# RadHard-by-Design Analog

# RHD5912

COBHAM

Quad Comparator, Open Drain Outputs Released Datasheet Cobham.com/HiRel March 28, 2016

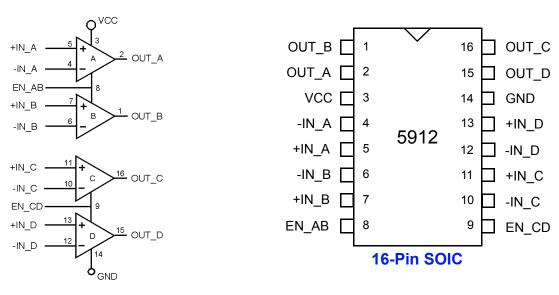
The most important thing we build is trust

#### **FEATURES**

| $\square$ Single power supply operation at 3.3                 | 3V or 5.0V                                  |
|----------------------------------------------------------------|---------------------------------------------|
| ☐ Radiation performance                                        |                                             |
| - Total dose:                                                  | > 1  Mrad(Si); Dose rate = 50-300 rad(Si)/s |
| - ELDRS Immune                                                 |                                             |
| - SEL Immune                                                   | $> 100 \text{ MeV-cm}^2/\text{mg}$          |
| - Neutron Displacement Damage                                  | > 10 <sup>14</sup> neutrons/cm <sup>2</sup> |
| ☐ Short Circuit Tolerant                                       |                                             |
| ☐ Full military temperature range                              |                                             |
| ☐ Designed for aerospace and high reli                         | iability space applications                 |
| ☐ Packaging – Hermetic ceramic SOIC                            |                                             |
| - 16-pin, .417"L x .300"W x .120"I<br>- Weight - 0.8 grams max | Ht                                          |
| ☐ Radiation Hardness Assurance Plan:                           | DLA Certified to MIL-PRF-38534, Appendix G. |

#### **GENERAL DESCRIPTION**

The RHD5912 is a radiation hardened, single supply, quad comparator with open drain outputs in a 16-pin SOIC package. The RHD5912 design uses specific circuit topology and layout methods to mitigate total ionizing dose effects and single event latchup. These characteristics make the RHD5912 especially suited for the harsh environment encountered in Deep Space missions. It is guaranteed operational from -55°C to +125°C. Available screened in accordance with MIL-PRF-38534 Class K, the RHD5912 is ideal for demanding military and space applications.


#### ORGANIZATION AND APPLICATION

The RHD5912 quad comparator is intended for operation with dynamic signals on either or both inputs. Comparison is 'continuous', that is, the circuit functions as high gain open loop amplifiers with a digital output. For slow input signals with small input differences the comparators can be expected to respond to small noise signals at the inputs. Although there is internal hysteresis, feedback hysteresis is the responsibility of the user to avoid 'chattering' on system noise.

The comparator will accept signals anywhere in the included power supply range. The circuit delay is specified for a half-volt single ended or differential input step of either polarity ending in an input polarity reversal of 10mV. See Switching Diagrams.

CMOS device drive has a negative temperature coefficient and the devices are therefore inherently tolerant to momentary shorts, although on chip thermal shutdown is not provided. All inputs and outputs are diode protected

The devices will not latch with SEU events above 100 Mev-cm<sup>2</sup>/mg. Total dose degradation is minimal to above 1 Mrad(Si). Displacement damage environments to neutron fluence equivalents in the mid 10<sup>14</sup> neutrons per cm<sup>2</sup> range are readily tolerated. There is no sensitivity to low-dose rate (ELDRS) effects. SEU effects are application dependent.



**FIGURE 1: BLOCK DIAGRAM** 

**FIGURE 2: PACKAGE PIN-OUT** 

#### Notes:

- 1. Package and Lid are electrically isolated from signal pads.
- 2. It is recommended that the Lid be grounded to prevent any ESD or static buildup.
- 3. EN\_AB enables Comparators A & B. EN\_CD enables Comparators C & D.

| Pin | Signal Name | Definition                                                                        |
|-----|-------------|-----------------------------------------------------------------------------------|
| 1   | OUT_B       | Output of Comparator B.                                                           |
| 2   | OUT_A       | Output of Comparator A.                                                           |
| 3   | VCC         | DC Supply Voltage.                                                                |
| 4   | -IN_A       | Inverting input of Comparator A.                                                  |
| 5   | +IN_A       | Non-Inverting input of Comparator A.                                              |
| 6   | -IN_B       | Inverting input of Comparator B.                                                  |
| 7   | +IN_B       | Non-Inverting input of Comparator B.                                              |
| 8   | EN_AB       | A Logic Low will disable Comparator A & B so that the outputs are high impedance. |
| 9   | EN_CD       | A Logic Low will disable Comparator C & D so that the outputs are high impedance. |
| 10  | -IN_C       | Inverting input of Comparator C.                                                  |
| 11  | +IN_C       | Non-Inverting input of Comparator C.                                              |
| 12  | -IN_D       | Inverting input of Comparator D.                                                  |
| 13  | +IN_D       | Non-Inverting input of Comparator D.                                              |
| 14  | GND         | DC Supply Return.                                                                 |
| 15  | OUT_D       | Output of Comparator D.                                                           |
| 16  | OUT_C       | Output of Comparator C.                                                           |

**FIGURE 3: PIN-OUT DESCRIPTION** 

## **ABSOLUTE MAXIMUM RATINGS**

| Parameter                                | Range                | Units  |
|------------------------------------------|----------------------|--------|
| Case Operating Temperature Range         | -55 to +125          | °C     |
| Storage Temperature Range                | -65 to +150          | °C     |
| Junction Temperature                     | +150                 | °C     |
| Supply Voltage (+Vcc)                    | +7.0                 | V      |
| Input Voltage                            | Vcc +0.4<br>GND -0.4 | V<br>V |
| Lead Temperature (soldering, 10 seconds) | 300                  | °C     |
| Thermal Resistance, Junction-to-Case ΘJC | 7                    | °C/W   |
| Power @ 25°C                             | 250                  | mW     |

NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress rating only; functional operation beyond the "Operation Conditions" is not recommended and extended exposure beyond the "Operation Conditions" may affect device reliability.

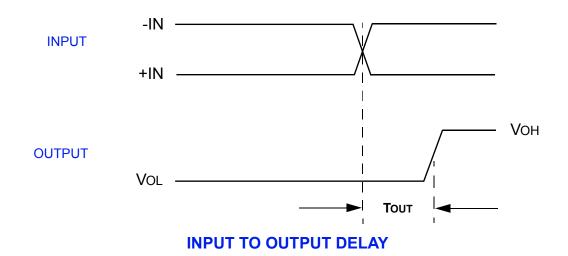
# RECOMMENDED OPERATING CONDITIONS

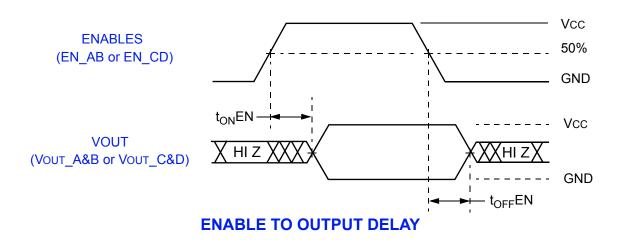
| Symbol | Parameter               | Typical            | Units |
|--------|-------------------------|--------------------|-------|
| +Vcc   | Power Supply Voltage    | 3.3 to 5.0         | V     |
| Vсм    | Input Common Mode Range | (Vcc - 1.5) to GND | V     |

# **ELECTRICAL PERFORMANCE CHARACTERISTICS**

(Tc = -55°C to +125°C, +Vcc = +5.0V -- Unless otherwise specified)

| Parameter                                        | Symbol   | Conditions                     | Min | Max  | Units |
|--------------------------------------------------|----------|--------------------------------|-----|------|-------|
| Quiescent Supply Current 1/                      | logo     | En = 1, No Load                |     | 3    | mA    |
|                                                  | Iccq     | En = 0 <u>2</u> /              |     | 300  | nA    |
| Input Offset Voltage 1/                          | Vos      |                                | -20 | 20   | mV    |
| Input Offset Current 1/, 3/                      | los      | Tc = +25°C, +125°C             | -10 | 10   | nA    |
| Input Bias Current 1/, 3/                        | lв       | Tc = +25°C, +125°C             | -10 | 10   | nA    |
| Common Mode Rejection Ratio 1/                   | CMRR     |                                | 50  |      | dB    |
| Power Supply Rejection Ratio 1/                  | PSRR     |                                | 70  |      | dB    |
| Output Voltage Low 1/                            | Vol      | IOUT = 5mA                     |     | 0.25 | V     |
|                                                  |          | IOUT = 10mA                    |     | 0.44 | V     |
|                                                  |          | IOUT = 20mA                    |     | 1.00 | V     |
| Gain <u>1</u> /                                  | А        |                                | 5   |      | V/mV  |
| Output Leakage Current 1/, 3/                    | ILKOUT   | Vout = Vcc, Tc = +25°C, +125°C |     | 100  | nA    |
| Short Circuit Output Current 2/                  | lo(sink) |                                | -35 | -60  | mA    |
| Input Voltage - Enable (EN_AB,                   | VHI      | High (Enabled)                 | 3.5 |      | V     |
| EN_CD)                                           | VLO      | Low (Disabled)                 |     | 1.5  | V     |
| Input Current - Enable (EN_AB, EN_CD) <u>3</u> / | len      | Tc = +25°C, +125°C             |     | 10   | nA    |


Notes: Specification derated to reflect Total Dose exposure to 1 Mrad(Si) @ 25°C.


Not tested. Shall be guaranteed by design, characterization or correlation to other test parameters. Subgroup 3 for these parameters is guaranteed, but not production tested.

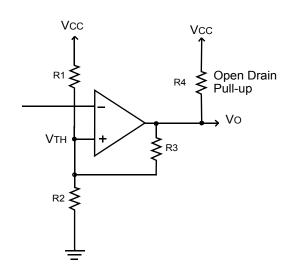
# **SWITCHING CHARACTERISTICS**

(Tc = -55°C TO +125°C, +Vcc = +5.0V -- UNLESS OTHERWISE SPECIFIED)

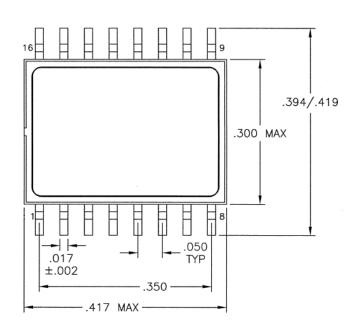
| Parameter                | Symbol              | Conditions | Min | Max | Units |
|--------------------------|---------------------|------------|-----|-----|-------|
| Output Delay (Switching) | Тоит                | 1/         |     | 300 | ns    |
| Output Delay (Enabled)   | t <sub>ON</sub> EN  |            |     | 500 | ns    |
| Output Delay (Disabled)  | t <sub>OFF</sub> EN |            |     | 100 | ns    |

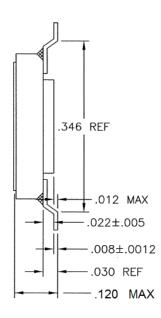





# FIGURE 4: RHD5912 SWITCHING DIAGRAMS

Note: 1/2 The circuit delay is specified for a half-volt single ended or differential input step, of either polarity, ending in an input polarity reversal of 10mV.


# Threshold Voltage


$$V_{TH} = Vcc \frac{R2}{R1 + R2}$$

$$\frac{\text{Hysteresis Calculation}}{\text{HYS}} = Vo\frac{R2}{R2 + R3}$$



# **APPLICATION NOTE 1: HYSTERESIS**





Note: Package and lid are electrically isolated from signal pads.

# **ORDERING INFORMATION**

| Model          | DLA SMD # Screening |                                                                                                                                           | Package                |
|----------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| RHD5912-7      | -                   | Commercial Flow, +25°C testing only                                                                                                       |                        |
| RHD5912-S      | -                   | Military Temperature, -55°C to +125°C<br>Screened in accordance with the individual Test Methods<br>of MIL-STD-883 for Space Applications |                        |
| RHD5912-201-1S | 5962-1024203KXC     | In accordance with DLA SMD                                                                                                                | 16-pin<br>SOIC Package |
| RHD5912-201-2S | 5962-1024203KXA     | III accordance with DEA SIMD                                                                                                              | 3 3 3 3 3 3            |
| RHD5912-901-1S | 5962H1024203KXC     | In accordance with DLA Certified RHA Program Plan to<br>RHA Level "H", 1 Mrad(Si)                                                         |                        |
| RHD5912-901-2S | 5962H1024203KXA     | RHA Level "H", 1 Mrad(Si)                                                                                                                 |                        |

# **REVISION HISTORY**

| Date       | Revision | Change Description        |  |
|------------|----------|---------------------------|--|
| 03/28/2016 | D        | Import into Cobham format |  |
|            |          |                           |  |
|            |          |                           |  |
|            |          |                           |  |
|            |          |                           |  |

### Datasheet Definition

Advanced Datasheet - Product In Development

Preliminary Datasheet - Shipping Prototype

Datasheet - Shipping QML & Reduced Hi-Rel



#### **EXPORT CONTROL:**

This product is controlled for export under the Export Administration Regulations (EAR), 15 CFR Parts 730-774.

A license from the Department of Commerce may be required prior to the export of this product from the United States.

Cobham Semiconductor Solutions 35 S. Service Road Plainview, NY 11803



E: info-ams@cobham.com T: 800 645 8862

Aeroflex Plainview Inc., DBA Cobham Semiconductor Solutions, reserves the right to make changes to any products and services described herein at any time without notice. Consult Aeroflex or an authorized sales representative to verify that the information in this data sheet is current before using this product. Aeroflex does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by Aeroflex; nor does the purchase, lease, or use of a product or service from Aeroflex convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Aeroflex or of third parties.