Low Power Configurable Multiple-Function Gate #### 1 FEATURES - Operating Voltage Range: 1.65V to 5.5V - Low Power Consumption:10µA (Max) - Operating Temperature Range: -40°C to +125°C - Inputs Accept Voltage to 5.5V - High Output Drive: ±24mA at Vcc=3.0V - I_{off} Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection - Micro SIZE PACKAGES: SOT23-6, SOT363(SC70-6) #### 2 APPLICATIONS - Cable Solutions - Barcode Scanners - E-Books - Embedded PC - Network-Attached Storage - Video Communications Systems - Servers - Wireless Data Access Cards, Headsets, Keyboard, Mouse, and LAN Cards ## **Logic Diagram (Positive Logic)** #### 3 DESCRIPTIONS The RS1G97 configurable multiple-function gate is designed for 1.65V to 5.5V V_{CC} operation. The RS1G97 device features configurable multiple functions. The output state is determined by eight patterns of 3-bit input. The user can choose the logic functions MUX, AND, OR, NAND, NOR, inverter, and noninverter. All inputs can be connected to Vcc or GND. This device functions as an independent gate, but because of Schmitt action, it may have different input threshold levels for positive-going (V_{T+}) and negative-going (V_{T-}) signals. The RS1G97 is fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. This device available in Green SOT23-6 and SOT363(SC70-6) packages. It operates over an ambient temperature range of -40°C to +125°C. #### Device Information (1) | PART NUMBER | PACKAGE | BODY SIZE (NOM) | |-------------|-----------------------|-----------------| | | SOT23-6(6) | 1.60mm×2.92mm | | RS1G97 | SOT363
(SC70-6)(6) | 2.10mm×1.25mm | For all available packages, see the orderable addendum at the end of the data sheet. #### **4 FUNCTION TABLE** | | INPUTS | | | | | | |---|--------|---|---|--|--|--| | Α | В | С | Υ | | | | | L | L | L | L | | | | | Н | L | L | L | | | | | L | Н | L | Н | | | | | Н | Н | L | Н | | | | | L | L | Н | L | | | | | Н | L | Н | Н | | | | | L | Н | Н | L | | | | | Н | Н | Н | Н | | | | H=High Voltage Level L=Low Voltage Level ## **Table of Contents** | 1 FEATURES | 1 | |--------------------------------------|----| | 2 APPLICATIONS | 1 | | 3 DESCRIPTIONS | 1 | | 4 FUNCTION TABLE | 1 | | 5 Revision History | 3 | | 6 PACKAGE/ORDERING INFORMATION (1) | 4 | | 7 PIN CONFIGURATIONS | 5 | | 8 SPECIFICATIONS | 6 | | 8.1 Absolute Maximum Ratings (1) | 6 | | 8.2 ESD Ratings | 6 | | 9 ELECTRICAL CHARACTERISTICS | 7 | | 9.1 Recommended Operating Conditions | 7 | | 9.2 DC Characteristics | 8 | | 9.3 AC Characteristics | 9 | | 10 Parameter Measurement Information | 10 | | 11 Detailed Description | 11 | | 11.1 Overview | 11 | | 11.2 Functional Block Diagram | 11 | | 11.3 Feature Description | 11 | | 11.4 Device Functional Modes | 11 | | 12 Application and Implementation | 14 | | 12.1 Application Information | 14 | | 12.2 Design Requirements | 14 | | 13 Power Supply Recommendations | 14 | | 14 Layout | 15 | | 14.1 Layout Guidelines | 15 | | 14.2 Layout Example | 15 | | 15 PACKAGE OUTLINE DIMENSIONS | 16 | | 16 TADE AND DEEL INCODMATION | 10 | **5 Revision History**Note: Page numbers for previous revisions may different from page numbers in the current version. | Version | Change Date | Change Item | |---------|-------------|---------------------------| | A.1 | 2023/01/10 | Initial version completed | ## 6 PACKAGE/ORDERING INFORMATION (1) | PRODUCT | ORDERING
NUMBER | TEMPERATURE
RANGE | PACKAGE LEAD | PACKAGE
MARKING (2) | PACKAGE OPTION | |---------|--------------------|----------------------|--------------------|------------------------|--------------------| | | RS1G97XH6 | -40°C ~+125°C | SOT23-6 | 1G97 | Tape and Reel,3000 | | RS1G97 | RS1G97XC6 | -40°C ~+125°C | SC70-6
(SOT363) | 1G97 | Tape and Reel,3000 | #### NOTE: 4 / 19 www.run-ic.com ⁽¹⁾ This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation. ⁽²⁾ There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device. ## **7 PIN CONFIGURATIONS** ## **PIN DESCRIPTION** | PIN | NAME | I/O TYPE (1) | FUNCTION | | | | |------------------------|------|---------------|--------------|--|--|--| | SOT23-6/SOT363(SC70-6) | NAME | I/O I TPE (1) | FUNCTION | | | | | 1 | В | I | Data Input | | | | | 2 | GND | Р | Ground | | | | | 3 | Α | I | Data Input | | | | | 4 | Υ | 0 | Data output | | | | | 5 | Vcc | Р | Supply Power | | | | | 6 | С | I | Data Input | | | | ⁽¹⁾ I=input, O=output, P=power. #### 8 SPECIFICATIONS #### 8.1 Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) (1) (2) | | | | MIN | MAX | UNIT | |----------------|---|---------------------------------|------|---------|------| | Vcc | Supply voltage range | | -0.5 | 6.5 | V | | Vı | Input voltage range (2) | | -0.5 | 6.5 | V | | Vo | Voltage range applied to any output in the high-in | mpedance or power-off state (2) | -0.5 | 6.5 | V | | Vo | Vo Voltage range applied to any output in the high or low state (2) (3) | | | Vcc+0.5 | V | | lık | Input clamp current V _I <0 | | | -50 | mA | | lok | Output clamp current | | -50 | mA | | | I _O | Continuous output current | | ±50 | mA | | | | Continuous current through Vcc or GND | | | ±100 | mA | | Δ | Package thermal impedance (4) | SOT23-6 | | 230 | °C/W | | θ_{JA} | Fackage thermal impedance (*) | SOT363(SC70-6) | | 265 | C/VV | | TJ | Junction temperature (5) | | | 150 | °C | | Tstg | Storage temperature | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. - (3) The value of V_{CC} is provided in the Recommended Operating Conditions table. - (4) The package thermal impedance is calculated in accordance with JESD-51. - (5) The maximum power dissipation is a function of $T_{J(MAX)}$, $R_{\theta JA}$, and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{\theta JA}$. All numbers apply for packages soldered directly onto a PCB. #### 8.2 ESD Ratings The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only. | | | | VALUE | UNIT | |--------------------------------------|---------|---|-------|------| | | | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ | ±4000 | | | V _(ESD) Electrostatic dis | scharge | Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾ | ±1500 | V | | | | Machine model (MM) | ±200 | | - (1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process. - (2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process. #### **ESD SENSITIVITY CAUTION** ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. ### 9 ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range (TYP values are at $T_A = +25$ °C, Full=-40°C to 125°C, unless otherwise noted.) (1) 9.1 Recommended Operating Conditions | on the commendation of | | | | | | | |--|--------|---------------------|------|------|----------|--| | PARAMETER | SYMBOL | TEST CONDITIONS | MIN | MAX | UNIT | | | Supply voltage | Vcc | Operating | 1.65 | 5.5 | \/ | | | Supply voltage | VCC | Data retention only | 1.5 | | ' | | | Input voltage | Vı | | 0 | 5.5 | V | | | Output voltage | Vo | | 0 | Vcc | V | | | Operating temperature | TA | | -40 | +125 | °C | | ⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. 7 / 19 www.run-ic.com #### 9.2 DC Characteristics | P | PARAMETER | TEST CONDITIONS | Vcc | TEMP | MIN ⁽²⁾ | TYP ⁽³⁾ | MAX ⁽²⁾ | UNIT | |--------------------|---|---|-----------------|-------|----------------------|--------------------|--------------------|------| | | | | 1.65V | | 0.75 | | 1.05 | | | | Positive going | | 2.3V | | 1.25 | | 1.55 | | | V_{T+} | input threshold | | 3V | Full | 1.5 | | 2.1 | V | | | voltage | | 4.5V | | 2.3 | | 3.0 | | | | | | 5.5V | | 2.8 | | 3.4 | | | | | | 1.65V | | 0.3 | | 0.6 | | | | Negative going | | 2.3V | | 0.35 | | 0.65 | | | V _T - | input threshold | | 3V | Full | 0.45 | | 0.75 | V | | | voltage | | 4.5V | | 0.7 | | 1.0 | | | | | | 5.5V | | 0.85 | | 1.15 | | | | | | 1.65V | | 0.35 | | 0.6 | | | | | | 2.3V | | 0.6 | | 1.2 | | | ΔV_{T} | Hysteresis
(V _{T+} -V _{T-}) | | 3V | Full | 1.05 | | 1.65 | V | | | (VI+-VI-) | | 4.5V | | 1.6 | | 2.0 | | | | | | 5.5V | | 1.95 | | 2.25 | | | | | I _{OH} = -100μA | 1.65V to 5.5V | | V _{CC} -0.1 | | | | | | | I _{OH} = -4mA | 1.65V | | 1.2 | | | V | | | | I _{OH} = -8mA | 2.3V | F | 1.9 | | | | | | Vон | I _{OH} = -16mA | 2)/ | Full | 2.4 | | | | | | | I _{OH} = -24mA | 3V | | 2.3 | | | | | | | I _{OH} = -32mA | 4.5V | | 3.8 | | | | | | | I _{OL} = 100μA | 1.65V to 5.5V | | | | 0.1 | | | | | I _{OL} = 4mA | 1.65V | | | | 0.45 | | | | Vol | I _{OL} = 8mA | 2.3V | Full | | | 0.3 | V | | | VOL | I _{OL} = 16mA | 3V | Full | | | 0.4 | V | | | | I _{OL} = 24mA | 30 | | | | 0.55 | | | | | I _{OL} = 32mA | 4.5V | | | | 0.55 | | | 1. | loout | V. F. F.V. or CND | 0V to 5.5V | +25°C | | ±0.1 | ±1 | | | lı | Input | V _I =5.5V or GND | 00 10 5.50 | Full | | | ±5 | μA | | | 1 | Vior Vo=5.5V | 0 | +25°C | | ±0.1 | ±1 | | | | l _{off} | V 0 V0=5.5V | | Full | | | ±10 | μA | | | laa | \\-5 5\\ or CND 0 | 1.65V to 5.5V | +25°C | _ | 0.1 | 1 | ^ | | | Icc | V_I =5.5V or GND, I_O =0 | 1.03 v 10 5.5 v | Full | | | 10 | μA | | | ΔΙσο | One input at Vcc-0.6V,
Other inputs at Vcc or
GND | 3V to 5.5V | Full | | | 500 | μA | | C _i (In | put Capacitance) | V _I =V _{CC} or GND | 3.3V | +25°C | | 4 | | pF | ⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. ⁽²⁾ Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary ⁽³⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. #### 9.3 AC Characteristics | PARAMETER | SYMBOL | TEST CONDITIONS | | MIN ⁽²⁾ | TYP ⁽³⁾ | MAX ⁽²⁾ | UNIT | |------------------------------------|-----------------------------|--|--|--------------------|--------------------|--------------------|------| | Propagation | V _{CC} =1.8V±0.15V | C _L =30pF, R _L =500Ω | | 7.8 | | | | | | Vcc=2.5V±0.2V | C _L =30pF, R _L =500Ω | | 3.5 | | no | | | Delay | t _{pd} | Vcc=3.3V±0.3V | C _L =50pF, R _L =500Ω | | 3.1 | | ns | | | | Vcc=5V±0.5V | C _L =50pF, R _L =500Ω | | 2.6 | | | | | | V _{CC} =1.8V | | | 20 | | | | Power dissipation capacitance Cpd | V _{CC} =2.5V | f=10MHz | | 21 | | F | | | | Vcc=3.3V | I=TOIVID2 | | 22 | | pF | | | , | | Vcc=5V | | | 25 | | | ⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. ⁽²⁾ This parameter is ensured by design and/or characterization and is not tested in production. ⁽³⁾ Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. #### **10 Parameter Measurement Information** | TEST | S1 | |------------------------------------|------------| | t _{PLH} /t _{PHL} | Open | | t _{PLZ} /t _{PZL} | V_{LOAD} | | t _{PHZ} /t _{PZH} | GND | | V | INPUTS | | V | V | C | | В | | V | |------------|--------|--------------------------------|--------------------|---------------------|------|------|-----|------|-------| | Vcc | Vı | t _r /t _f | V _M | VLOAD | C∟ | | R∟ | | VΔ | | 1.8V±0.15V | Vcc | ≤2ns | Vcc/2 | 2 x Vcc | 15pF | 30pF | 1ΜΩ | 1kΩ | 0.15V | | 2.5V±0.2V | Vcc | ≤2ns | V _{CC} /2 | 2 x V _{CC} | 15pF | 30pF | 1ΜΩ | 500Ω | 0.15V | | 3.3V±0.3V | 3V | ≤2.5ns | 1.5V | 6V | 15pF | 50pF | 1ΜΩ | 500Ω | 0.3V | | 5V±0.5V | Vcc | ≤2.5ns | Vcc/2 | 2 x Vcc | 15pF | 50pF | 1ΜΩ | 500Ω | 0.3V | NOTES: A. CL includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Zo = 50 Ω. - D. The outputs are measured one at a time, with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} . - F. t_{PZL} and t_{PZH} are the same as t_{en} . - G. t_{PLH} and t_{PHL} are the same as t_{pd} . - H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms 10 / 19 www.run-ic.com ## 11 Detailed Description #### 11.1 Overview This configurable multiple-function gate is designed for 1.65V to 5.5V Vcc operation. The RS1G97 device features configurable multiple functions. The output state is determined by eight patterns of 3-bit input. The user can choose variations of common logic functions, like MUX, AND, OR, and NOT. All inputs can be connected to V_{CC} or GND. This device functions as an independent gate, but because of Schmitt action, it may have different input threshold levels for positive-going (V_{T+}) and negative-going (V_{T-}) signals. This device is fully-specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. #### 11.2 Functional Block Diagram #### 11.3 Feature Description The RS1G97 device has a wide operating V_{CC} range of 1.65 V to 5.5 V, which allows use in a broad range of systems. The 5.5V I/Os allow down translation and also allow voltages at the inputs when $V_{CC} = 0$ V. #### 11.4 Device Functional Modes Figure 2. Two-Input MUX Figure 3. Two-Input AND Gate Figure 4. Two-Input OR with one input inverted or Two-Input NAND with one input inverted Figure 5. Two-Input AND with one input inverted or Two-Input NOR with one input inverted Figure 6. Two-Input OR Gate Figure 7. Inverter Figure 8. Buffer ## 12 Application and Implementation Information in the following applications sections is not part of the RUNIC component specification, and RUNIC does not warrant its accuracy or completeness. RUNIC's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. #### 12.1 Application Information The RS1G97 device offers flexible configuration for many design applications. This example describes basic power sequencing using the AND gate configuration. Power sequencing is often used in applications that require a processor or other delicate device with specific voltage timing requirements in order to protect the device from malfunctioning. #### 12.2 Design Requirements This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The RS1G97 allows for performing logical Boolean functions with digital signals. Maintain input signals as close as possible to either 0 V or V_{CC} for optimal operation. ## 13 Power Supply Recommendations The power supply pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1uF capacitor is recommended and if there are multiple V_{CC} terminals then 0.01uF or 0.022uF capacitors are recommended for each power terminal. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1µF and 1µF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible. ## 14 Layout #### 14.1 Layout Guidelines When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified in Figure 9 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally, they will be tied to GND or Vcc, whichever makes more sense or is more convenient. It is acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the outputs section of the part when asserted. This will not disable the input section of the I/Os so they also cannot float when disabled. #### 14.2 Layout Example Figure 9. Layout Diagram # 15 PACKAGE OUTLINE DIMENSIONS SOT23-6 **RECOMMENDED LAND PATTERN (Unit: mm)** | Symbol | Dimensions I | In Millimeters | Dimensions In Inches | | | | |--------|--------------|----------------|----------------------|-------|--|--| | | Min | Max | Min | Max | | | | А | 1.050 | 1.250 | 0.041 | 0.049 | | | | A1 | 0.000 | 0.100 | 0.000 | 0.004 | | | | A2 | 1.050 | 1.150 | 0.041 | 0.045 | | | | b | 0.300 | 0.500 | 0.012 | 0.020 | | | | С | 0.100 | 0.200 | 0.004 | 0.008 | | | | D | 2.820 | 3.020 | 0.111 | 0.119 | | | | E | 1.500 | 1.700 | 0.059 | 0.067 | | | | E1 | 2.650 | 2.950 | 0.104 | 0.116 | | | | е | 0.950 | (BSC) | 0.037(BSC) | | | | | e1 | 1.800 | 2.000 | 0.071 | 0.079 | | | | L | 0.300 | 0.600 | 0.012 | 0.024 | | | | θ | 0° | 8° | 0° | 8° | | | ## SOT363(SC70-6) **RECOMMENDED LAND PATTERN (Unit: mm)** | Symbol | Dimensions I | n Millimeters | Dimensions In Inches | | | | |--------|--------------|---------------|----------------------|-------|--|--| | | Min | Max | Min | Max | | | | А | 0.900 | 1.100 0.035 | | 0.043 | | | | A1 | 0.000 | 0.100 | 0.000 | 0.004 | | | | A2 | 0.900 | 1.000 | 0.035 | 0.039 | | | | b | 0.150 | 0.350 | 0.006 | 0.014 | | | | С | 0.080 | 0.150 | 0.003 | 0.006 | | | | D | 2.000 | 2.200 | 0.079 | 0.087 | | | | E | 1.150 | 1.350 | 0.045 | 0.053 | | | | E1 | 2.150 | 2.450 | 0.085 | 0.096 | | | | е | 0.650 | (BSC) | 0.026(BSC) | | | | | e1 | 1.300 | (BSC) | 0.051(BSC) | | | | | L | 0.260 | 0.460 | 0.010 | 0.018 | | | | L1 | 0.5 | 525 | 0.021 | | | | | θ | 0° | 8° | 0° | 8° | | | #### NOTE: - A. All linear dimension is in millimeters. B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. D. BSC: Basic Dimension. Theoretically exact value shown without tolerances. ## 16 TAPE AND REEL INFORMATION REEL DIMENSIONS #### **TAPE DIMENSION** NOTE: The picture is only for reference. Please make the object as the standard. ## **KEY PARAMETER LIST OF TAPE AND REEL** | Package Type | Reel
Diameter | Reel
Width(mm) | A0
(mm) | B0
(mm) | K0
(mm) | P0
(mm) | P1
(mm) | P2
(mm) | W
(mm) | Pin1
Quadrant | |----------------|------------------|-------------------|------------|------------|------------|------------|------------|------------|-----------|------------------| | SOT363(SC70-6) | 7" | 9.5 | 2.40 | 2.50 | 1.20 | 4.0 | 4.0 | 2.0 | 8.0 | Q3 | | SOT23-6 | 7" | 9.5 | 3.17 | 3.23 | 1.37 | 4.0 | 4.0 | 2.0 | 8.0 | Q3 | #### NOTE: ^{1.} All dimensions are nominal. ^{2.} Plastic or metal protrusions of 0.15mm maximum per side are not included. #### IMPORTANT NOTICE AND DISCLAIMER Jiangsu RUNIC Technology Co., Ltd. will accurately and reliably provide technical and reliability data (including data sheets), design resources (including reference designs), application or other design advice, WEB tools, safety information and other resources, without warranty of any defect, and will not make any express or implied warranty, including but not limited to the warranty of merchantability Implied warranty that it is suitable for a specific purpose or does not infringe the intellectual property rights of any third party. These resources are intended for skilled developers designing with RUNIC products You will be solely responsible for: (1) Selecting the appropriate products for your application; (2) Designing, validating and testing your application; (3) Ensuring your application meets applicable standards and any other safety, security or other requirements; (4) RUNIC and the RUNIC logo are registered trademarks of RUNIC INCORPORATED. All trademarks are the property of their respective owners; (5) For change details, review the revision history included in any revised document. The resources are subject to change without notice. Our company will not be liable for the use of this product and the infringement of patents or third-party intellectual property rights due to its use.