

FEATURES

- Extended Burst Mode Operation
- Level 6 compliance with <75mW standby power at universal AC input
- Audio noise free operation
- Fixed 65KHz(typical) switching frequency
- Power on soft start reducing MOSFET Vds stress
- Frequency shuffling for EMI
- Leading edge blanking on current sense input
- Over voltage protection(OVP)
- RM proprietary line
- Over temperature protection (OTP) with auto-recovery
- VDD under voltage lockout with hysteresis(UVLO)
- Accurate Overload protection(OLP)
- Cycle-by-Cycle over-current threshold setting for constant output power limiting over universal input voltage range
- Secondary Rectifier Short Protection

APPLICATIONS

- AC/DC adapter
- Open-frame SMPS
- VCR,SVR,STB,DVD&DVCD Player SMPS
- Auxiliary Power Supply for PC and Server
- Set-Top Box Power
- Digital Cameras and Camcorder Adapter

ORDERING INFORMATION

Product Name	Package	Silk Screen	Description	Package
RM6314D	DIP-8	RM6314D	Halogen-Free	Tube

OUTPUT POWER TABLE

Product Name	185V264V		90V264V		
	Adapter	Open Frame	Adapter	Open Frame	
RM6314D	20W	24W	18W	24W	

GENERAL DESCRIPTION

RM6314D combines a dedicated current mode PWM controller with a high voltage power MOSFET,.It is optimized for high voltage power standby power. And cost effective off-line fly-back converter applications in sub 18W range. RM6314D offers complete protection coverage with automatic self-recovery feature including Cycle-by-Cycle current limiting (OCP), over load protection (OLP), over voltage protection and VDD under voltage lockout (UVLO). Excellent EMI performance is achieved with Reactor-micro proprietary frequency shuffling technique together with soft switching control at the totem pole gate driver output. The tone energy at below 20KHz is minimized in the design and audio noise is eliminated during operation. RM6314D is offered in DIP8 package.

PIN CONFIGURATION

Pin Number	Pin Name	Description		
1	VDD_G	Internal Gate Driver Power Supply		
2	VDD	DC power supply input		
3	FB	Feedback input pin		
4	CS	Current sense input		
5/6	Drain	HV MOSTET Drain Pin		
7/8	GND	Ground		

TYPICAL APPLICATION

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

	Paramter	Value	Unit
	HV-MOSFET Voltage(V _{DGR})	650	V
	VDD/VDD_G Voltage(V _{GS})	-0.3 to 40	V
	CS/FB Voltage(V _{CS} ,V _{FB})	-0.3 to 7	V
	Min/Max Operating Junction Temperature (TJ)	-40 to 150	°C
	Min/Max Storage Temperature (T _{amb} =25℃)	-50 to 150	°C
Lead Temperature (10S)		260	°C

ELECTRICAL CHARACTERISTICS

(VDD=18V, TA=25°C, unless otherwise stated)

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit		
Supply Voltage (VDD PIN)								
VDD Start up Current	I_Startup	VDD=15V		6	20	uA		
Operation Current	I_vdd_on	V _{FB} =3V		1.3		mA		
VDD Under Voltage Lockout Enter	UVLO_ON		7.0	8.0	9.0	V		
VDD Under Voltage Lockout Exit(Recovery)	V_vdd_on		16	17	18	v		
Over voltage protection voltage	VDD_OVP_ON	CS=0V,FB=3V	27	29	32	V		
Feedback Input Section (FB PIN)							
FB Open Loop Voltage	V _{FB_open}		4.5	4.9	5.5	V		
FB short circuit current	I _{FB_short}			0.35		mA		
Zero Duty Cycle FB Threshold Voltage	Vth_od			0.8		V		
Power Limiting FB Threshold Voltage	VTH_PL			3.5		V		
Power Limiting Debounce Time	T _{D_PL}			54		ms		
Input Impedance	Z _{FB_IN}			15.7		KΩ		
Current Sense Input (CS	Pin)							
Soft stat time	T _{softstart}			4		ms		
Leading Edge Blanking time	Tblanking	Y		600		ns		
Input Impedance	Zcs_in	\mathbf{D}		40		KΩ		
Over Current Detection and Control Delay	T _{D_OC}			100		ns		
Internal Current Limiting Threshold Voltage	VTH_OC	FB=3V	0.72	0.75	0.78	V		
Oscillator								
Normal Oscillation Frequency	Fosc		60	65	70	kHz		
Frequency Jittering Range	∆f_osc		-4		4	%		
Frequency Temperature Stability	Δf_{Temp}			5		%		
Frequency Voltage Stability	Δf_{VDD}			5		%		
Maximum duty cycle	D_max	FB=3V, CS=0V	65	75	85	%		
Burst Mode Base Frequency	F_ _{Burst}			22		kHz		
MOSFET								
Drain-Source Breakdown Voltage	BV_{dss}	V_{GS} =0V, I _{DS} =250uA	650			V		
Static Drain to Source On Current	ID			4		А		
Static Drain to Source On Resistance	R _{DS(on)}	V _{GS} =10V, I _{DS} =2A		2.0	2.4	Ω		
Over Temperature protect:	ion							
Over temperature protection trip point	OTP			150	160	°C		

Shannxi Reactor Microelectronics Co., Ltd.

OPERATION DESCRIPTION

The RM6314D is a low power off-line SMPS Switcher optimized for off-line fly-back converter applications in sub 18W power range. The Extended burst mode control greatly reduces the standby power consumption and helps the design easily to meet the international power conservation requirements.

• Under Voltage Lock Out

At overload condition when FB input voltage exceeds power limit threshold value for more than TD_PL control circuit reacts to shut down the switcher. Switcher restarts when VDD voltage drops below UVLO limit. Similarly control circuit shutdowns the power MOSFET when an Over Temperature condition is detected or the sense pin is opened.

• Over Voltage Protection

Over Voltage Protection starts at 28V of VDD Voltage. When the electrical system exception occurs or Output short circuit occurs, the VDD Voltage continues rising until Over Voltage Protection spot, VDD system stop the power supply, all the electrical system close up and go on self-inspection. If the the electrical system exception remove abnormal, VDD Voltage restarts and the electrical system goes to work.

• Extended Burst Mode Operation

At light load or zero load condition, most of the power dissipation in a switching mode power supply is from switching loss on the MOSFET, the core loss of the transformer and the loss on the snubber circuit. The magnitude of power loss on the snubber circuit. The magnitude of power loss is in proportion to the switching frequency. Lower switching frequency is internally adjusted at no load or light load condition. The switch frequency reduces at light/no load condition to improve the conversion efficiency. At light load or no load condition, the FB input drops below burst mode threshold level and device enters Burst-Mode control. The gate drive output switches only when VDD Voltage drops below a preset level and FB input is active to output an on state. Otherwise the gate drive remains at off state to minimize the switching loss and reduces the standby power consumption to the greatest extend.

The switching frequency control also eliminates the audio noise at any loading conditions.

• Driver

The internal power MOSFET in RM6314D is driven by a dedicated gate driver for power switch control. Too weak the gate driver strength results in higher conduction and switch loss of MOSFET while too strong gate drive results in the compromise of EMI.

A good tradeoff is achieved through the built-in totem pole gate design with right output strength an dead time control. The low idle loss and good EMI system design is easier to achieve with this dedicated control scheme.

In addition to the gate drive control scheme mentioned. The gate drive strength can also be adjusted externally by a resistor connected between VDD and VDDG, the falling edge of the Drain output can be well controlled. It provides great flexibility for system EMI design.

• Current Sensing and Leading Edge Blanking

Cycle-by-Cycle current limiting is offered in RM6314D current mode PWM control, The switch current is detected by a sense resistor into the sense pin. An internal leading edge blanking circuit chops off the sensed voltage spike at initial internal reverse recovery and surge gate current of internal power MOSFET so no longer needed. The current limiting comparator is disabled and cannot turn off the internal power MOSFET during the blanking period. The PWM duty cycle is determined by the current sense input voltage and the FB input voltage.

• Internal Synchronized Slope Compensation

Built-in slope compensation circuit adds voltage ramp onto the current sense input voltage for PWM generation. This greatly improves the close loop stability at CCM and prevents the sub-harmonic oscillation and thus reduces the output ripple voltage.

• Over Load Protection

When the secondary rectifier is shorted, the transformer acts like a leakage inductance. Meanwhile, the current spike is extremely high. During high line input, the current in power MOSFET is too high to wait for OLP delay time. To offer reliable design, RM6314D shut down the switcher and enter into auto-recovery mode in this case.

PACKAGE MECHANICAL DATA (DIP-8)

Symbol	Millimeter			Inch		
	Min	Тур	Max	Min	Тур	Max
А		X	5. 334			0.210
A1	0.381			0.015		
A2	3.175	3. 302	3. 429	0.125	0.130	0.135
b		1.524			0.060	
b1		0.457			0.018	
D	9.017	9.271	10.160	0.355	0.365	0.400
Е		7.620			0.300	
E1	6.223	6.350	6.477	0.245	0.250	0.255
Е		2.540			0.100	
L	2. 921	3.302	3.810	0.115	0.130	0.150
e _B	8.509	9.017	9.525	0.335	0.355	0.375
θ°	0°	7°	15°	0°	7°	15°