

RFPD2650

GaAs/GaN Power Doubler Hybrid 45MHz to 1003MHz

The RFPD2650 is a Hybrid Power Doubler amplifier module. The part employs GaAs pHEMT die and GaN HEMT die, has extremely high output capability, and is operated from 45MHz to 1003MHz. It provides excellent linearity and superior return loss performance with low noise and optimal reliability. DC current of the device can be externally adjusted for optimum distortion performance versus power consumption over a wide range of output level.

Ordering Information

RFPD2650 Box with 50 Pieces

Absolute Maximum Ratings

Parameter	Rating	Unit
RF Input Voltage (single tone)	75	dBmV
DC Supply Over-Voltage (5 minutes)	30	V
Storage Temperature	-40 to +100	°C
Operating Mounting Base Temperature	-30 to +100	°C

Package: SOT-115J

Features

- Excellent Linearity
- Superior Return Loss Performance
- Extremely Low Distortion
- Optimal Reliability
- Low Noise
- Unconditionally Stable Under All Terminations
- Extremely High Output Capability
- 22.5dB Min. Gain at 1003MHz
- 450mA Max. at 24V_{DC}
- Extra Pin For Current Adjustment

Applications

 45MHz to 1003MHz CATV Amplifier Systems

Caution! ESD sensitive device.

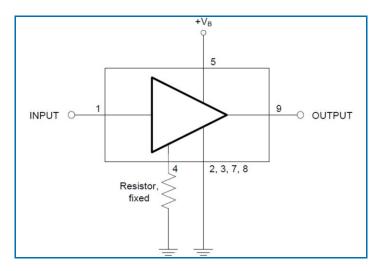
RoHS (Restriction of Hazardous Substances): Compliant per EU Directive 2011/65/EU.

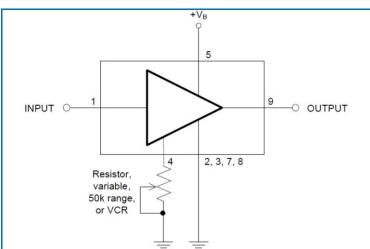
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Nominal Operating Parameters

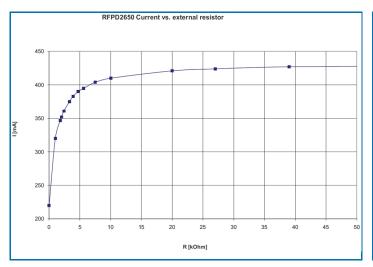
D	Specification				
Parameter	Min	Тур	Max	Unit	Condition
General Performance					$V+ = 24V; T_{MB} = 30^{\circ}C; Z_{S} = Z_{L} = 75\Omega, IDC \text{ set } > 370\text{mA}$
Power Gain	21.0	21.5	22.0	dB	f = 45MHz
Power Gam	22.5	23.0	24.0	dB	f = 1003MHz
Slope ^[1]	1.0	1.5	2.5	dB	f = 45MHz to 1003MHz
Flatness of Frequency Response			0.8	dB	f = 45MHz to 1003MHz
	20			dB	f = 45MHz to 320MHz
Input Return Loss	19			dB	f = 320MHz to 640MHz
input Neturi 2005	18			dB	f = 640MHz to 870MHz
	16			dB	f = 870MHz to 1003MHz
	20			dB	f = 45MHz to 320MHz
Output Return Loss	19			dB	f = 320MHz to 640MHz
Odiput Netum 2000	18			dB	f = 640MHz to 870MHz
	17			dB	f = 870MHz to 1003MHz
Noise Figure		3.5	4.5	dB	f = 50MHz to 1003MHz
Total Current Consumption (DC)		430.0	450.0	mA	[5]
Distortion Data					V+ = 24V; T_{MB} = 30°C; Z_{S} = Z_{L} = 75 Ω , IDC = IDC typical ^[5]
СТВ		-73	-68	dBc	
XMOD		-65	-60	dBc	V_0 = 61dBmV at 1000MHz, 18dB extrapolated tilt, 79 analog channels plus 75 digital channels (-6dB offset) ^{[2][5]}
CSO		-76	-70	dBc	plus 75 digital channels (-6dB offset) ^{[2][5]}
CIN	55	60		dB	
Distortion Data					$V+ = 24V$; $T_{MB} = 30$ °C; $Z_{S} = Z_{L} = 75\Omega$, IDC = IDC typical [5]
СТВ		-77		dBc	
XMOD		-71		dBc	V _O = 56.4dBmV at 1000MHz, 13.4dB extrapolated tilt, 79 analog
CSO		-71		dBc	channels plus 75 digital channels (-6dB offset) ^{[3][5]}
CIN		67		dB	
Distortion Data					$V_{+} = 24V; T_{MB} = 30^{\circ}C; Z_{S} = Z_{L} = 75\Omega, IDC = 370mA$
СТВ		-70		dBc	
XMOD		-62		dBc	V _o = 56.4dBmV at 1000MHz, 13.4dB extrapolated tilt, 79 analog
CSO		-71		dBc	channels plus 75 digital channels (-6dB offset)[3][5]
CIN		60		dB	

2 of 6

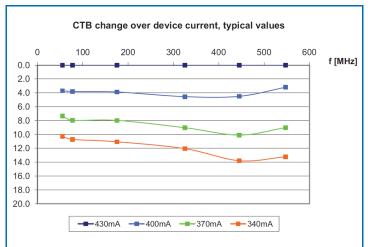

Parameter	Specification			Unit	Constition
	Min	Тур	Max	Offic	Condition

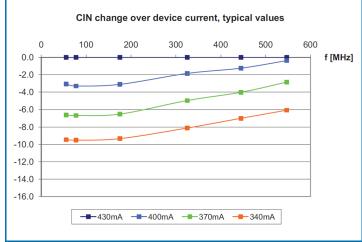

- 1. The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.
- 2. 79 analog channels, NTSC frequency raster: 55.25MHz to 547.25MHz, +43dBmV to +52.4dBmV tilted output level, plus 75 digital channels, -6dB offset relative to the equivalent analog carrier.
- 3. 79 analog channels, NTSC frequency raster: 55.25MHz to 547.25MHz, +43dBmV to +50.0dBmV tilted output level, plus 75 digital channels, -6dB offset relative to the equivalent analog carrier.
- 4. Composite Triple Beat (CTB) The CTB parameter is defined by the NCTA.
- Composite Second Order (CSO) The CSO parameter (both sum and difference products) is defined by the NCTA.
- Cross Modulation (XMOD) Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested.
- Carrier to Intermodulation Noise (CIN) The CIN parameter is defined by ANSI/SCTE 17 (Test Procedure for carrier to noise).
- 5. Test condition: Pin 4 not connected

Current Adjustment Using Hybrid Pin 4

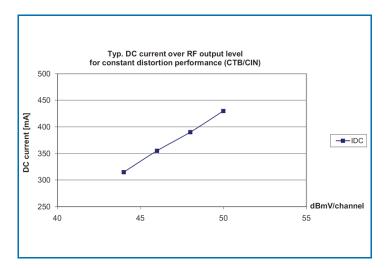

The RFPD2650 can be operated over a wide range of current to provide maximum required performance with minimum current consumption. A single external resistor connected between pin 4 and GND allows variation of current between 430mA and 220mA (typ.). Within the recommended range of current between 430mA and 370mA gain (S21) change is less than 0.2dB and noise figure change is less than 0.1dB. If pin 4 is not connected the devices operates at maximum current, see table below.

Examples of connecting pin 4:

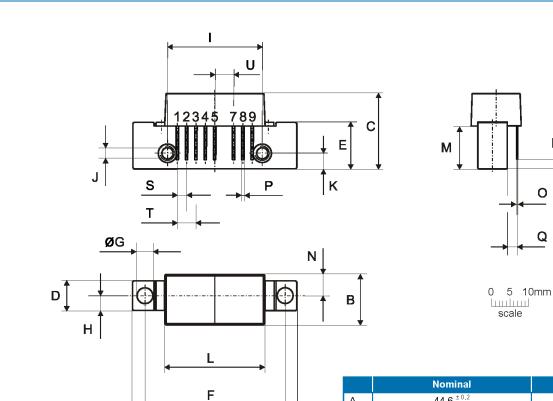




Device current [mA], typical	External resistor [Ω]
430	>50k (open)
420	18k
400	6k8
370	3k
340	1k8
320	1k
220	0 (short)
	$V+ = 24V; T_{MB} = 30$ °C; $Z_S = Z_L = 75Ω$


Change of Distortion Performance Over Current

Test Condition: V+ = 24V; T_{MB} = 30°C; Z_{S} = Z_{L} = 75 Ω ; 79 ch. 7dB tilted; V_{O} = 50dBmV at 550MHz, plus 75 digital channels (-6dB offset)



Package Drawing (Dimensions in millimeters)

Notes:

European Projection

Α

Pinning:

Pin	Name
1	Input
2-3	GND
4	IDC Adjustment
5	+VB
6	
7-8	GND
9	Output

	Nominal	Min	Max
Α	44,6 ^{± 0.2}	44,4	44,8
В	13,6 ^{± 0,2}	13,4	13,8
С	20,4 ^{± 0,5}	19,9	20,9
D	8 ^{± 0,15}	7,85	8,15
Е	12,6 ^{± 0,15}	12,45	12,75
F	38,1 ^{± 0,2}	37,9	38,3
G	4 +0,2 / -0,05	3,95	4,2
Н	4 ^{± 0,2}	3,8	4,2
T	25,4 ^{± 0,2}	25,2	25,6
J	UNC 6-32	-	-
K	4,2 ^{± 0,2}	4,0	4,4
L	27,2 ^{± 0,2}	27,0	27,4
М	11,6 ^{± 0,5}	11,1	12,1
N	5,8 ^{± 0,4}	5,4	6,2
0	0,25 ^{± 0,02}	0,23	0,27
Р	0,45 ^{± 0,03}	0,42	0,48
Q	2,54 ^{± 0,3}	2,24	2,84
R	2,54 ^{± 0,5}	2,04	3,04
S	2,54 ^{± 0,25}	2,29	2,79
Т	5,08 ^{± 0,25}	4,83	5,33
U	5,08 ^{± 0,25}	4,83	5,33