54MHz; f1 = 187.25MHz; f2 = 133.25MHz
		-75	-70	dBc	fm = 446.5MHz; f1 = 97.25MHz; f2 = 349.25MHz
		-70	-65	dBc	fm = 548.5MHz; f1 = 109.25MHz; f2 = 439.25MHz
		-68	-63	dBc	fm = 746.5MHz; f1 = 133.25MHz; f2 = 613.25MHz
		-68	-63	dBc	fm = 854.5MHz; f1 = 133.25MHz; f2 = 721.25MHz
		-66	-63	dBc	fm = 986.5MHz; f1 = 133.25MHz; f2 = 853.25MHz
Third Order Distortion ^[3]		-78	-75	dBc	fm = 55.25MHz; f1 = 109.25MHz; f2 = 133.25MHz; f3 = 187.25MHz
		-78	-75	dBc	fm = 445.25MHz; f1 = 193.25MHz; f2 = 349.25MHz; f3 = 97.25MHz
		-78	-75	dBc	fm = 547.25MHz; f1 = 217.25MHz; f2 = 439.2MHz; f3 = 109.25MHz
		-78	-75	dBc	fm = 745.25MHz; f1 = 133.25MHz; f2 = 265.25MHz; f3 = 613.25MHz
		-78	-75	dBc	fm = 853.25MHz; f1 = 133.25MHz; f2 = 265.25MHz; f3 = 721.25MHz
		-78	-75	dBc	fm = 985.25MHz; f1 = 133.25MHz; f2 = 265.25MHz; f3 = 853.25MHz

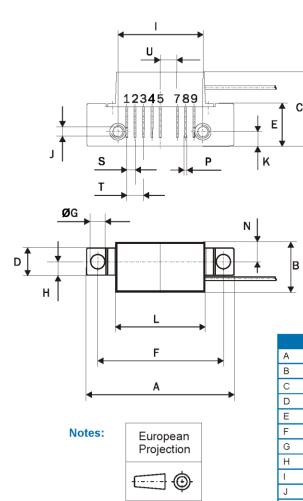
1. The slope is defined as the difference between the O/E response at the start frequency (45MHz) and the O/E response at the stop frequency (1200MHz).

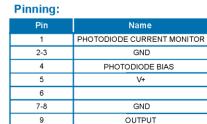
2. Two laser test; each laser with 40% OMI; Popt = 1mW (total).

3. Three laser test; each laser with 60% OMI; Popt = 1mW (total).


DS140306

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.


Cable Lengths and Connector Types


Туре		Optical Connector			
1,960	Inches	Tolerance	mm	Tolerance	Туре
RFOS6012	33.4	-4 to +0.5	848	-102 to +13	FC/APC
RFOS6013	33.4	-4 to +0.5	848	-102 to +13	SC/APC

Package Drawing (Dimensions in millimeters)

	Nominal	Min	Max
А	44,6 ^{± 0,2}	44,4	44,8
В	14,9 ^{±0,2}	14,7	15,1
С	21,9 ^{±0,5}	21,4	22,4
D	8 ^{± 0,15}	7,85	8,15
Е	12,6 ^{± 0,15}	12,45	12,75
F	38,1 ^{± 0,2}	38,0	38,2
G	4 +0,2 / -0,05	3,95	4,2
н	4 ^{± 0,2}	3,8	4,2
T	25,4 ^{±0,2}	25,2	25,6
J	UNC 6-32	-	-
К	4,2 ^{±0,2}	4,0	4,4
L	28,7 ^{±0,2}	28,5	28,9
М	11,6 ^{±0,5}	11,1	12,1
Ν	5,8 ^{± 0,4}	5,4	6,2
0	0,25 ^{± 0,02}	0,23	0,27
Р	0,45 ^{±0,03}	0,42	0,48
Q	2,54 ^{±0,3}	2,24	2,84
R	2,54 ^{±0,5}	2,04	3,04
S	2,54 ^{± 0,25}	2,29	2,79
Т	5,08 ^{± 0,25}	4,83	5,33
U	5,08 ^{± 0,25}	4,83	5,33
V	5,0 ±0,2	4,8	5,2
W	5,35		

W

Μ

0

Q

0

5 10mm

scale

R

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS140306

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.