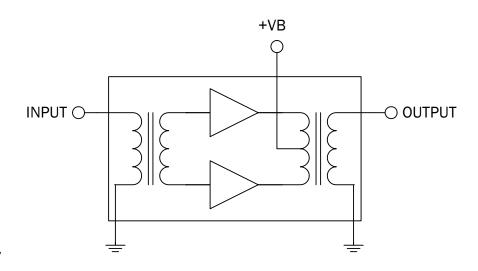


rfmd.com

RFPD3020

45MHz to 1600MHz GaAs/GaN Power Doubler Hybrid

Package: SOT-115J



Features

- Excellent Linearity
- Superior Return Loss Performance
- Extremely Low Distortion
- Optimal Reliability
- Low Noise
- Unconditionally Stable Under All Terminations
- Extremely High Output Capability
- 22.5dB Min. Gain at 1600MHz
- 450mA Max. at 24V_{DC}

Applications

 45 MHz to 1600MHz CATV Amplifier Systems

Functional Block Diagram

Product Description

The RFPD3020 is a hybrid power doubler amplifier module. The part employs GaAs pHEMT die and GaN HEMT die, has high output capability, and is operated from 45MHz to 1600MHz. It provides excellent linearity and superior return loss performance with low noise and optimal reliability.

Ordering Information

RFPD3020

45MHz to 1600MHz GaAs/GaN Power Doubler Hybrid

Absolute Maximum Ratings

Parameter	Rating	Unit
RF Input Voltage (single tone)	60	dBmV
DC Supply Over-Voltage (5 minutes)	30	V
Storage Temperature	-40 to +100	°C
Operating Mounting Base Temperature	-30 to +100	°C

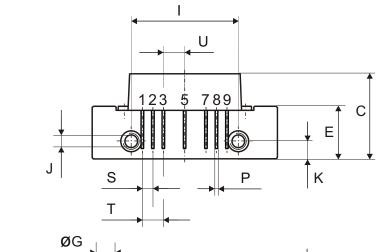
Caution! ESD sensitive device.

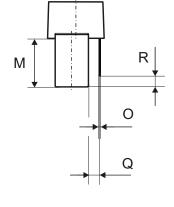
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

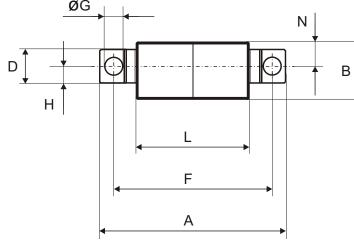
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended applications at any time without prior notice.

RoHS (Restriction of Hazardous Substances): Compliant per EU Directive 2002/95/EC.

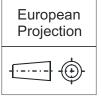
Nominal Operating Parameters


Nominal Operating Farameters							
Parameter	Specification		Unit	Condition			
	Min.	Тур.	Max.	Unit	Condition		
Overall					$V_B = 24V; T_{MB} = 30 ^{\circ}C; Z_S = Z_L = 75\Omega$		
Power Gain	21.0	21.7	22.0	dB	f = 45MHz		
	22.5	23.5	24.5	dB	f = 1600MHz		
Slope ^[1]	0.5	1.0	2.5	dB	f = 45MHz to 1600MHz		
Flatness of Frequency Response			1.3	dB			
Input Return Loss	-20			dB	f = 45MHz to 320MHz		
	-18			dB	f = 320MHz to 640MHz		
	-16			dB	f = 640MHz to 870MHz		
	-15			dB	f = 870MHz to 1200MHz		
	-14			dB	f = 1200MHz to 1600MHz		
Output Return Loss	-20			dB	f = 45MHz to 320MHz		
	-19			dB	f = 320MHz to 640MHz		
	-18			dB	f = 640MHz to 870MHz		
	-13			dB	f = 870MHz to 1200MHz		
	-10			dB	f = 1200MHz to 1600MHz		
Noise Figure		3.0	4.0	dB	f = 50MHz to 1600MHz		
Total Current Consumption (DC)		420.0	450.0	mA			
Distortion Data 45MHz to 550MHz					$V_B = 24V; T_{MB} = 30 ^{\circ}C; Z_S = Z_L = 75\Omega$		
CTB ^[3]		-77	-74	dBc	V _O = 56.4dBmV at 1000MHz, 13.4dB		
$XMOD^{[4]}$		-71	-68	dBc	extrapolated tilt, 79 analog channels plus 75 digital channels (-6dB offset) ^[2]		
CSO ^[5]		-71	-68	dBc			
CIN ^[6]	63	66		dB			


Notes:


- 1. The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.
- 2. 79 analog channels, NTSC frequency raster: 55.25 MHz to 547.25 MHz, +43dBmV to +50dBmV tilted output level, plus 75 digital channels, -6dB offset relative to the equivalent analog carrier.
- 3. Composite triple beat (CTB) is defined by the NCTA.
- 4. Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested.
- 5. Composite second order (CSO) (both sum and difference products) is defined by the NCTA.
- 6. Carrier to intermodulation noise (CIN) is defined by ANSI/SCTE 17 (Test procedure for carrier to noise).

Package Drawing



Pinning:

0	5	10mm
Ш	шШ	Ш
5	scal	е

INPUT	1	
GND	2	
GND	3	
	4	
+VB	5	
	6	
GND	7	
GND	8	
OUTPUT	9	

Notes:

All Dimensions in mm:

	nominal	min	max
Α	44,6 ^{± 0,2}	44,4	44,8
В	13,6 ^{± 0,2}	13,4	13,8
С	20,4 ^{± 0,5}	19,9	20,9
D	8 ^{± 0,15}	7,85	8,15
Е	12,6 ^{± 0,15}	12,45	12,75
F	38,1 ^{± 0,2}	37,9	38,3
G	4 +0,2 / -0,05	3,95	4,2
Н	4 ^{± 0,2}	3,8	4,2
- 1	25,4 ^{± 0,2}	25,2	25,6
J	UNC 6-32	-	-
K	4,2 ^{± 0,2}	4,0	4,4
L	27,2 ^{± 0,2}	27,0	27,4
М	11,6 ^{± 0,5}	11,1	12,1
N	5,8 ^{± 0,4}	5,4	6,2
0	0,25 ^{± 0,02}	0,23	0,27
Р	0,45 ^{± 0,03}	0,42	0,48
Q	2,54 ^{± 0,3}	2,24	2,84
R	2,54 ^{± 0,5}	2,04	3,04
S	2,54 ^{± 0,25}	2,29	2,79
Т	5,08 ^{± 0,25}	4,83	5,33
U	5,08 ^{± 0,25}	4,83	5,33