

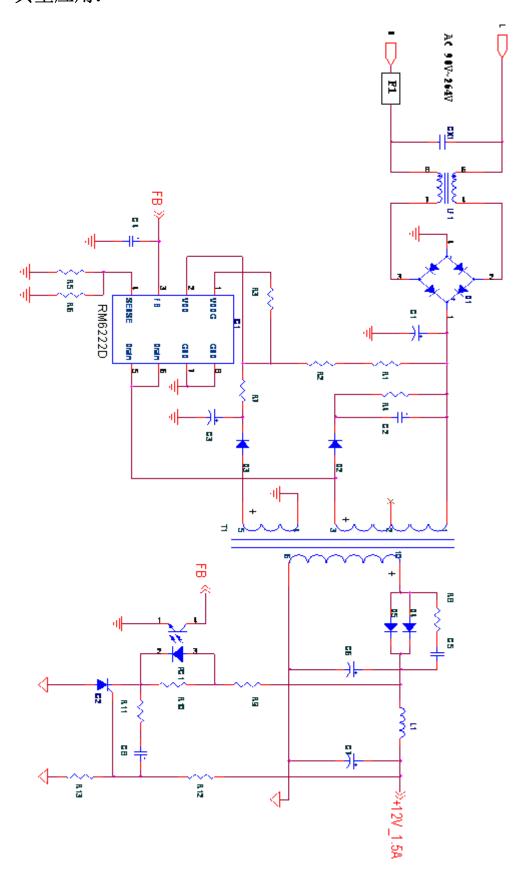
## 产品概述:

RM6222D 是一款高性能电流模 式 PWM 控制器, 内置高压 MOSFET 进一步提高了产品可靠性。优化的合 理性电路设计最大程度节省了产品整 体成本。离线式副边反馈应用,单电 压输入时最大输出功率可达 24W。

RM6222D 拥有多种保护功能:逐 周期限流保护、过载保护、VDD 过压 保护和欠压锁定后自动重启功能。采 用软开关控制图腾柱栅极驱动和抖频 技术,很好地抑制了 EMI, 无 Y 电容 应用。最小工作频率 20KHz, 有效消 除了音频噪音。

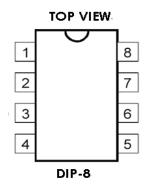
RM6222D 采用 DIP-8 封装形式。

### 典型特点:


- 优化的 Burst Mode 控制
- 内置软启动功能
- 频率抖动减小 EMI
- 内置同步斜坡补偿
- 低启动电流、低工作电流
- 内置前沿消隐技术
- 保护模式下可实现自动重启
- VDD 过压钳制、欠压锁定功能
- VDD 过压保护、过载保护功能
- 全电压范围通过逐周期过流点设 置实现连续输出功率设置

### 应用领域:

- 小功率适配器
- LED 照明
- 开放式开关电源
- 台式电脑和服务器辅助电源
- VCR,S VR,STB,DVD&DVCD 播 放器电源




# 典型应用:





# 封装信息:





Y: 年份; O: 订单号; D: DIP; Q: 量产; X: 封装厂;

## 管脚分布:



RM6222D

# 管脚功能:

| 管脚  | 符号    | 功能描述        |  |  |
|-----|-------|-------------|--|--|
| 1   | VDDG  | 内置栅极驱动电源供应脚 |  |  |
| 2   | VDD   | 电源输入脚       |  |  |
| 3   | FB    | 反馈输入脚       |  |  |
| 4   | SENSE | 电流检测脚       |  |  |
| 5、6 | DRAIN | 功率管漏极输出脚    |  |  |
| 7、8 | GND   | 接地脚         |  |  |

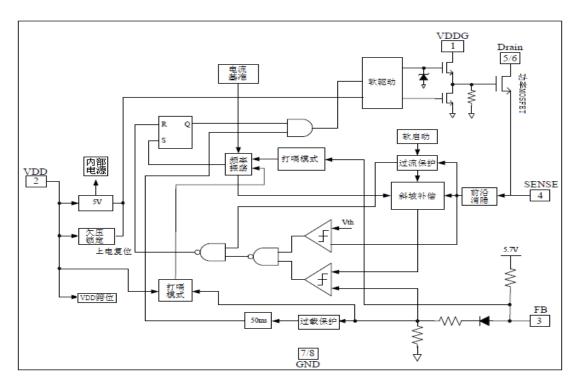
# 极限参数:

| 参数            | 范围             |  |  |
|---------------|----------------|--|--|
| 漏极电压          | -0.3V to BVdss |  |  |
| VDD 输入电压      | -0.3V to 30V   |  |  |
| VDDG 输入电压     | -0.3V to 30V   |  |  |
| VDD 箝位连续电流    | 10mA           |  |  |
| FB/Sense 输入电压 | -0.3V to 7V    |  |  |
| 结点温度范围        | -20°C to150°C  |  |  |
| 存储温度范围        | -55℃ to160℃    |  |  |
| 焊接温度(焊接 10 秒) | 260℃           |  |  |

注意: 1、超出上表所列的极限参数范围,可能会造成器件的永久性损坏;

2、长时间工作在极限状态时,可能影响器件的可靠性。




# 电气参数:

(Ta=25°C, VDD=VDDG=16V)

| 符号                                                       | 参数        | 测试条件         | 最小值 | 典型值 | 最大值  | 单位   |  |  |  |  |
|----------------------------------------------------------|-----------|--------------|-----|-----|------|------|--|--|--|--|
| VDD 供电部分                                                 |           |              |     |     |      |      |  |  |  |  |
| $I_{START\_UP}$                                          | 启动电流      | VDD=14.5V    |     | 3   | 20   | uA   |  |  |  |  |
| I_VDD                                                    | 工作电流      | Vfb=2V 1.6   |     | 2   | 2.4  | mA   |  |  |  |  |
| UVLO(ON)                                                 | 欠压锁定开启    | 8.5          |     | 9   | 9.5  | V    |  |  |  |  |
| UVLO(OFF)                                                | 欠压锁定关闭    | 14.5         |     | 15  | 15.5 | V    |  |  |  |  |
| OVP(ON)                                                  | 过压保护      | 27           |     | 28  | 29   | V    |  |  |  |  |
| VDD_clamp                                                | VDD 箝位电压  |              |     | 30  |      | V    |  |  |  |  |
| 反馈输入部分                                                   | 反馈输入部分    |              |     |     |      |      |  |  |  |  |
| $V_{{\scriptscriptstyle FB}\_{\scriptscriptstyle Open}}$ | FB 脚开路电压  | 5.4          |     | 5.6 | 5.8  | V    |  |  |  |  |
| $I_{FB\_Short}$                                          | FB 脚短路电流  | 1.5          |     | 1.7 | 1.9  | mA   |  |  |  |  |
| $V_{TH\_OD}$                                             | 零占空比时 FB  |              |     |     |      | V    |  |  |  |  |
|                                                          | 阈值电压      |              |     | 0.8 |      |      |  |  |  |  |
| V                                                        | 过载 FB 阈值  |              |     | 3.7 |      | V    |  |  |  |  |
| $V_{TH\_PL}$                                             | 电压        |              |     |     |      |      |  |  |  |  |
| $T_{D}_{-}PL$                                            | 过载延迟时间    |              |     | 50  |      | ms   |  |  |  |  |
| 电流检测部分                                                   | •         |              |     |     |      |      |  |  |  |  |
| $T_{soft}$                                               | 软启动时间     |              |     | 4   |      | ms   |  |  |  |  |
| $T_{blanking}$                                           | 前沿消隐时间    |              |     | 300 |      | Ns   |  |  |  |  |
| $V_{th\_oc}$                                             | 电流检测      | Vfb=3.3V 0.7 |     | 0.8 | 0.0  | V    |  |  |  |  |
| V th_oc                                                  | 基准电压      | VID-3.3V U.7 |     | 0.6 | 0.9  | V    |  |  |  |  |
| 振荡器部分                                                    |           |              |     |     |      |      |  |  |  |  |
| Fosc                                                     | 正常工作频率    | 45           |     | 50  | 55   | KHz  |  |  |  |  |
| $\Delta f_{  TEMP}$                                      | 温度频率特性    |              |     | 5   |      | %    |  |  |  |  |
| $\Delta f_{\_VDD}$                                       | VDD 电压与   | Vfb=3.3V     | 5   |     |      | %    |  |  |  |  |
| <del>'J</del> _VDD                                       | 频率特性      | Vcs=0V       | 3   |     |      | /0   |  |  |  |  |
| $D_{ m max}$                                             | 最大占空比     | 70           |     | 80  | 90   | %    |  |  |  |  |
| $F_{\_HICCUP}$                                           | 打嗝模式      |              |     | 20  |      | KHz  |  |  |  |  |
|                                                          | 工作频率      |              |     | 20  |      | INIZ |  |  |  |  |
| $\Delta f_{soc}$                                         | 频率抖动范围    | -4           |     |     | 4    | %    |  |  |  |  |
| 功率 MOSFET 部分                                             |           |              |     |     |      |      |  |  |  |  |
| $BV_{ m DSS}$                                            | MOSFET 漏源 | 600          |     |     |      | V    |  |  |  |  |
|                                                          | 击穿电压      |              |     |     |      | v    |  |  |  |  |
| $R_{DS(ON)}$                                             | 完全导通阻抗    | 4.5          |     | 5.0 | 5.5  | Ω    |  |  |  |  |



### 内部框图:



## 工作原理:

RM6222D是一款应用于小功率 离线式反激开关电源的高性能PWM 控制器。全电压输入范围内,输出功 率可达18W。Burst Mode 控制很好地 减小了待机功耗,优化的高合理性设 计,符合国际电源标准。

#### 启动电流和启动控制

RM6222D只需很小的电流就可以完成启动,当VDD电压达到高于欠压锁定关断电压时,系统立即启动。建议选用兆级电阻作为启动电阻,这样既可减小功率损耗也可提高系统启动的可靠性。对于AC/DC适配器,建议采用额定功率为1/8W的2兆欧电阻作为启动电阻。

#### 软启动

RM6222D 内置4ms软启动延迟,

可减小 RM6222D在上电瞬间所承受的电压应力。当 VDD电压达到欠压锁定关断电压时,峰值电流流过限流电阻所产生的电压在软启动时间内从 0上升到0.8V,有效抑制了开关瞬间的冲击电流。每次重启均采用软启动保护。

#### 抖频技术

RM6222D集成频率抖动功能,通过对频率进行微调,减弱谐波干扰。 扩展带宽可减小EMI,简化系统设计。 优化的Burst Mode工作

空载和轻载下,大部分损耗由开 关损耗、变压器磁芯损耗和缓冲电路 损耗三部分产生。较低的工作频率可 减小开关损耗,在空载和轻载下,FB 脚电压下降到一定值时,RM6222D将 进入Burst Mode 工作模式;当VDD电



压低于预先设定值时,RM6222D同样 进入Burst Mode 工作模式,减小了开 关损耗和待机损耗。不同负载下,这 种开关频率均无音频噪音产生。

### 电流检测和前沿消隐技术

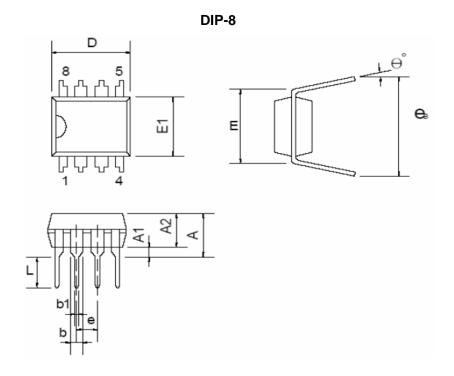
RM6222D采用电流模式 PWM控制和逐周期电流限制技术。开关电流通过Sense脚接地电阻进行电流检测。

前沿消隐电路可抑制 MOSFET在 导通时刻所产生的峰值电压,无需在 Sense脚外置RC滤波电路。在前沿消 隐时间内,电流限制比较器无法驱动 功率MOSFET。Sense脚和FB脚电压 共同决定脉宽调制占空比的大小。 内置斜坡补偿

内置斜坡补偿电路增加了 PWM 发生器输入端电流感应电压的上升斜率。这极大地提高了连续模式下闭环 反馈回路的稳定性,同时也抑制了谐波振荡,减小了输出端纹波电压。 驱动

RM6222D內置的高压 MOSFET 是由专门的栅极驱动来控制。栅极驱动能力过弱将导致 MOSFET高阻抗、开关损耗大,驱动能力过强则导致抗

干扰能力降低。图腾柱式栅极驱动控制输出强度和死区时间可平衡驱动能力。低损耗和良好的EMI系统设计也将更易实现。栅极驱动能力可通过 VDD 与VDDG之间连接的电阻进行调节,漏极的下降沿也被很好的控制。这使系统的EMI设计拥有更大的灵活性。保护控制


RM6222D通过多种保护功能实 现了高可靠性。包括逐周期限流、过 载保护、VDD欠压锁定、VDD过压保 护和电压箝位等功能。全电压范围内, OCP通过线性电压补偿完成恒定功率 限制。当FB电压大于VTH PL时,输出 表现为过载状态,控制电路立即关断 开关管: 当VDD电压低于欠压锁定阈 值时开关管重启。变压器辅助绕组提 供VDD电源。当 VDD电压高于 28.5V 时,RM6222D进入过压保护模式,输 出关断; 当VDD电压下降到欠压锁定 开启阈值电压时, 开关管将进入重启 状态: 当VDD电压高于箝位电压时, RM6222D内部箝位电路将 VDD箝位 在30V, 开关管停止导通,输出关断。

Web: <u>www.reactor-micro.com</u> 2012-05-25

6



# 封装尺寸:



| 符号                   | 毫米  |       |        | 英寸    |       |       |  |
|----------------------|-----|-------|--------|-------|-------|-------|--|
|                      | 最小值 | 典型值   | 最大值    | 最小值   | 典型值   | 最大值   |  |
| Α                    |     |       | 5.334  |       |       | 0.210 |  |
| A1 0.381             |     |       |        | 0.015 |       |       |  |
| A2 3.175             | •   | 3.302 | 3.429  | 0.125 | 0.130 | 0.135 |  |
| b                    |     | 1.524 |        | 0.060 |       |       |  |
| b1                   |     | 0.457 |        | 0.018 |       |       |  |
| D 9.017              |     | 9.271 | 10.160 | 0.355 | 0.365 | 0.400 |  |
| E                    |     | 7.620 |        | 0.300 |       |       |  |
| E1 6.223             |     | 6.350 | 6.477  | 0.245 | 0.250 | 0.255 |  |
| E                    |     | 2.540 |        | 0.100 |       |       |  |
| L 2.921              |     | 3.302 | 3.810  | 0.115 | 0.130 | 0.150 |  |
| e <sub>B</sub> 8.509 |     | 9.017 | 9.525  | 0.335 | 0.355 | 0.375 |  |
| θ° 0°                |     | 7°    | 15°    | 0°    | 7°    | 15°   |  |