

RFPA2005

Integrated Power Amplifier Module 1805MHz to 2170MHz

The RFPA2005 is a two-stage power amplifier (PA) designed for Small Cell Base Stations. Its broadband quadrature design supports usage in multiple bands with excellent output return loss and load tolerance. When used with DPD, the RFPA2005 delivers up to 24dBm LTE Downlink (CFR 8dB) with ACPR < -50dBc.

Functional Block Diagram

Ordering Information

RFPA2005SQ	Sample bag with 25 pieces
RFPA2005SR	7" Reel with 100 pieces
RFPA2005TR13	13" Reel with 2500 pieces
RFPA2005PCK-410	1805MHz to 2170MHz PCBA with 5-piece sample bag

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS141031

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.

RF MICRO DEVICES[®] and RFMD[®] are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks, and registered trademarks are the property of their respective owners. ©2013, RF Micro Devices, Inc.

Package: Module, 16-pin, 5.0mm x 5.0mm x 1.175mm

Features

- P_{OUT} = 24dBm, 22% PAE, with 3.3V, 20MHz LTE DL, CFR 8dB
- ACPR < -50dBc with DPD
- 25dB Gain in Band 4(1)
- Integrated Matching to 50Ω
- Integrated DC Block Capacitors
- Broadband Quadrature Design
- Excellent Output Return Loss
- Covers 3GPP Downlink in Bands: 2(25), 3, 4(1)
- VSWR Tolerant, Load Insensitive

Applications

- Small Cell Base Stations
- Data Cards with Terminals
- Customer Premise Equipment

Absolute Maximum Ratings

Parameter	Rating	Unit
DC Supply Voltage, V _{CC1} , V _{CC2} (P _{OUT} <24dBm, VSWR < 5:1)	4.5	V _{DC}
Enable Control Logic, V _{EN}	+2.2	V _{DC}
CW Maximum RF Input Power into 50Ω Load (V _{CC} =3.3V)	+15	dBm
Storage Temperature Range	-40 to +150	°C
Moisture Sensitivity Level (260° JEDEC J-STD-020)	MSL3	
Modulated (WCDMA) Input Power 6:1 Output VSWR (V _{CC} =3.3V)	+10	dBm
ESD Rating, All Pins, HBM, JESD22-A114	2000	V
ESD Rating, All Pins, CDM, JESD22-C101	1000	V

fmd》

Caution! ESD sensitive device.

RFMD Green: RoHS status based on EU Directive 2011/65/EU (at time of this document revision), halogen free per IEC 61249-2-21, < 1000ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

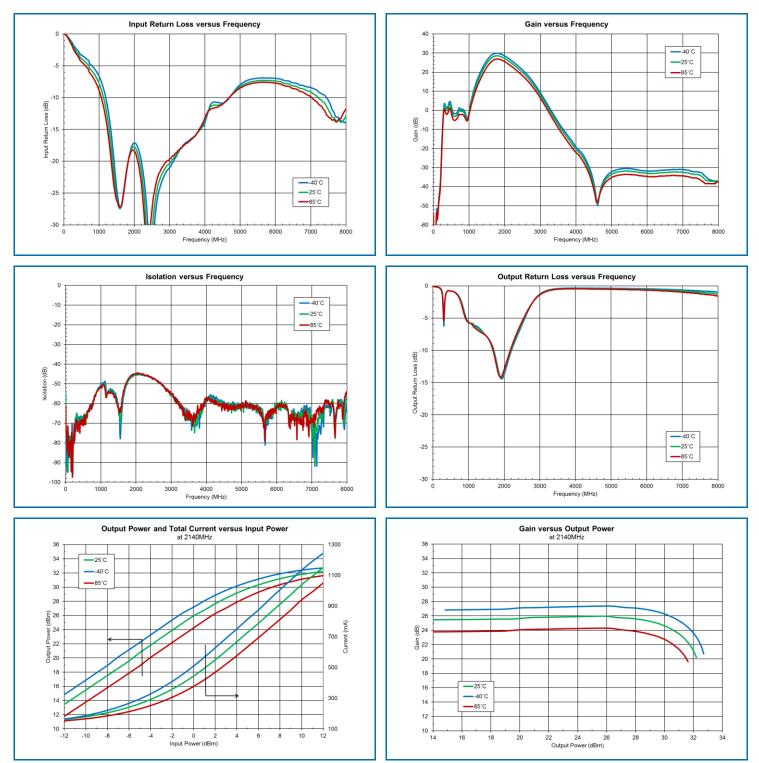
Recommended Operating Condition

Parameter	S	Unit		
	Min	Тур	Max	Unit
Operating Temperature Range	-40		+85	°C
Operating Junction Temperature			165	°C
Power Supply V _{CC1} , V _{CC2,}	3.15	3.3	3.45	V
Power Supply Vbias	3.3	3.3	3.45	V

Nominal Operating Parameters

Poromotor	Specification			Unit	
Parameter	Min	Тур	Max	Unit	Condition
Operating Frequency Range	1805		2170	MHz	
General Performance					
V _{EN} Range (Logic Low)	0		0.4	V	
V _{EN} Range (Logic High)	1.4		1.9	V	
V _{EN} Enable Current			0.2	mA	V _{EN} = 1.8V
Total Idle Current (I _{CQ})		135		mA	DC only, $V_{CC1} = V_{CC2} = 3.3V$, $V_{BIAS} = 3.3V$, $V_{EN} = 1.8V$
V _{BIAS} Current		5	9	mA	DC only, $V_{EN} = 1.8V$
DC Enable Time			7	μs	DC only, time from V_{EN} = high to stable idle current (90% of steady state value)
RF Rise / Fall Time			2	μs	P _{OUT} ≤ 24dBm, 90% of target, DC settled prior to RF
Electrical Performance: Band 4					Unless otherwise specified; Temp = +25°C, V_{CC1} , V_{CC2} = +3.3V, V_{Bias} +3.3V, V_{EN} = +1.8V, P_{OUT} = 24dBm, 2110MHz < F < 2170MHz, 50 Ω system, 20MHz LTE DL with CFR 8dB
Gain	25	26.5		dB	

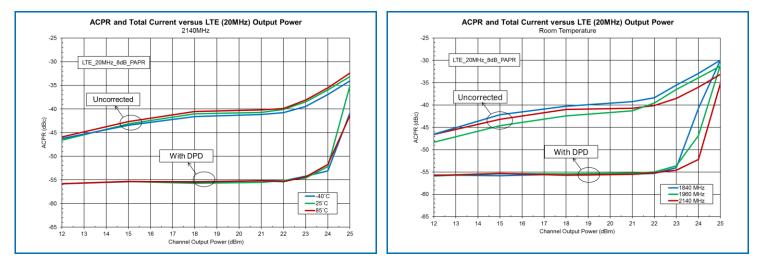
 RF Micro Devices Inc.
 7628 Thorndike Road, Greensboro, NC 27409-9421
 DS141031


 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com.
 RF MiCRO DEVICES® and RFMD® are trademarks of RFMD, LLC. BLUETOOTH is a trademark owned by Bluetooth SIG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks, and registered trademarks are the property of their respective owners. ©2013, RF Micro Devices, Inc.

RFPA2005

Parameter	Sp	ecificat	ion	Unit	Condition
Falameter	Min	Тур	Max	Onit	Condition
ACLR1 – Adjacent Channel		-34	-33	dBc	Without DPD
ACLR2 – Alternate Channel		-53	-50	dBc	Without DPD
ACLR1_DPD		-50		dBc	With DPD
ACLR2_DPD		-60		dBc	With DPD
PA Current Drain		335		mA	P _{OUT} = +24dBm
Input Return Loss		-20		dB	Small signal S11, no external matching
Output Return Loss		-10		dB	Small signal S22, no external matching
Harmonics 2f0		-42		dBm	
Harmonics 3f0		-40		dBm	CW, P _{OUT} = +24dBm

Typical Performance: T = 25°C, $V_{CC} = V_{BIAS} = 3.3V$, $V_{EN} = 1.8V$ unless otherwise noted

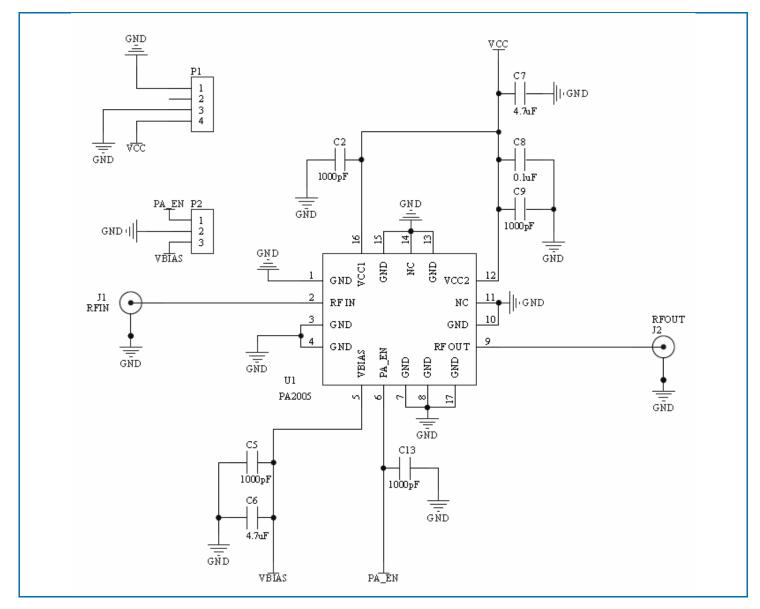

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS141031

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RFPA2005

Typical Performance: T = 25°C, $V_{CC} = V_{BIAS} = 3.3V$, $V_{EN} = 1.8V$ unless otherwise noted

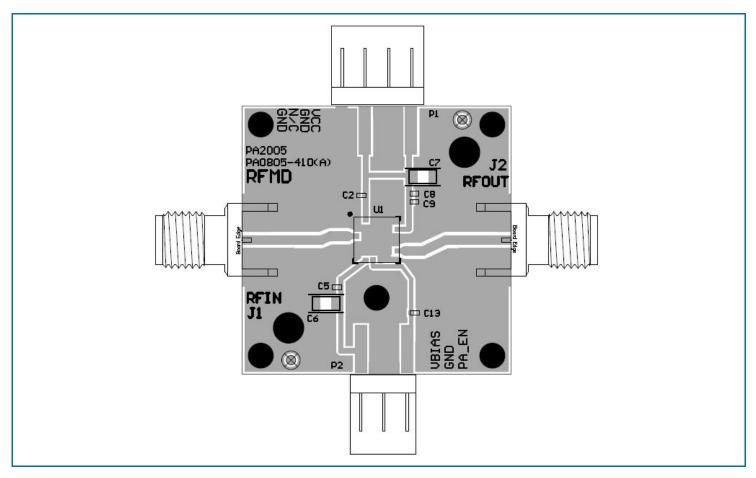

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421

DS141031

For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice @rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third paties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Evaluation Board Schematic 2110MHz to 2170MHz (B4) Application Circuit

DS141031

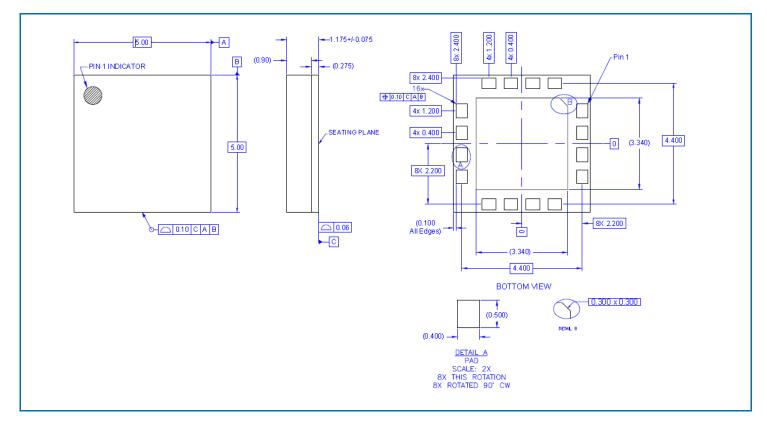

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Evaluation Board Bill of Materials (BOM) 2110MHz to 2170MHz Application Circuit

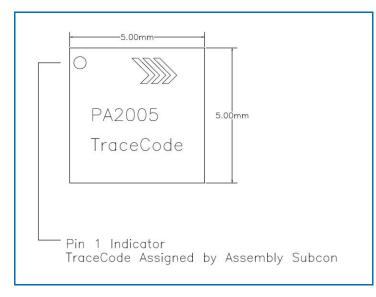
Description	Reference Designator	Manufacturer	Manufacturer's P/N	
RFPA2005, RFPA0805 Evaluation Board		Dynamic Details (DDI) Toronto	RFPA0805-410 (A)	
2110MHz to 2170MHz Integrated PA Module	U1	RFMD	RFPA2005	
CAP, 4.7µF, 20%, 10V, X7R, 1206	C6, C7	Taiyo Yuden (USA), Inc.	CE LMK316 B7475ML-7	
CAP, 1000pF, 10%, 50V, X7R, 0402	C2, C5, C9, C13	Murata Electronics	GRM155R71H102KA01D	
CAP, 0.1µF, 10%, 16V, X7R, 0402	C8	Murata Electronics	GRM155R71C104KA88D	
CONN, SMA, END, LAUNCH, 0.068"	J1-J2	Gigalane Co., Ltd.	PAF-S05-008	
CON, HDR, St, PLRZD, 4-PIN, 0.100"	P1	ITW Pancon	MPSS100-4-C	
CONN, HDR, ST, PLRZD, 3-PIN, 0.100"	P2	ITW Pancon	MPSS100-3-C	

Evaluation Board Assembly Drawing 2110MHz to 2170MHz Application Circuit

The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.



Pin Names and Descriptions


Pin	Name	Description					
1	GND	Ground connection					
2	RFIN	RF Input; internally matched to 50Ω					
3	GND	Ground connection					
4	GND	Ground connection					
5	VBIAS	Input Bias Voltage; this pin requires a regulated supply to maintain nominal bias current					
6	VEN	Enable					
7	GND	Ground connection					
8	GND	Ground connection					
9	RFOUT	RF Output; internally matched to 50Ω					
10	GND	Ground connection					
11	NC	Not connected					
12	VCC2	Output stage collector supply voltage					
13	GND	Ground connection					
14	NC	Not connected, OPEN Circuit in the Module					
15	GND	Ground connection					
16	VCC1	Driver stage collector supply voltage					
PKG BASE	GND	Ground connection; the back side of the package should be connected to the ground plan though as short of a connection as possible, PCB vias under the device are recommended.					

Package Outline and Branding Drawing (Dimensions in millimeters)

Package Outline and Branding Drawing (Dimensions in millimeters)

RF Micro Devices Inc. 7628 Thorndike Road, Greensboro, NC 27409-9421 DS141031 For sales or technical support, contact RFMD at +1.336.678.5570 or customerservice@rfmd.com. The information in this publication is believed to be accurate. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents or other rights of hird parties resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.