RLT635-100GPD

TECHNICAL DATA

High Power Visible Laser Diode

Features

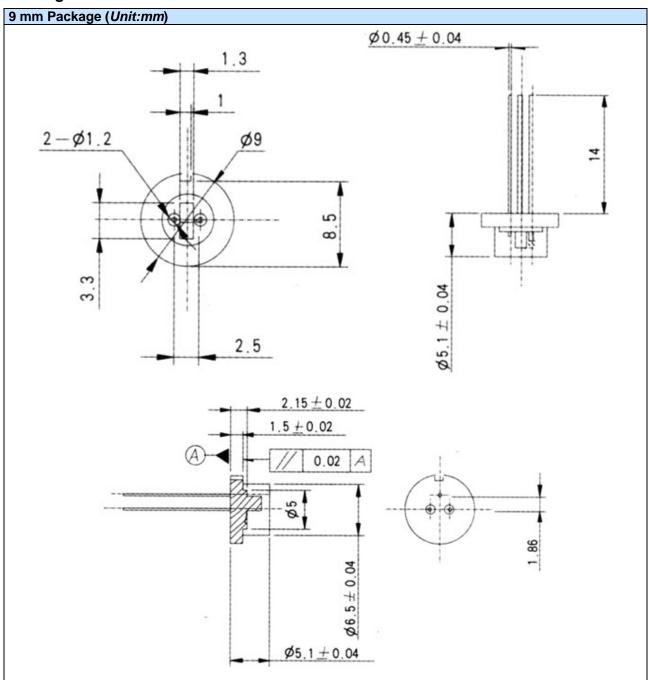
Lasing Mode Structure: multi mode
Peak Wavelength: typ. 635 nm
Optical Ouput Power: 100 mW

Package: 9 mmWith Monitor PD

Electrical Connection

Pin Configuration					Bottom View	
10	93	n-type			2	
	755	PIN	Function			
LD 🖳	Y PD	1	LD Cathode		> • • <	
		2	LD Anode, PD Cathode		1 3	
		3	PD Anode			
02	2					

Absolute Maximum Ratings ($T_c=20$ °C)


Item	Symbol	Value	Unit
CW Output Power	Po	100	mW
Operating Case Temperature	T _C	-20 +25	°C
Storage Temperature	T _{stg}	-40 +85	°C

Specifications ($T_C=20$ °C)

ltem	Symbol	Min.	Тур.	Max.	Unit				
Optical Specifications									
CW Output Power	Po	-	100	-	mW				
Center Wavelength	λ _C	625	635	645	nm				
Spectral Width (FWHM)	Δλ	-	-	3	nm				
Wavelength Temperature Coefficient	∂λ / ∂T	-	0.3	-	nm/°C				
FWHM Beam Divergence	θ∥	-	10	-	deg				
FWHIVI Bealti Divergence	θΪ	-	40	-	deg				
Emitting Aperature	WxH		100 x 1		μm				
Polarization			TE						
Lifetime		3000	-	-	hour				
Electrical Specifications									
Threshold Current	I _{th}	-	-	500	mA				
Operating Current	l _{op}	-	-	700	mA				
Slope Efficiency	η	0.5	-	-	W/A				
Operating Voltage	U _{op}	-	-	2.5	V				
Series Resistance	R_d	-	0.8	-	Ω				
The charge enceifications are for reference purpose only and cubicated to change without prior notice									

The above specifications are for reference purpose only and subjected to change without prior notice.

Package Dimensons

Safety of Laser light

Laser Light can damage the human eyes and skin. Do not expose the
eye or skin directly to any laser light and/or through optical lens. When
handling the LDs, wear appropriate safety glasses to prevent laser
light, even any reflections from entering to the eye. Focused laser
beam through optical instruments will increase the chance of eye
hazard.

Cautions

1. Operating methode

- This LD shall change its forward voltage requirement and optical ouput power according to temperature change. Also, the LD will require more operation current to maintain same ouput power as it degrades. In order to maintain output power, use of APC (Automatic Power Control) is recommended. Which use monitor feedback to adjust the operation current.
- Confirm that electrical spike current generated by switching on and off does not exceed the
 maximum operating current level specified herein above as absolute maximum rating. Also,
 employ appropriat countermeasures to reduce chattering and/or overshooting in the circuit.

2. Static Electricity

• Static electricity or electrical surges will reduce and degrade the reliability of the LDs. It is recommended to use a wrist trap or anti-electrostatic glove when handling the product.

3. Absolute Maximum Rating

Active layer of LDs shall have high current density and generate high electric field during its
operation. In order to prevent excessive damage, the LD must be operated strictly below
absolute maximum rating.

