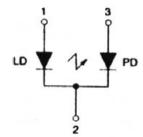
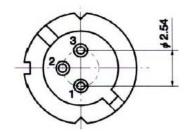
RLT980-100GS

TECHNICAL DATA



High Power Infrared Laser Diode


Lasing mode structure: single mode Lasing wavelength: typ. 980 nm Max. optical power: 100 mW Package: 9 mm (SOT-148)

PIN CONNECTION:

- 1) Laserdiode anode
- 2) Laserdiode cathode and photodiode cathode
- 3) Photodiode anode

Optical-Electrical Characteristics (Tc = 25°C)

CHARACTERISTIC	SYMBOL	MIN	TYP	MAX	UNIT
Lasing Wavelength	λ_{p}	975	980	985	nm
Spectrum FWHM	λ_{f}	-	0.5	2	nm
Optical Output Power	Po	-	100	-	mW
Kink-free Power	P _K	-	130	-	mW
Threshold Current	I _{th}	-	30	80	mA
Operation Current	I _{op}	-	140	180	mA
Operation Voltage	V_{op}	-	1.5	1.8	V
Beam Divergence	$\Theta_{/\!/}$	-	8	10	0
Beam Divergence	Θ	-	30	35	0
Lifetime	t	100,000	-	-	hour
Slope Efficiency	η	0.8	0.9	-	W/A

Absolute Maximum Ratings (Tc = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Operating Temperature	T _{op}	-20 +50	°C
Storage Temperature	T _{stg}	-40 +80	°C
Lead Soldering Temperatur (<5sec)	T _{sol}	+250°	°C

Safety

Caution: Laser light emitted from any diode laser is invisible and may be harmful to human eye. Avoid looking directly into the diode laser aperature when the device is in operation.

Note: The use of optical instruments with this product will increase eye hazard.

ESD Caution

Always handle diode lasers with extreme care to prevent electrostatic discharge, the primary cause of unexpected diode failure. You can prevent ESD by always wearing wrist straps, grounding all applicable work surfaces, and following extremely rigorous antistatic.

Operating Considerations

Operating the diode laser outside of its maximum ratings my cause device failure or a safety hazard. Power supplies used with the component must be employed such that the maximum peak optical power cannot be exceeded. CW diode lasers may be damaged by excessive drive current or switching transients. When using power supplies, the diode laser should be connected with the main power on and the output voltage at zero. The current shuould be increased slowly while monitoring the diode laser output power and the driver current. Device degradation accelerates with increased tempereature, and therefore careful attention to minimize the case temperature is advised. A proper heat sink for the diode laser on a thermal radiator will greatly enhance laser life.