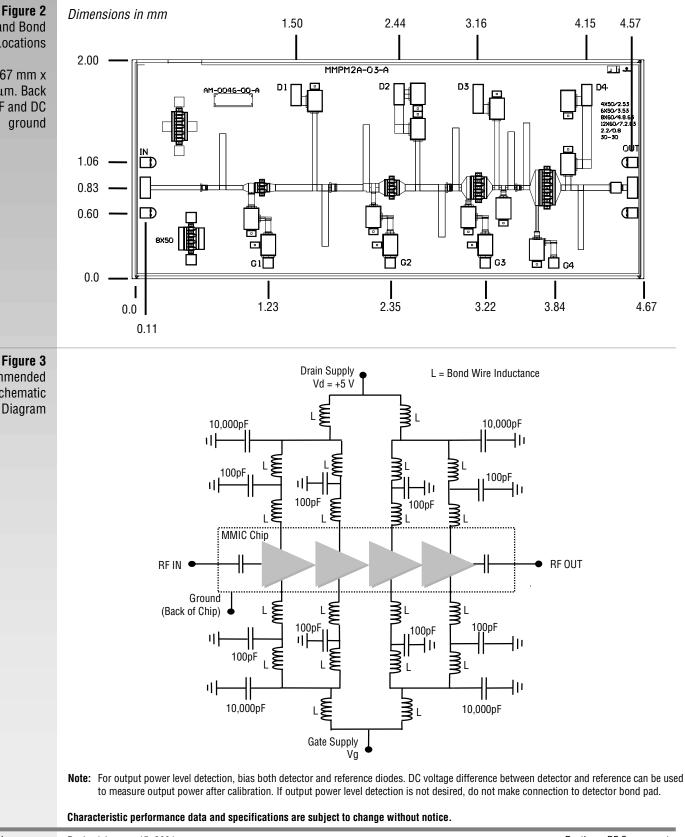
RMDA1840 18-40 GHz Broad Band Driver Amplifier MMIC

PRODUCT INFORMATION

Description	The RMDA1840 is a 4-stage GaAs MMIC amplifier designed as a 18 to 40 GHz broad band amplifier for use in point to point radios, point to multi-point communications, LMDS, and other millimeter wave applications. Th RMDA1840 utilizes Raytheon's 0.25µm power PHEMT process and is sufficiently versatile to serve in a variety of applications, such as a driver amplifier or a frequency multiplier.						
Features	 4 mil substrate Small-signal gain 22 dB (typ.) Pout 1 dB comp 23 dBm (typ.) Chip size 4.67 mm x 2.00 mm 						
Absolute Maximum Ratings	$\begin{array}{ c c c c } \hline Parameter & Symbol & Value & Units \\ \hline Positive DC voltage (+5 V Typical) & Vd & +6 & Volts \\ Negative DC voltage & Vg & -2 & Volts \\ Simultaneous (Vd - Vg) & Vdg & +8 & Volts \\ Positive DC Current & I_D & 442 & mA \\ RF Input Power (from 50 Ω source) & P_{IN} & +15 & dBm \\ Operating Baseplate Temperature & T_c & -30 to +85 & °C \\ Storage Temperature Range & T_{stg} & -55 to +125 & °C \\ Thermal Resistance & R_{JC} & 53 & °C/W \\ (Channel to Backside) & & & \\ \hline \end{array}$						
Electrical Characteristics (At 25°C), 50 Ω system, Vd = +5 V, Quiescent Current Idq = 400 mA	ParameterMinTypMaxUnitFrequency Range Gate Supply Voltage (Vg)1 Gain Small Signal at Pin = -5 dBm Gain Variation vs Frequency Gain at 1dB Compression Power Output at 1 dB Compression2022dB dB dB 21ParameterMinTypMaxUnitParameter18-0.2VVVPin = +3 dBm Power Added Efficiency (PAE): at P1dB Input Return Loss (Pin = -5 dBm)2124dBmGain at 1dB Compression Power Output at 1 dB Compression21dB15%23dBm0Uput Return Loss (Pin = -5 dBm)10dBOutput Return Loss (Pin = -5 dBm)10dBOutput Return Loss (Pin = -5 dBm)10dBOwer Added Efficiency (Pin = -5 dBm)10dBOutput Return Loss (Pin = -5 dBm)10dB						
	Notes: 1. Typical range of gate voltage is -1.0 to 0 V to set Idq of 400 mA. Characteristic performance data and specifications are subject to change without notice.						
www.raytheon.com/micro	Revised January 15, 2001 Raytheon RF Components Page 1 Andover, MA 01810						

RMDA1840 18-40 GHz Broad Band Driver Amplifier MMIC


PRODUCT INFORMATION

Application	CAUTION: THIS IS AN ESD SENSITIVE DEVICE.							
Information								
	conductivity such as copper molybdenum or copper tungsten. The chip carrier should be machined, finish plated with gold over nickel and should be capable of withstanding 325°C for 15 minutes.							
	Die attachment should utilize Gold/Tin (80/20) eutectic alloy solder and should avoid hydrogen environment for PHEMT devices. Note that the backside of the chip is gold plated and is used as RF ground.							
	These GaAs devices should be handled with care and stored in dry nitrogen environment to prevent contamination of bonding surfaces. These are ESD sensitive devices and should be handled with appropriate precaution including the use of wrist grounding straps. All die attach and wire/ribbon bond equipment must be well grounded to prevent static discharges through the device.							
	Recommended wire bonding uses 3 mils wide and 0.5 mil thick gold ribbon with lengths as short as practical allowing for appropriate stress relief. The RF input and output bonds should be typically 0.012" long corresponding to a typically 2 mil between the chip and the substrate material.							
Recommended	CAUTION: THIS IS AN ESD SENSITIVE DEVICE.							
Procedure	CAUTION: LOSS OF GATE VOLTAGES (Vg) WHILE DRAIN VOLTAGES (Vd) IS PRESENT MAY DAMAGE THE							
for Biasing and	AMPLIFIER CHIP.							
Operation	The following sequence of steps must be followed to properly test the amplifier. Step 1: Turn off RF input power. Step 5: After the bias condition is established, RF input							
	Step 1. Takin on RF input power. Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condition is established, RF input Step 5. After the blas condit							
	of the chip carrier. Slowly apply negative gate frequency band.							
	bias supply voltage of -1.5 V to Vg. Step 6: Follow turn-off sequence of:							
	Step 3: Slowly apply positive drain bias supply voltage of +5 V to Vd. (i) Turn off RF input power, (ii) Turn down and off drain voltage (Vd)							
	of +5 V to Vd. (ii) Turn down and off drain voltage (Vd), Step 4: Adjust gate bias voltage to set the quiescent (iii) Turn down and off gate bias voltage (Vg).							
	current of Idq = 400 mA.							
Figure 1								
Functional Block	Drain Supply Drain Supply Drain Supply Drain Supply Vd1 Vd2 Vd3 Vd4							
Diagram	φ φ φ φ							
	Ground Gate Supply Gate Supply Gate Supply Gate Supply							
	Back of Chip Vg1 Vg2 Vg3 Vg4							

Characteristic performance data and specifications are subject to change without notice.

RMDA1840 18-40 GHz Broad Band Driver Amplifier MMIC

PRODUCT INFORMATION

Chip Layout and Bond Pad Locations

Chip Size is 4.67 mm x 2.0 mm x 100 μm. Back of chip is RF and DC ground

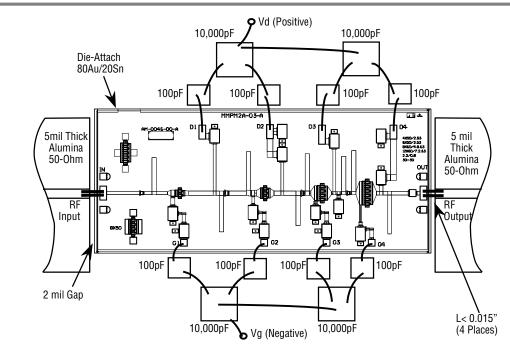
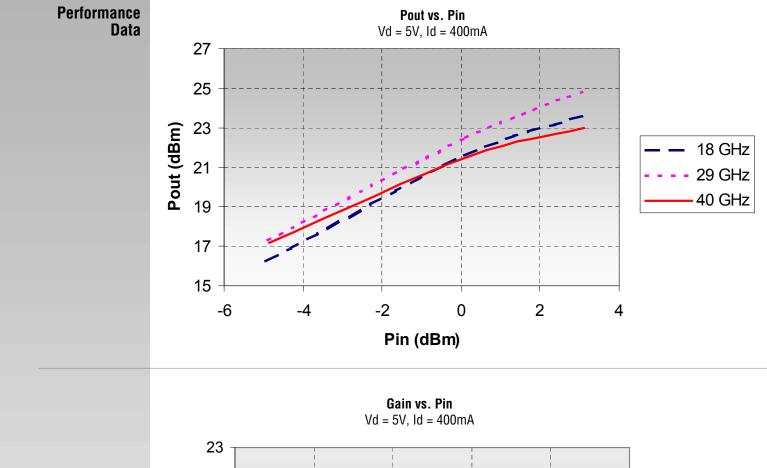

Figure 3 Recommended Application Schematic Circuit Diagram

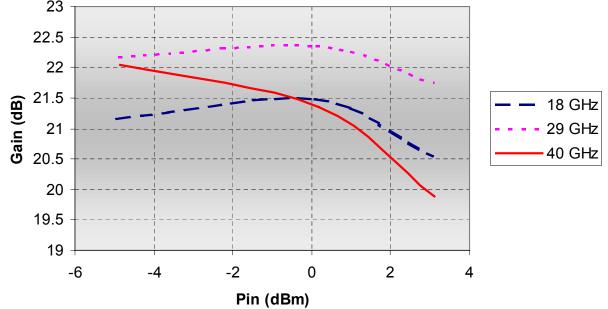
Figure 4

Recommended Assembly Diagram

RMDA1840 18-40 GHz Broad Band Driver Amplifier MMIC

PRODUCT INFORMATION

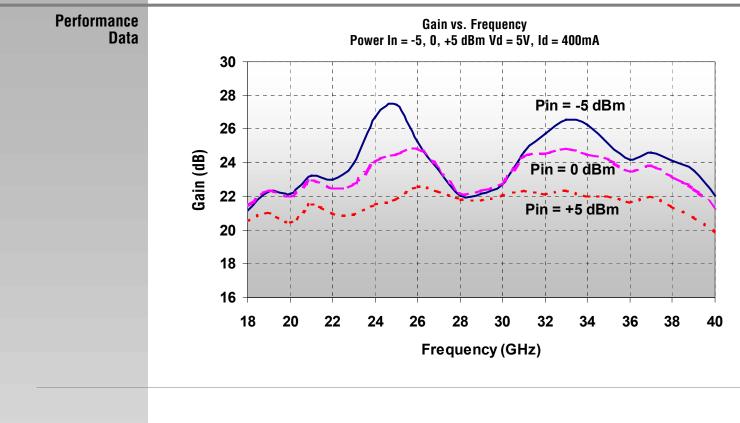


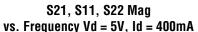

Note Use 0.003" by 0.0005" Gold Ribbon for bonding. RF input and output bonds should be less than 0.015" long with stress relief. If output power level detection is not desired, do not make connection to detector bond pad.

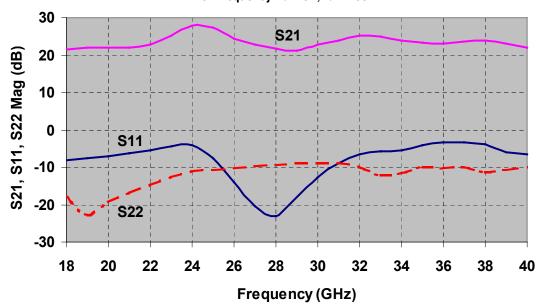
Characteristic performance data and specifications are subject to change without notice.

RMDA1840 18-40 GHz Broad Band Driver Amplifier MMIC

PRODUCT INFORMATION




Characteristic performance data and specifications are subject to change without notice.


Revised January 15, 2001

RMDA1840 18-40 GHz Broad Band Driver Amplifier MMIC

PRODUCT INFORMATION

Characteristic performance data and specifications are subject to change without notice.

Worldwide Sales Representatives

www.raytheon.cor	Customer Support	978-684-8900 Revised January 15, 2001	fax: 978-684-5452	customer_support@rrfc.ray		Raytheon RF Componen
	ales Office adquarters	United States (East Coast) Raytheon 362 Lowell Street Andover, MA 01810 978-684-8628 fax: 978-684-8646 Walter Shelmet wshelmet@ rrfc.raytheon.com	United States (West Coast) Raytheon 362 Lowell Street Andover, MA 01810 978-684-8919 fax: 978-684-8646 Rob Sinclair robert_w_sinclair@ rrfc.raytheon.com	<i>Europe</i> Raytheon AM Teckenberg 53 40883 Ratingen Germany 49-2102-706-155 fax: 49-2102-706-156 Peter Hales peter_j_hales@ raytheon.com	Asia Raytheon Room 601, Gook Je Ctr. Bldg 191 Hangang Ro 2-GA Yongsan-Gu, Seoul, Korea 140-702 82-2-796-5797 fax: 82-2-796-5790 T.G. Lee tg_lee@ rrfc.raytheon.com	
	Vorldwide istribution	Headquarters 6321 San Ignacio Drive San Jose, CA 95119 408-360-4073 fax: 408-281-8802 Art Herbig art.herbig@avnet.com Belgium and Luxembourg Cipalstraat 2440 GEEL Belgium 32 14 570670 fax: 32 14 570679 sales.be@bfioptilas.avnet.co	United Kingdom Burnt Ash Road Aylesford, Kent England ME207XB 44 1622882467 fax: 44 1622882469 rfsales.uk@ bfioptilas.avnet.com	France 4 Allee du Cantal Evry, Cedex France 33 16079 5900 fax: 33 16079 8903 sales.fr@ bfioptilas.avnet.com	Holland Chr. Huygensweg 17 2400 AJ ALPHEN AAN DEN RIJN The Netherlands 31 172 446060 fax: 33 172 443414 sales.nl@ bfioptilas.avnet.com	Spain C/Isobel Colbrand, 6 – 4a 28050 Madrid Spain 34 913588611 fax: 34 913589271 sales.es@ bfioptilas.avnet.com
	Asia	<i>ITX Corporation</i> 2–5, Kasumigaseki 3–Chome Chiyoda–Ku Tokyo 100-6014 Japan 81-3-4288-7073 fax: 81-3-4288-7243 Maekawa Ryosuke maekawa.ryosuke@ itx–corp.co.jp	Sea Union 9F-1, Building A, No 19-3 San-Chung Road Nankang Software Park Taiwan, ROC Taipei 115 02-2655-3989 fax: 02-2655-3918 Murphy Su murphy@seaunionweb.com	n.tw		
	Europe	<i>Sangus OY</i> Lunkintie 21, 90460 Oulunsalo Finland 358-8-8251-100 fax: 358-8-8251-110 Juha Virtala juha.virtala@sangus.fi	Sangus AB Berghamnvagen 68 Box 5004 S-165 10 Hasselby Sweden Ronny Gustafson 468-0-380210 fax: 468-0-3720954	<i>Globes Elektronik & Co.</i> Klarastrabe 12 74072 Heilbronn Germany 49-7131-7810-0 fax: 49-7131-7810-20 Ulrich Blievernicht hfwelt@globes.de	MTI Engineering Ltd. Afek Industrial Park Hamelacha 11 New Industrial Area Rosh Hayin 48091 Israel 972-3-902-5555 fax: 972-3-902-5556 Adi Peleg adi_p@mti-group.co.il	<i>Sirces srl</i> Via C. Boncompagni, 3B 20139 Milano Italy 3902-57404785 fax: 3902-57409243 Nicola lacovino nicola.iacovino@sirces.it
	North America	D&L Technical Sales 6139 S. Rural Road, #102 Tempe, AZ 85283 480-730-9553 fax: 480-730-9647 Nicholas Delvecchio, Jr. dlarizona@aol.com Hi-Peak Technical Sales P.O. Box 6067 Amherst, NH 03031 866-230-5453 fax: 603-672-9228 sales@hi-peak.com	<i>Spartech South</i> 2115 Palm Bay Road, NE, Suite 4 Palm Bay, FL 32904 321-727-8045 fax: 321-727-8086 Jim Morris jim@spartech-south.com	<i>TEQ Sales, Inc.</i> 920 Davis Road, Suite 304 Elgin, IL 60123 847-742-3767 fax: 847-742-3947 Dennis Culpepper dculpepper@teqsales.com	<i>Cantec Representatives</i> 8 Strathearn Ave, No. 18 Brampton, Ontario Canada L6T 4L9 905-791-5922 fax: 905-791-7940 Dave Batten cantec-ott@cantec-o.net	Steward Technology 6990 Village Pkwy #206 Dublin, CA 94568 925-833-7978 fax: 925-560-6522 John Steward johnsteward1@msn.com

www.DataShee24evengtreet Andover, MA 01810