

RS1G332 Single 3-Input Positive-OR Gate

1 FEATURES

- Operating Voltage Range: 1.65V to 5.5V
- Low Power Consumption: 1µA (Max)
- Operating Temperature Range: -40°C to +125°C
- Inputs Accept Voltage to 5.5V
- High Output Drive: ±24mA at Vcc=3.0V
- Micro SIZE PACKAGES: SOT23-6, SOT363(SC70-6)

2 APPLICATIONS

- AV Receiver
- Blu-ray Player and Home Theater
- Digital Picture Frame (DPF)
- High-Speed Data Acquisition and Generation
- Personal Navigation Device (GPS)
- Portable Media Player

LOGIC SYMBOL

3 DESCRIPTIONS

The RS1G332 single 3-input positive-OR gate is designed for 1.65V to 5.5V V_{CC} operation.

The RS1G332 device performs the Boolean function Y=A + B + C or Y= $(\overline{A} \bullet \overline{B} \bullet \overline{C})$ in positive logic. The device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The RS1G332 is available in Green SOT23-6 and SOT363(SC70-6) packages. It operates over an ambient temperature range of -40°C to +125°C.

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	SOT23-6(6)	2.92mm×1.60mm
RS1G332	SOT363 (SC70-6)(6)	2.10mm×1.25mm

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

4 FUNCTION TABLE

	OUTPUT		
Α	В	С	Υ
Н	Х	Х	Н
Х	Н	Χ	Н
Х	Х	Н	Н
L	Ĺ	Ĺ	L

Y=A+B+C

H=High Voltage Level

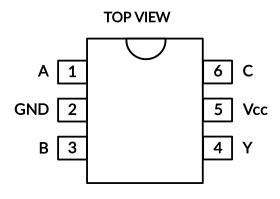
L=Low Voltage Level

Table of Contents

1 FEATURES	
2 APPLICATIONS	
3 DESCRIPTIONS	1
4 FUNCTION TABLE	1
5 Revision History	3
6 PACKAGE/ORDERING INFORMATION (1)	4
7 PIN CONFIGURATIONS	
8 Specifications	6
8.1 Absolute Maximum Ratings (1)	6
8.2 ESD Ratings	
9 ELECTRICAL CHARACTERISTICS	
9.1 Recommended Operating Conditions	7
9.2 DC Characteristics	8
9.3 AC Characteristics	8
10 Parameter Measurement Information	9
11 PACKAGE OUTLINE DIMENSIONS	10
12 TAPE AND REEL INFORMATION	12

5 Revision HistoryNote: Page numbers for previous revisions may different from page numbers in the current version.

Version	Cha	ange Date	Change Item		
A.1	202	23/08/28	Initial version completed		


6 PACKAGE/ORDERING INFORMATION (1)

PRODUCT	ORDERING NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGE MARKING (2)	MSL ⁽³⁾	PACKAGE OPTION
DC4.C000	RS1G332XH6	-40°C ~+125°C	SOT23-6	1G332	MSL3	Tape and Reel,3000
RS1G332	RS1G332XC6	-40°C ~+125°C	SC70-6(SOT363)	1G332	MSL3	Tape and Reel,3000

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information(data code and vendor code), the logo or the environmental category on the device.
- (3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

7 PIN CONFIGURATIONS

SOT23-6/SOT363(SC70-6)

PIN DESCRIPTION

PIN	NAME	I/O TYPE (1)	FUNCTION					
SOT23-6/SOT363(SC70-6)	NAME	I/OTTPE ···	FONCTION					
1	А	I	Input A					
2	GND	Р	Ground					
3	В	I	Input B					
4	Υ	0	Output Y					
5	Vcc	Р	Power pin					
6	С	I	Input C					

⁽¹⁾ I=input, O=output, P=power.

8 Specifications

8.1 Absolute Maximum Ratings (1)

over operating free-air temperature range (unless otherwise noted) (1) (2)

			MIN	MAX	UNIT
Vcc	V _{CC} Supply voltage range				V
Vı	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the high-impe	edance or power-off state (2)	-0.5	6.5	V
Vo	Vo Voltage range applied to any output in the high or low state (2) (3)				V
I _{IK}	Input clamp current V _I <0			-50	mA
Іок	Output clamp current Vo<0			-50	mA
lo	Continuous output current			±50	mA
	Continuous current through V _{CC} or GND			±100	mA
θја	Package thermal impedance ⁽⁴⁾	SOT23-6		230	°C/W
OJA	SOT363/(SC70-6)			265	C/VV
τJ	T _J Junction temperature ⁽⁵⁾				°C
T _{stg}	T _{stg} Storage temperature				°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value of V_{CC} is provided in the Recommended Operating Conditions table.
- (4) The package thermal impedance is calculated in accordance with JESD-51.
- (5) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB.

8.2 ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
		Human-body model (HBM), MIL-STD-883K METHOD 3015.9	±2000	V
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), ANSI/ESDA/JEDEC JS-002-2018	±1000	V
		Machine Model (MM), JESD22-A115C (2010)	±200	V

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

6 / 13 www.run-ic.com

9 ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (TYP values are at T_A = +25°C, Full=-40°C to 125°C, unless otherwise noted.) (1)

9.1 Recommended Operating Conditions

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT	
Supply voltage	Vcc	Operating	1.65	5.5	V	
		Vcc=1.65V to 1.95V	0.75 x V _{CC}			
11.1 1 1. 1		V _{CC} =2.3V to 2.7V	1.7		V	
High-level input voltage	VIH	V _{CC} =3V to 3.6V	2			
		V _{CC} =4.5V to 5.5V	0.7 x Vcc			
		V _{CC} =1.65V to 1.95V		0.25 x Vcc		
	\	V _{CC} =2.3V to 2.7V		0.7		
Low-level input voltage	V_{IL}	V _{CC} =3V to 3.6V		0.8	- V	
		V _{CC} =4.5V to 5.5V		0.3 x Vcc		
Input voltage	Vı		0	5.5	V	
Output voltage	Vo		0	Vcc	V	
	Іон	V _{CC} = 1.65 V		-4	mA	
		V _{CC} = 2.3 V		-8		
High-level output current				-16		
		V _{CC} = 3 V		-24		
		V _{CC} = 4.5 V		-32		
		V _{CC} = 1.65 V		4		
		V _{CC} = 2.3 V		8		
Low-level output current	loL	V _{CC} = 3 V		16	mA	
		VCC = 3 V		24		
		V _{CC} = 4.5 V		32		
		V _{CC} =1.8V± 0.15V,2.5V ± 0.2V		20		
Input transition rise or fall	$\Delta t/\Delta v$	V _{CC} =3.3V± 0.3V		10	ns/V	
·		V _{CC} =5V± 0.5V		10		
Operating temperature	TA		-40	125	°C	

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

9.2 DC Characteristics

ı	PARAMETER	TEST CONDITIONS	Vcc	TEMP	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT
		ΙοΗ = -100μΑ			Vcc-0.1			
		I _{OH} = -4mA	1.65V		1.2			
	Vон	$I_{OH} = -8mA$	2.3V	Full	1.9			V
	V ОН	I _{OH} = -16mA	3V	Full	2.4			v
		I _{OH} = -24mA	3V		2.3			
		I _{OH} = -32mA	4.5V		3.8			
		I _{OL} = 100μA	1.65V to 5.5V				0.1	
		I _{OL} = 4mA	1.65V				0.45	V
	V	I _{OL} = 8mA	2.3V	Full			0.3	
	V_{OL}	I _{OL} = 16mA	2)./	ruii			0.4	
		I _{OL} = 24mA	3V				0.55	
		I _{OL} = 32mA	4.5V				0.55	
	All innuts	V _I =5.5V or GND	0V to 5.5V	+25°C		±0.1	±1	
l _l	All inputs	V =5.5V OF GIND	00 10 5.50	Full			±5	μΑ
		Vior Vo=5.5V	0)/	+25°C		±0.1	±1	
	l _{off}	Vior Vo=5.5V	0V	Full			±10	μΑ
		V-5 5V 25 CND 10		+25°C		0.1	1	
	lcc	V _I =5.5V or GND, I _O =0	1.65V to 5.5V	Full			10	μΑ
	ΔΙςς	One input at V _{CC} -0.6V, Other inputs at V _{CC} or GND	3V to 5.5V	Full			500	μΑ
	Ci	$V_I = V_{CC}$ or GND	3.3 V	+25°C		4		pF

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

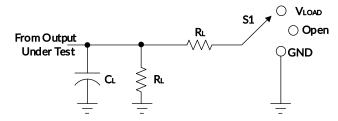
9.3 AC Characteristics

(T_A =-40°C to +125°C, typical values are at T_A = +25°C, unless otherwise noted.) (1)

PARAMETER	SYMBOL	TEST CONDITIONS		TEMP	MIN ⁽²⁾	TYP (3)	MAX ⁽²⁾	UNIT
		V _{CC} =1.8V±0.15V	$C_L=30pF, R_L=1k\Omega$	Full	6	16	26.5	
Door on the or Delevi		V _{CC} =2.5V±0.2V	C _L =30pF, R _L =500Ω	Full	3	8	13.5	
Propagation Delay	t _{pd}	V _{CC} =3.3V±0.3V	C _L =50pF, R _L =500Ω	Full	2.6	7	11.5	ns
		V _{CC} =5V±0.5 V	C _L =50pF, R _L =500Ω	Full	1.6	6	10	
		V _{CC} =1.8V				11		
Power dissipation	C_{pd}	V _{CC} =2.5V	f_10MH=	12500		13		,r
capacitance		V _{CC} =3.3V	f=10MHz	+25°C		16		pF
		V _{CC} =5V				20		

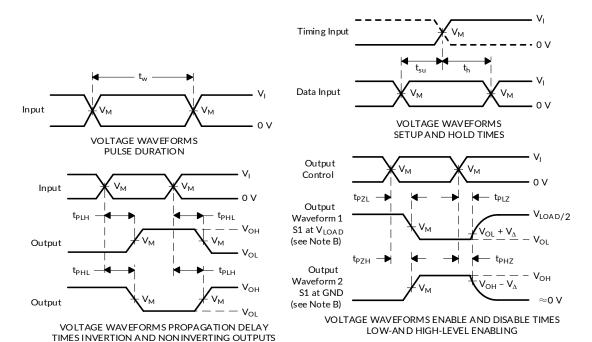
⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

⁽²⁾ Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.


⁽³⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

⁽²⁾ This parameter is ensured by design and/or characterization and is not tested in production.

⁽³⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

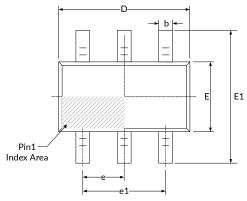


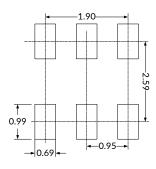
10 Parameter Measurement Information

TEST	S1
tplh/tphl	Open
tplz/tpzl	V_{LOAD}
tpHz/tpZH	GND

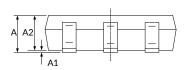
Vcc	INPUTS		V M	VLOAD	CL	Ru	٧.
	Vı	t _r /t _f	VM	V LOAD	CL	KL	V∆
1.8V±0.15V	Vcc	≤2ns	Vcc/2	2 x Vcc	30pF	1kΩ	0.15V
2.5V±0.2V	Vcc	≤2ns	Vcc/2	2 x Vcc	30pF	500Ω	0.15V
3.3V±0.3V	3V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V
5V±0.5V	V _{CC}	≤2.5ns	V _{CC} /2	2 x V _{CC}	50pF	500Ω	0.3V

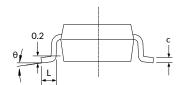
NOTES: A. C_L includes probe and jig capacitance.


- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_0 = 50 \Omega$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as $t_{\text{en}}.$
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

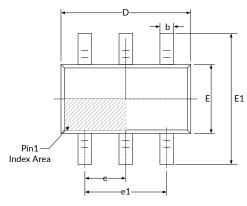

Figure 1. Load Circuit and Voltage Waveforms

9 / 13 www.run-ic.com



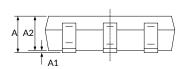

11 PACKAGE OUTLINE DIMENSIONS SOT23-6 (3)

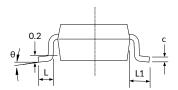
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
	Min	Мах	Min	Max		
A (1)	1.050	1.250	0.041	0.049		
A1	0.000	0.100	0.000	0.004		
A2	1.050	1.150	0.041	0.045		
b	0.300	0.500	0.012	0.020		
С	0.100	0.200	0.004	0.008		
D (1)	2.820	3.020	0.111	0.119		
E (1)	1.500	1.700	0.059	0.067		
E1	2.650	2.950	0.104	0.116		
е	0.950(BSC) (2)	0.037(BSC) ⁽²⁾			
e1	1.800	2.000	0.071	0.079		
L	0.300	0.600	0.012	0.024		
θ	0°	8°	0°	8°		

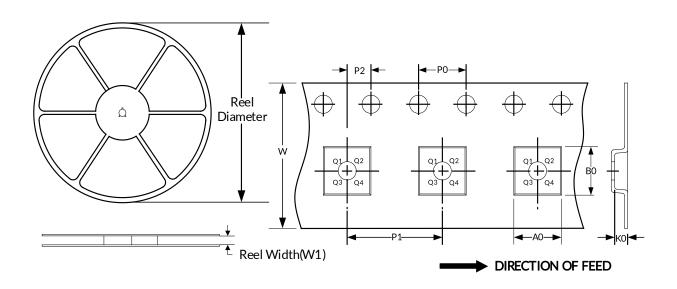
- Plastic or metal protrusions of 0.15mm maximum per side are not included.
 BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. This drawing is subject to change without notice.




SOT363(SC70-6) (3)

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
	Min	Max	Min	Max		
A ⁽¹⁾	0.900	1.100	0.035	0.043		
A1	0.000	0.100	0.000	0.004		
A2	0.900	1.000	0.035	0.039		
b	0.150	0.350	0.006	0.014		
С	0.080	0.150	0.003	0.006		
D ⁽¹⁾	2.000	2.200	0.079	0.087		
E (1)	1.150	1.350	0.045	0.053		
E1	2.150	2.450	0.085	0.096		
е	0.650(BSC) (2)	0.026(BSC) (2)			
e1	1.300(BSC) (2)	0.051(BSC) ⁽²⁾			
L	0.260	0.460	0.010	0.018		
L1	0.5	525	0.021			
θ	0°	8°	0°	8°		


- Plastic or metal protrusions of 0.15mm maximum per side are not included.
 BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. This drawing is subject to change without notice.

12 TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT363(SC70-6)	7"	9.5	2.40	2.50	1.20	4.0	4.0	2.0	8.0	Q3
SOT23-6	7"	9.5	3.17	3.23	1.37	4.0	4.0	2.0	8.0	Q3

- 1. All dimensions are nominal.
- 2. Plastic or metal protrusions of 0.15mm maximum per side are not included.

IMPORTANT NOTICE AND DISCLAIMER

Jiangsu RUNIC Technology Co., Ltd. will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party.

These resources are intended for skilled developers designing with RUNIC products You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) RUNIC and the RUNIC logo are registered trademarks of RUNIC INCORPORATED. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.