3 Channel DC/DC Converters +LDO +LSW PMIC with I²C Interface for Industrial/Automotive Application

General Description

The RT2070 is a highly-integrated low-power highperformance analog SOC with PMIC (Power Management IC) in one single chip designed for Industrial/Automotive applications.

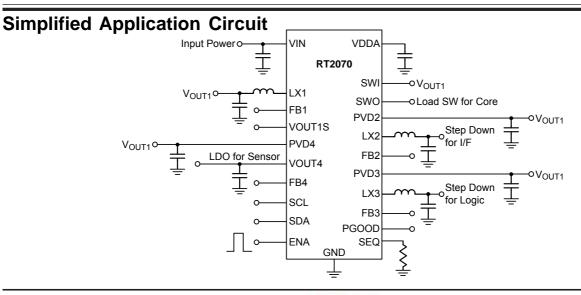
The RT2070 PMIC includes one high voltage synchronous step-down DC/DC converter, two low voltage synchronous step-down DC/DC converters, one low dropout LDO and one load switch with soft-start control and current limit. All MOSFETs are integrated, and compensation networks are built-in.

The RT2070 also uses I²C interface to set timing of power on/off, sequence and discharge function, and includes power good indicator (PGOOD).

The RT2070 is an Automotive-Grade Product that is AEC-Q100 Grade 1 Qualified and provides fault condition protections, including over-current protection, under-voltage lockout, over-voltage protection and over-temperature protection.

Features

- Input Voltage Operating Range is 4.5V to 15V
- CH1 HV-Step-Down Regulator : V_{IN} Range is 4.5V to 15V
 - ▶ Support up to 2A Loading with up to 90% Efficiency
 - Switching Frequency is 2MHz
- CH2/3 LV Step-Down Regulator : V_{IN} Range is 2.7V to 5.5V
- ▶ Support up to 1A Loading, with up to 90% Efficiency
- **•** Switching Frequency is 2MHz
- Linear Regulator : V_{IN} Range is 2.7V to 5.5V
 Max Loading 0.5A
- Load Switch (LSW) : VIN Range is 2.7V to 5.5V
 Max Loading 0.5A
- Sequence Can be Controlled by Setting the Resistances of the SEQ Pin
- AEC-Q100 Grade 1 Qualified


Marking Information

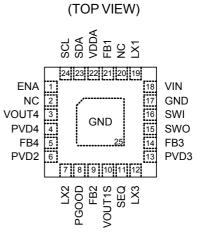
- Industrial/Automotive Camera Module
- Car Infotainment

2R= : Product Code YMDNN : Date Code

Ordering Information

RT2070 🗖 🗖

Package Type QW : WQFN-24L 4x4 (W-Type) (Exposed Pad-Option 1)

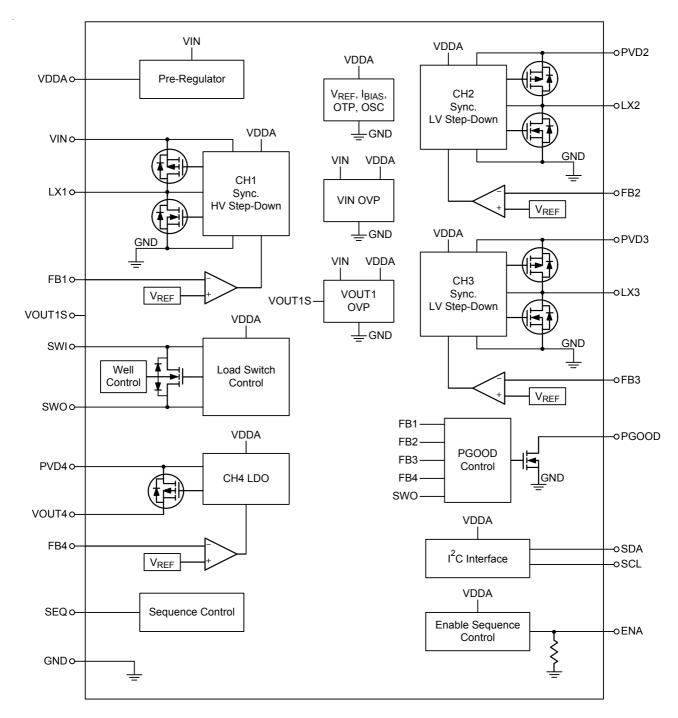

-Lead Plating System G : Green (Halogen Free and Pb Free)

Note :

Richtek products are :

- ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Pin Configurations



WQFN-24L 4X4

Pin No. Pin Name **Pin Function** 1 **ENA** IC Enable Control Input. Hi Active. Internal pull-down resister (100kΩ). NC 2, 20 No Internal Connection. 3 VOUT4 Output Voltage Regulation Node for LDO4. 4 PVD4 Power Input for LDO4. 5 FB4 Feedback Voltage Input for LDO4 PVD2 6 Power Input for Buck2. LX2 Switch Node of Buck2. 7 8 PGOOD Buck1 to Buck 3, LDO4 and LSW PGOOD Output Node by Open Drain. Hi Active. 9 FB2 Feedback Voltage Input for Buck2. VOUT1S 10 HV Buck Output Voltage for OVP Detection. Input HV Buck (CH1) Output. 11 SEQ Power Sequence Selection. 12 LX3 Switch Node of Buck3. PVD3 13 Power Input for Buck3. 14 FB3 Feedback Voltage Input for Buck3. SWO 15 Load Switch Output. SWI Load Switch Input. 16 IC Power Ground. The exposed pad must be soldered to a large PCB and 17. GND 25 (Exposed Pad) connected to GND for maximum thermal dissipation and current flow. VIN 18 Power Input for Buck1. LX1 Switch Node of Buck1. 19 Feedback Voltage Input for Buck1. FB1 21 IC Internal Analog Power Output 4.45V (typ.). Only 1µF and SCL/SDA pull up 22 VDDA resister can be connected. 23 SDA I²C Data Input / Output. I²C Clock Input. 24 SCL

Functional Pin Description

Function Block Diagram

Operation

The RT2070 is a highly-integrated solution for automotive systems, including a 1-CH HV step-down DC/DC converter, 2-CH LV step-down DC/DC converter and 1-CH LDO. The RT2070 application mechanism will be introduced in later sections.

The power-on and power-off sequences are detected in the SEQ pin. Additionally, users control the next power on/off sequence by setting I^2C registers from A01 to A12 when VDDA exists.

When the ENA pin is at Hi level, the PMIC follows the power-on sequence to turn on channels.

The IC turns on base and calibrates. Time is less than 500 μs ; during this time, the IC doesn't allow users to set l^2C data.

Pre-Regulator

This HV regulator is designed to handle input operation range of 4.5V to 15V. The regulator provides low voltage power to supply the internal control circuits and avoid connecting any load from VDDA pin. In noisy environments, a 1 μ F decoupling capacitor must be connected between VDDA and GND.

The I²C compatible interface remains fully functional if VIN and VDDA are present. If the VDDA is under the threshold voltage, all internal registers are reset to their default values.

Over-Temperature Protection

An Over-Temperature Protection (OTP) is featured in the device. The protection is triggered to force device shutdown when the junction temperature exceeds 160°C typically. If OTP is set to Hiccup once the junction temperature drops below the hysteresis 20°C typically, the device is re-enabled and automatically reinstated the power-on sequence.

Input Over-Voltage Protection

The device provides an input Over-Voltage Protection (OVP) once the input voltage exceeds 15.5V typically; the OVP function is started and all channels will be turned off after 5ms. If OVP is set to Hiccup, once the input voltage drops below the hysteresis 2V typically, the device is re-enabled and automatically reinstates the power-on sequence. This OVP feature can easily minimize the input overshoot.

ENA : IC Enable Pin

The ENA pin is a device enable input. Pulling the ENA pin to logic low that is typically less than the set threshold voltage 1.2V shuts the device down and it enters a low quiescent current state of about 20μ A. The regulator starts switching again once the ENA pin voltage exceeds the threshold voltage of 2V. In addition, the ENA pin features an internal $100k\Omega$ pull-low resistor.

Power Good (PGOOD) Control

The power good output is an open-drain output and needs to be connected to a voltage source with a pull-up $10k\Omega$ resistor to avoid PGOOD floating. Each channel turns on according to power-on sequence. When the last channel reaches 90% of its target voltage, PMU (Power Management Unit) starts counting T_{PGOOD} = 20ms (Power Good Delay time) then pulls PGOOD Hi until ENA is pulled low or any other protection happens.

Absolute Maximum Ratings (Note 1)

Analog Base Input Voltage, VIN	–0.3V to 20V
Control Output Voltage, PGOOD	
Control Input Voltage, ENA	
• HV Buck Power Switch (DC), LX1	
• LV Buck Input Voltage, PVD2/3	
• LV Buck Power Switch (DC), LX2, LX3	
• LV Buck Power Switch (Spike Voltage <200ns), LX2, LX3	
• Other Pins	
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
WQFN-24L 4x4	4.46W
Package Thermal Resistance (Note 2) (Note 3)	
WQFN-24L 4x4, θ _{JA}	28°C/W
WQFN-24L 4x4, θ _{JC}	
Junction Temperature	
Lead Temperature (Soldering, 10 sec.)	
Storage Temperature Range	
• ESD Susceptibility (Note 4)	
HBM (Human Body Model)	2kV
MM (Machine Model)	

Recommended Operating Conditions (Note 5)

Junction Temperature Range	–40°C to 150°C
Ambient Temperature Range	–40°C to 125°C

Electrical Characteristics

(V_IN = 4.5V to 15V, T_A = $-40^\circ C$ to 125°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
VIN Operation Voltage Range			4.5		15	V
Quiescent Current	IQ	V _{IN} = 5V, LDOs, Bucks are ON with no load, LVBucks are in FCCM mode.	8	10	12	mA
Quiescent Current	IQ_PSM	V _{IN} = 5V, LDOs, Bucks are ON with no load, LVBucks are in PSM mode.	600	1000	1200	μA
Shutdown Current	ISHD	V _{IN} = 5V, ENA = 0V, LDOs, Bucks are OFF.	2	7	20	μA
Over-Temperature Protection	OTP		150	160	170	°C
OTP Hysteresis (Note 6)	OTP_HYS		10	20	30	°C
VIN OVP (Hysteresis High)	OVP		15	15.5	16	V
VIN OVP Hysteresis (Gap) (Note 7)	OVP_HYS		1.5	2	2.5	V

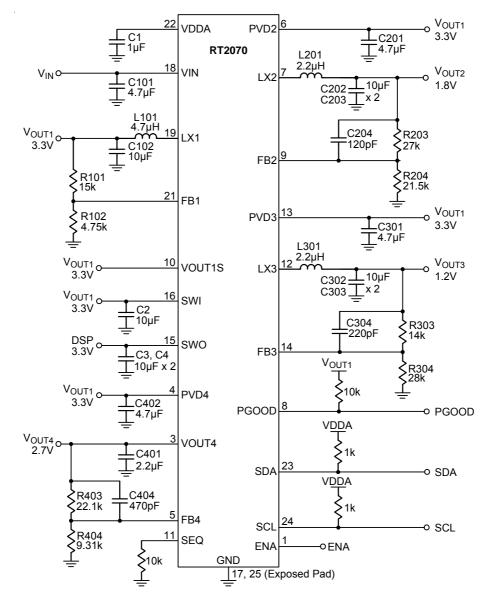
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
VIN UVLO2	UVLO2		3.8	3.9	4	V
UVLO2 Hysteresis (Gap)	UVLO2_HYS		0.4	0.5	0.6	V
VDDA Voltage			4.25	4.45	4.65	V
Switching Frequency (CH1/CH2/CH3)	f _{SW}		2 -10%	2	2 +10%	MHz
CH1 HV-Buck						
Input Voltage Range	VIN		4.5		15	V
Output Voltage Range	Vout		1.6		5	V
Feedback Voltage Accuracy	FB1		0.8 – 1.5%	0.8	0.8 + 1.5%	V
FB1 Under-Voltage Protection	FB1_UVP	FB1 = FB1 x 0.5 (50%)	0.3	0.4	0.5	V
Suggest Inductor	LHVBuck			4.7		μH
Current Limit	CL1	T _A = 25°C	3 – 15%	3	3 + 15%	A
	CL1_T	–40°C < T _A < 125°C	3 – 25%	3	3 + 25%	~
LX1 Leakage Current	I _{lx_leakage}		0		5	μA
Load Regulation		$T_A = 25^{\circ}C$, $V_{IN} = 6V$, $V_{OUT} = 3.3V$, Load = 0mA to 2000mA	-1		1	%
Line Regulation		$T_A = 25^{\circ}C$, $V_{IN} = 5V$ to 15V, $V_{OUT} = 3.3V$, Load = 1000mA	-1		1	%
Max Output Ripple		Vout = 3.3V, Cout = 22μF			20	mV
P-MOSFET On-Resistance	RDS(ON)_P	V _{IN} = 5V, I _{LX1} = 800mA	230	330	470	mΩ
N-MOSFET On-Resistance	R _{DS(ON)} N	V _{IN} = 5V, I _{LX1} = 800mA	100	150	250	mΩ
Soft-Start Time	T _{r1}	$\label{eq:Vout1} \begin{array}{l} V_{OUT1} \geq 0.9 \ x \ V_{Target}, \\ I_{OUT} = 0 m A \end{array}$	0.8	1	1.2	ms
Discharge Resistance		V _{IN} = 5V, V _{OUT} = 3.3V	870	970	1070	Ω
Load Switch (LSW)						
Supply Voltage	V _{swi}		2.7		5.5	V
MOSFET On-Resistance	R _{DS(ON)}	SWI = 3.3V, I _{OUT} = 500mA	60	85	120	mΩ
2	CLSW	T _A = 25°C	750 – 15%	750	750 + 15%	
Current Limit	CLSW_T	–40°C < T _A < 125°C	750 – 20%	750	750 + 20%	mA
Off Current	I _{off_lsw}	ENA = Low	0		0.15	μA
Quiescent Current	I _{q_lsw}	ENA = High, I _{OUT} = 0mA	20	32	40	μA
Under-Voltage Threshold	UVP_sw	$V_{SWI} - V_{SWO} > 0.7V$	0.5	0.7	0.9	V
Under-Voltage Threshold	UVP_sw	V _{SWO} < 0.85V	0.7	0.85	1	V
Soft-Start Time	T _{r_sw}	$V_{OUT} \ge 0.9 \text{ x } V_{Target},$ $I_{OUT} = 0mA$	0.8	1	1.2	ms
Discharge Resistance		V _{OUT1} = 3.3V, SWO = 3.3V	400	440	480	Ω

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Buck2 to Buck3						
Input Voltage Range	PVD2/PVD3		2.7		5.5	V
Output Voltage Range	Vout		1		3.6	V
Feedback Voltage Accuracy	FB2/3		0.8 – 1.5%	0.8	0.8 + 1.5%	V
Consumption Current	IPVD	V _{IN} = 5V, Buck is ON with no load FCCM mode. (per each buck)	4	5	6	mA
Consumption Current	IPVD_PSM	V _{IN} = 5V, LVBuck is ON with no load in PSM mode.(per each buck)	10	20	40	μA
Efficiency Peak	E _{ff}	V _{OUT} = 1.8V, V _{IN} = 3.3V, I _{LOAD} = 300mA		92		%
Output Voltage Temperature Coefficient				±100		ppm/°C
Suggest Inductor	L _{Buck}		-	2.2	-	μH
Current Limit	CL2/3	T _A = 25°C	1300 - 15%	1300	1300 + 15%	m (
	CL2/3_T	–40°C < T _A < 125°C	1300 - 25%	1300	1300 + 25%	mA
FB2/3 Under-Voltage Protection	UVP2/3	FB2/3 = FB2/3 x 0.5 (50%)		0.4		V
Output Transient Response	V _{peak}	0.1A to 0.5A at 10 μ s, V _{OUT} = 1.2V	-4		4	%
Load Regulation		T _A = 25°C, PVD2/3 = 3.3V, V _{OUT} = 1.2V, Load = 0mA to 1000mA	-1		1	%
Line Regulation		T _A = 25°C, PVD2/3 = 3V to 5.5V, V _{OUT} = 1.2V, Load = 1000mA	-1		1	%
Max Output Ripple		C _{OUT} = 20μF			20	mV
P-MOSFET On-Resistance	R _{DS(ON)} P	PVD2/3 = 3.3V	180	270	360	mΩ
N-MOSFET On-Resistance	Rds(on)_n	PVD2/3 = 3.3V	100	175	250	mΩ
Soft-Start Time	Tr2/3	$V_{OUT2/3} \ge 0.9 \text{ x } V_{Target}, I_{OUT} = 0 \text{mA}$	0.8	1	1.5	ms
Discharge Resistance		PVD2 = 3.3V, V _{OUT} = 1.2V	5	6	7	Ω
		PVD3 = 3.3V, V _{OUT} = 1.8V	6	7	8	52
CH4 LDO						
Input Voltage for PVD4	PVD4		2.7		5.5	V
Output Voltage Range	Vout		1		3.6	V
Feedback Voltage Accuracy	FB4		0.8 -1.5%	0.8	0.8 + 1.5%	V
Current Limit	CL4	T _A = 25°C	750 – 15%	750	750 + 15%	mA
	CL4_T	–40°C < T _A < 125°C	750 – 30%	750	750 + 35%	
Dropout Voltage (PVD4 – V _{OUT4})	VDROP	I _{OUT} = 150mA, PVD4 = V _{OUT4} – 0.1V	0.03		0.15	V
Output Voltage Temperature Coefficient		PVD4 = 3.3V		±100		ppm/°C

Copyright ©2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

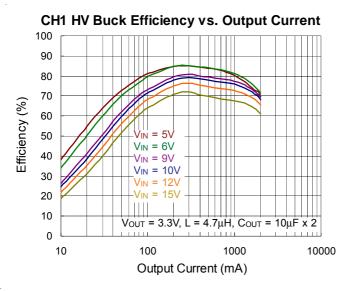
RT2070

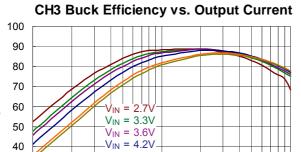
Parame	ter	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Current	Supply Current I _{q4} I _{OUT} = 0mA		100	140	180	μA	
Shutdown Currer	nt	I _{off4}		0	1	2	μA
Line Regulation	Line Regulation		PVD4 = 3V to 5V, V _{OUT4} = 2.7V, Load = 100mA	0	1	5	mV
Load Regulation		LoR	PVD4 = 3.3V, Load 10mA to 500mA	0	0.1	1	%
Transient Respo	nse	ΔVout	50μA↔I _{OUTMAX} / 2 (SR = 10mA / 1μs) @C _{OUT} = 2.2μF		85		mV
Max Output Ripp	le		C _{OUT} = 2.2μF			10	mV
FB4 Under Volta Protection	ge	FB4_UVP	FB4 = 0.8V x 0.4 (40%)	0.2	0.3	0.4	V
PSRR			Feq = 1kHz, I _{OUT} = 100mA, V _{OUT} = 2.7V		60		dB
Soft-Start Time		T _{r4}	$V_{OUT4} \geq 0.9 \; x \; V_{Target}, \; I_{OUT} = 0 m A$	0.8	1	1.2	ms
Discharge Resist	tance		PVD4 = 3.3V, V _{OUT} = 2.7V	380	450	520	Ω
Power Good							
Power Good Pul Voltage	l-Down	PGOOD	PGOOD Current equal to 5mA		200		mV
Power Good Del	ay Time	T _{PGOOD}		18	20	22	ms
Control		I					
ENA Input	Logic-High			2			
Voltage	Logic-Low					0.5	V
ENA Pull Down F	Resistor	RLOW	V_{IN} = 5V, Temperature = -40°C to 125°C.	70		140	kΩ
l ² C				L			
SDA, SCLK Inpu Threshold	t High Level			0.7 x VDDA			V
SDA, SCLK Inpu Threshold	t Low Level					0.3 x VDDA	V
SCLK Clock Rate	e	fscl				400	kHz
Hold Time (Repe START Condition After this period, clock pulse is ge	n. the first	thd;sta		0.6			μs
LOW Period of the SCL Clock		tLOW		1.3			μs
HIGH Period of t Clock	he SCL	tніgн		0.6			μs
Set-Up Time for START Condition		tsu;sta		0.6			μs
Data Hold Time		thd;dat		0		0.9	μs
Data Set-Up Tim	е	tsu;dat		100			ns



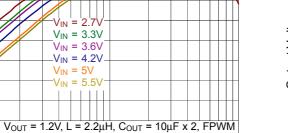
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Set-Up Time for STOP Condition	tsu;sto		0.6			μS
Bus Free Time Between a STOP and START Condition	tвuғ		1.3			μS
Rise Time of Both SDA and SCL Signals	t _R		20		300	ns
Fall Time of Both SDA and SCL Signals	tF		20		300	ns
SDA and SCL Output Low Sink Current	I _{OL}	SDA or SCL voltage = 0.4V	2			mA

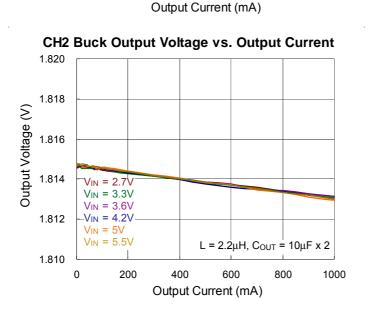
- **Note 1.** Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured at $T_A = 25^{\circ}C$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{JC} is measured at the exposed pad of the package.
- Note 3. The junction temperature(T_J in °C) is calculated from the ambient temperature (T_A in °C) and power dissipation (P_D in watts) according to the formula : T_J = T_A + (P_D x θ_{JA}) where θ_{JA} (in °C/W) in the package thermal impedance. Another, P_{IN} - P_O = P_D and P_O = $\eta x P_{IN} \rightarrow P_D = (1 / \eta - 1) x P_O$ where P_{IN} is the total input power and Po is the total output power.
- Note 4. Devices are ESD sensitive. Handling precaution is recommended.
- Note 5. The device is not guaranteed to function outside its operating conditions.
- Note 6. When OTP is set to Hiccup by I2C.
- Note 7. When VIN OVP is set to Hiccup by I2C



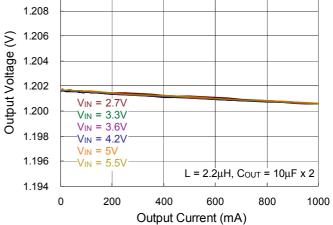

Typical Application Circuit

If there is any CHx is not used that external components still must be existed and keep original application circuit. If LSW isn't used, user can remove C2, C3 and C4, but the SWI pin must connect to VOUT1 and floating the SWO pin.


Typical Operating Characteristics



1 1 1 1 1

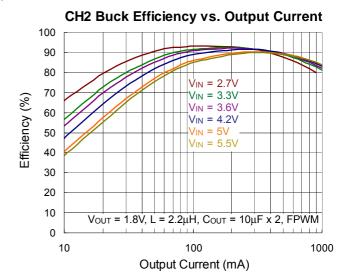

100

CH3 Buck Output Voltage vs. Output Current

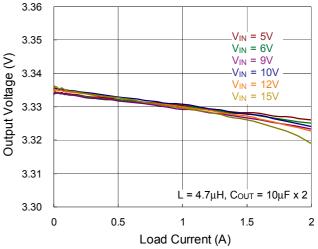
Copyright ©2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

1000

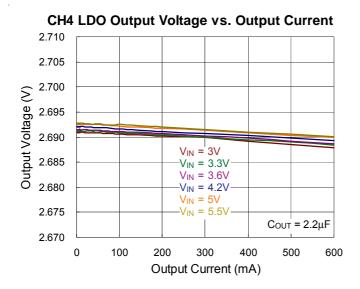
Efficiency (%)

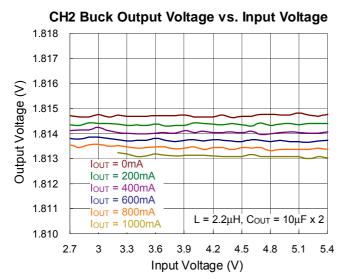

30

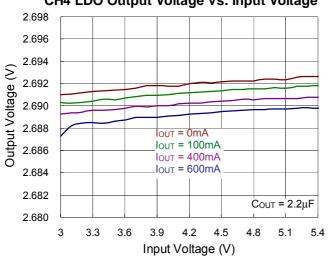
20

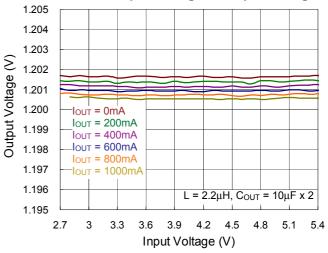

10

0

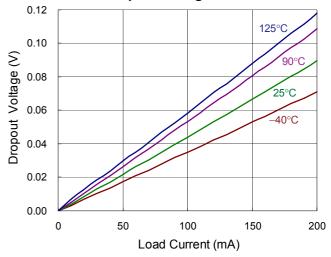

10



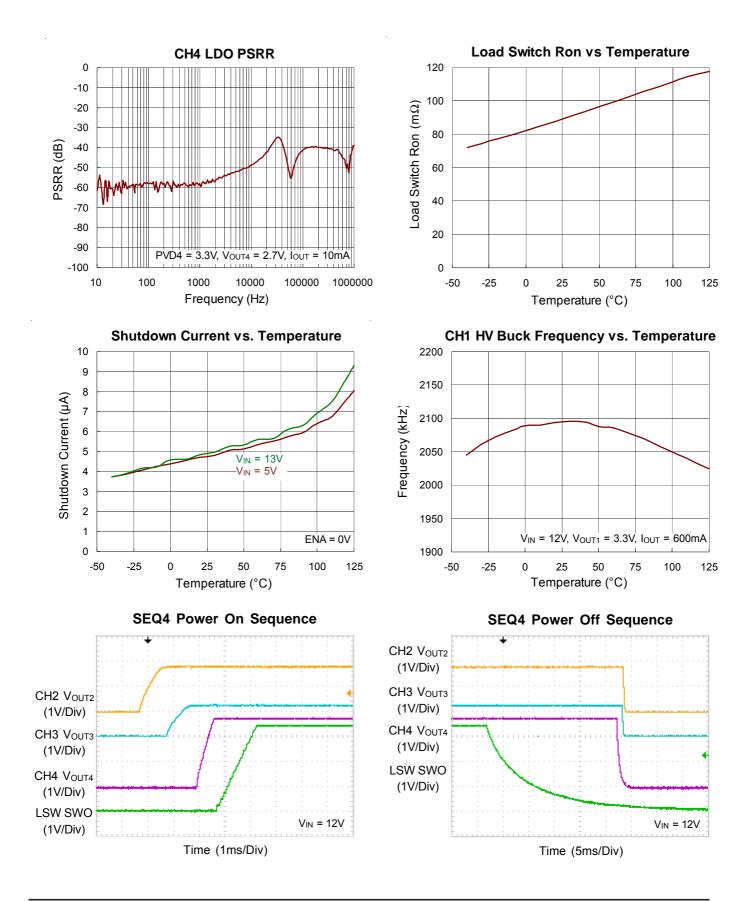

CH1 HV Buck Output Voltage vs. Output Current


CH4 LDO Output Voltage vs. Input Voltage

3.36 3.35 Output Voltage (V) 3.34 3.33 3.32 Ιουτ = 0mA louт = 500mA IOUT = 1000mA 3.31 IOUT = 1500mA IOUT = 2000mA L = 4.7µH, Cout = 10µF x 2 3.30 5 6 7 8 9 10 11 12 13 14 15


CH1 HV Buck Output Voltage vs. Input Voltage

CH3 Buck Output Voltage vs. Input Voltage


Input Voltage (V)

CH4 LDO Dropout Voltage vs. Load Current

www.richtek.com

Applications Information

The RT2070 is a highly integrated automotive system Power Management IC that contains 3-CH switching DC/ DC converters and one generic LDO and one load switch.

CH1 : HV Step-Down DC/DC Converter

CH1 is a HV step-down converter for LV DC/DC converter power. The current-mode PWM converter with integrated internal MOSFETs and compensation network operates at fixed frequency. The output voltage of CH1 is set by external feedback resistors, as expressed in the following equation :

VOUT1 = (1 + R101 / R102) x V_{FB1}

Where V_{FB1} is 0.8V typically and suggested value for R101 is 10k to 500k.

CH2 : Synchronous Step-Down DC/DC Converter

CH2 is a synchronous step-down converter for I/F power and it operates with typically 2MHz fixed frequency Pulse Width Modulation (PWM) at moderate to heavy load currents. At light load currents, the converter can automatically enter Power Save Mode and operates in PFM mode which can be set by I²C interface.

The converter output voltage is externally adjustable using a resistor divider at FB2.

The output voltage of CH2 is set by external feedback resistors, as expressed in the following equation :

VOUT2 = (1 + R203 / R204) x V_{FB2}

Where V_{FB2} is 0.8V typically and suggested value for R203 is 10k to 600k.

CH3 : Synchronous Step-Down DC/DC Converter

CH3 is suitable for logic power. The converter with integrated internal MOSFETs and compensation network operates at synchronous PSM or fixed frequency PWM current mode which can be set by the I²C interface. The output voltage of CH3 is set by external feedback resistors, as expressed in the following equation :

VOUT3 = (1 + R303 / R304) x V_{FB3}

Where V_{FB3} is 0.8V typically and suggested value for R303 is 10k to 600k.

For CH2 and CH3, to improve control performance using a feedforward capacitor in parallel to R203 or R303 is recommended, the value for the feedforward capacitor can be calculated using below formula :

For CH2, C_{FF} =
$$\frac{3.16\mu s}{R203}$$

For CH3, C_{FF} = $\frac{3.16\mu s}{R303}$

CH4 : Generic LDO

CH4 is a low-dropout (LDO) voltage regulator which offers benefits of high input voltage and low-dropout voltage for sensor power. The output voltage of CH4 is set by external feedback resistors, as expressed in the following equation:

VOUT4 = (1 + R403 / R404) x V_{FB4}

Where V_{FB4} is 0.8V typically and suggested value for R403 is 5k to 500k.

To improve control performance using a feedforward capacitor in parallel to R403 is recommended, the value for the feedforward capacitor can be calculated using below formula :

 $C_{\mathsf{FF}} = \frac{10.4 \mu s}{\mathsf{R403}}$

Load Switch : Load Switch

The load switch for core power is equipped with soft-start control and current limit function.

If LSW isn't used, user can remove C2, C3 and C4, but the SWI pin must connect to VOUT1 and floating the SWO pin.

Power On/Off Control

The register value will be recovered to default value as VIN plug in. In normal operation, users can set the power on/ off relative setting by I²C for next ENA power on. The RT2070 support 6 sets power on/off sequence selected by the SEQ pin. The sequence detection operation only work as VIN plug in. The RT2070 includes 6 sets power on/off sequence and the default value is decided by factory trim.

In the RT2070, users can plan the next power on/off sequence by setting register A01/A02. The register value means the power on location, and "000" means this channel is power off. The RT2070 doesn't allow missing power on code or discrete code occurs.

```
Copyright ©2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.
```

SEQ0 to SEQ5						
	Output Voltage Setting	Soft-Start End Delay Time (A01.Bit [7:6])	Discharge Finish Delay Time (A02.Bit [7:6])			
	SEQX_LSW [2:0]					
LSW	[001]					
Duck	SEQX_Buk2 [2:0]					
Buck2	[010]	1001	1001			
Duck2	SEQX_Buk3 [2:0]	[00]	[00]			
Buck3	[011]					
	SEQX_LDO [2:0]					
LDO4	[100]					

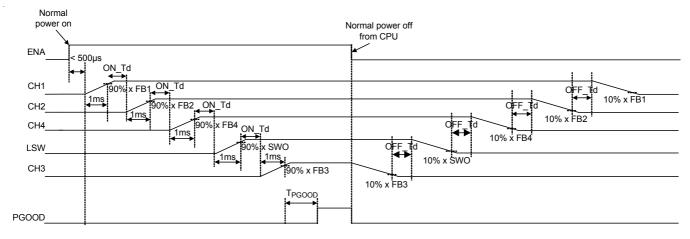
Note:

The default value will be decided in factory trim.

Define :

[000] means channel always turn off.

[001] means firstly turn on channel.


[100] means the finally turn on channel.

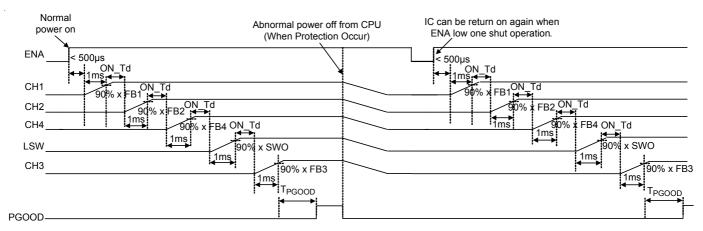
Example :

In above setting, the power on sequence is as below : LSW (001) \rightarrow Buck2 (010) \rightarrow Buck3 (011) \rightarrow LDO4 (100).

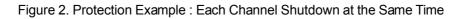
Normally Power ON/OFF Sequence

In the RT2070, the HV Buck (CH1) always firstly turns on and on sequence of the other channels are decided by SEQ setting. The off sequence will follow first-on-last-off rule to turn off channels.

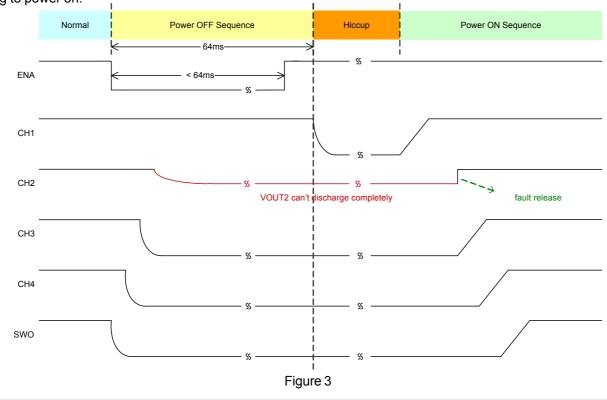
Note : ON_Td and OFF_Td time control by Register ON_Td <1:0> and OFF_Td <1:0>, default setting <00> = 0ms, and $T_{PGOOD} = 20ms$


Figure 1. Sequence Example : CH1 (Always First Turn On) → CH2 → CH4 → LSW → CH3

Copyright ©2016 Richtek Technology Corporation. All rights reserved.	RICHTEK is a registered trademark of Richtek Technology Corporation.
DS2070-00 March 2016	www.richtek.con


Abnormal Off

When the abnormal event occurs, all channels turns off immediately.


If users want to turn on again, users must pull ENA low to reset state then pull high to turn on again.

Note : ON_Td and OFF_Td time control by Register ON_Td <1:0> and OFF_Td <1:0> , default setting <00> = 0ms, and T_{PGOOD} = 20ms

When output channel to discharge over 64ms and ENA is keep in high level, the RT2070 will re-start and follow SEQ setting to power on.

PMU On/Off Sequence Setting by SEQ

The SEQ pull-down resistance is used to define power on/off sequence (SEQ1 to SEQ5).

The RT2070 will do sequence detection as VIN plug in. Enable sequence will be executed when detection phase finish. If users don't change the sequence setting by l^2C in register A01 to A12, the IC will follow default value to turn on IC set by factory trim. If there is any CHx is not used that external components still must be existed and keep original application circuit.

SEQ	RSEQ Range	Typical R _{SEQ}
SEQ0	Short to VDDA	
SEQ1	$64k\Omega > R_{SEQ} > 25k\Omega$	39k Ω
SEQ2	$16k\Omega > R_{SEQ} > 6.8k\Omega$	10kΩ
SEQ3	$3.9 k\Omega > R_{SEQ} > 1.6 k\Omega$	2.4kΩ
SEQ4	Short to GND	
SEQ5	$200k\Omega > R_{SEQ} > 100k\Omega$	160kΩ

Users can plan the combination of six sequences (SEQ0 to SEQ5).

SEQ0	CH2	LSW	CH3	CH4
SEQ1	LSW	CH4	CH3	CH2
SEQ2	CH4	CH3	CH2	LSW
SEQ3	CH2	CH3	LSW	CH4
SEQ4	CH2	CH3	CH4	LSW
SEQ5	LSW	CH2	CH4	CH3

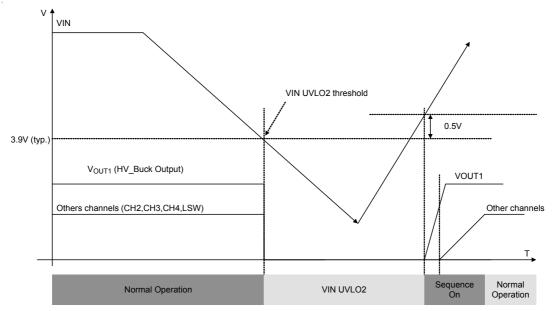
VIN UVLO2 Operation

If VIN is smaller than 3.9V, all channels will be turned off after $32\mu s$.

Next, V_{IN} is larger than 4.4V, the system will be sequence turn on by setting.

Max Load of Every Channel

Purpose	RT2070	Peak Current Limit	Max Loading (I _{OUT})*	Condition (V _{IN} \rightarrow V _{OUT})
HV to LV	CH1_HV Buck	3000mA	2000mA	$5V \rightarrow 3.3V$
V _{I/O}	CH2_LV Buck	1300mA	900mA	$3.3V \rightarrow 1.8V$
VCORE	CH3_LV Buck	1300mA	1000mA	$3.3V \rightarrow 1.2V$
VSENSOR	CH4_LDO	750mA	500mA	$3.3V \rightarrow 2.7V$
Load SW	LSW	750mA	500mA	$3.3V \rightarrow 3.3V$


* Buck converter Vin / Vout levels will affect the max loading

Higher max loading current

Higher step-down ratio (Vout/Vin) results in shorter switch on-time (Ton), hence lower peak switch current.

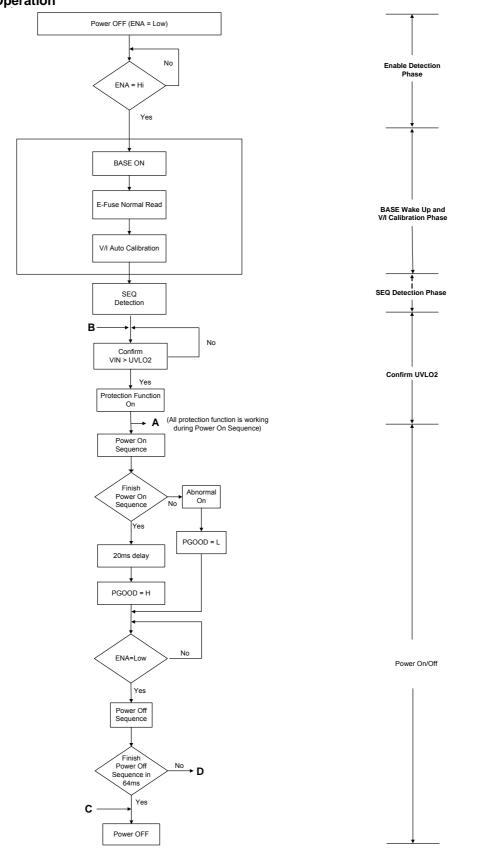
Lower max loading current

Lower step down ratio (Vin closer to Vout) results a lower differential inductor voltage, so the slope of the inductor current during the ramp-up period is reduced.

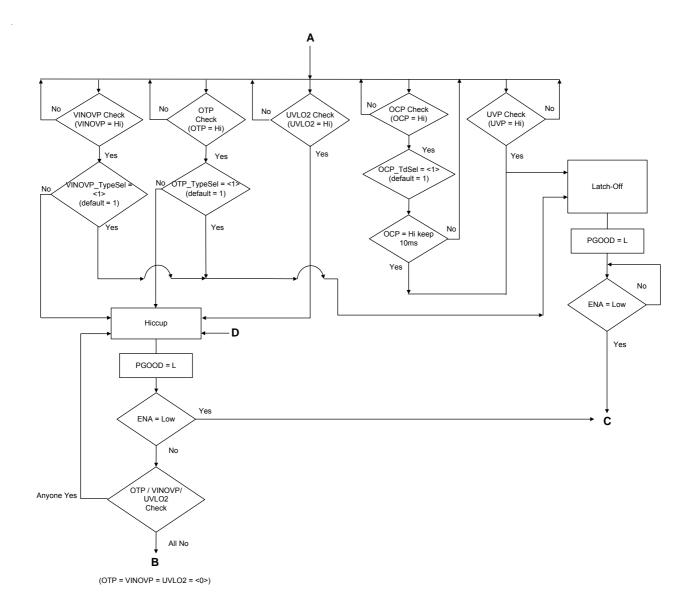
Note : 0.5V is hysteresis voltage.

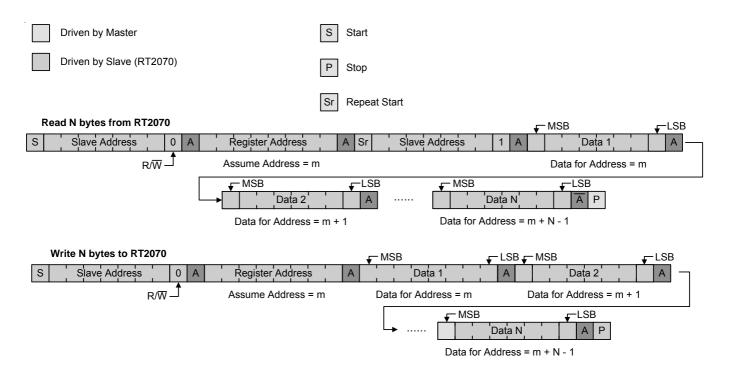
Figure 4. UVLO2 Diagram

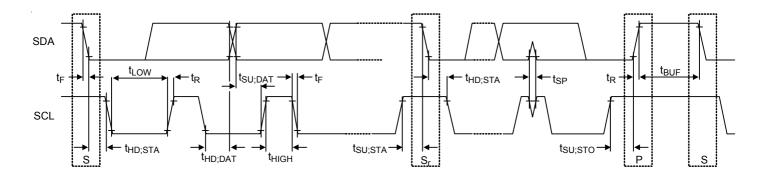
Protection Act


	UVLO2
Protection Action	Hiccup
Vth_R(V)	4.4
Vth_F(V)	3.9
Power On Confirm	YES
Detect Power Pin	VIN

*Hiccup : Recover automatically.


Flow Chart


Flow Chart of Protection


I²C Interface

The RT2070 I²C interface bus power must be supplied by VDDA or equal potential node. If I²C interface isn't used, SDA and SCL must be connected to GND. The RT2070

 I^2C slave address = 0110100 (7bits). I^2C interface supports fast mode (bit rate up to 400kb/s). The write or read bit stream (N \geq 1) is shown below :

I²C Waveform Information

I²C Register Table

Address Name	Register Address	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
		Function				Buck Fur	nction Trim	1				
A00	0x00	Meaning	Reserved	FPWM3	FPWM2	EnDis_ LDO	EnDis_ buck3	EnDis_ buck2	Rese	erved		
		Default	0	1	1	1	1	1	0	0		
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
			Define the	e Buck3 s	witching or	peration m	iode					
	FPWM3			0 : Automatic PWM/PSM switching operation 1 : Force PWM								
				e Buck2 sv	witching or	peration m	iode					
	FPWM	2	0 : Automatic PWM/PSM switching operation 1 : Force PWM									
			LDO power off discharge enable control									
	EnDis_L[00	0 : Won't discharge when LDO power off 1 : Discharge when LDO power off									
			Buck3 power off discharge enable control									
	EnDis_buck3			0 : Won't discharge when Buck3 power off 1 : Discharge when Buck3 power off								
				Buck2 power off discharge enable control								
	EnDis_buck2			0 : Won't discharge when Buck2 power off 1 : Discharge when Buck2 power off								

RT2070

Address Name	Register Address	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
		Function				SEQ) Trim				
A01	0x01	Meaning	ON_To	d <1:0>	SEC	SEQ0_Buk2 <2:0>			SEQ0_LSW <2:0>		
AUT	0.001	Default	0	0	0	0	1	0	1	0	
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
			Define th	e interval t	between sc	oft-start fini	sh and the	e next char	nel enable	ed	
	ON_Td <1	:0>	11 : 2ms 10 : 1ms 01 : 0.5m 00 : 0ms	S							
					r on seque el can't ch			except <0	00> in SE	Q0)	
SE	SEQ0_Buck2 <2:0>			last turn o third turn o second tur first turn o able	on rn on						
			Define LSW power on sequence in SEQ0 (Note : every channel can't choose the same code except <000> in SEQ0)								
SEQ0_LSW <2:0>			011 : the 010 : the	last turn o third turn c second tur first turn o able	on rn on						

Address Name	Register Address	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
		Function			•	SEQ0	Trim					
402	0.000	Meaning	OFF_T	d <1:0>	SEC	Q0_LDO <	2:0>	SEC	Q0_Buk3 <2:0>			
A02	0x02	Default	0	0	1	0	0	0	1	1		
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
			Define the interval between shut-down OK and the next channel disabled									
(OFF_Td <1:0>			;								
				ck3 power o ery channe	•			except <00	00> in SE0	Q0)		
SE	SEQ0_Buck3 <2:0>			ast turn on hird turn on second turn irst turn on ble								
			Define LDO power on sequence in SEQ0 (Note : every channel can't choose the same code except <000> in SEQ0)									
SEQ0_LDO <2:0>				nird turn on econd turn irst turn on								

Address Name	Register Address	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		Function				SEQ1	Trim			
4.02	0,02	Meaning	Reserved	Reserved	SEC	1_Buk2 <	2:0>	SEC	Q1_LSW <	2:0>
A03	0x03	Default	0	0	1	0	0	0	0	1
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
SE	SEQ1_Buck2 <2:0>			ck2 power c ery channel ast turn on hird turn on second turn irst turn on ble	can't cho			except <00	00> in SEC	21)
SEQ1_LSW <2:0>			(Note : even 100 : the la 011 : the the 010 : the s	W power or ery channel ast turn on hird turn on second turn irst turn on ble	can't cho			except <00	00> in SEC	21)

RT2070

Address Name	Register Address	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
		Function				SEQ1	Trim			
101	0×04	Meaning	Reserved	served Reserved SEQ1_LDO <2:0> SEQ1_E						
A04	0x04	Default	0	0	0	1	0	0	1	1
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
SI	SEQ1_LDO <2:0>			O power of ery channe last turn on hird turn or second turr first turn on ble	n n n on			except <0	00> in SE	Q1)
SEQ1_Buck3 <2:0>			(Note : ev 100 : the 011 : the 010 : the	ick3 power ery channe last turn on hird turn or second turr first turn on ble	l can't cho n n on			except <0	00> in SE	Q1)

Address Name	Register Address	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
		Function		SEQ2 Trim								
A 05	0.05	Meaning	Reserved	Reserved	SEQ2_Buk2 <2:0> SEQ2_L					2:0>		
A05	0x05	Default	0	0	0	1	1	1	0	0		
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
SE	SEQ2_Buck2 <2:0>			ick2 power ery channe last turn on third turn or second turr first turn on ble	l can't cho n n on			except <0	00> in SE	Q2)		
SEQ2_LSW <2:0>			(Note : ev 100 : the 011 : the 010 : the	W power o rery channe last turn on third turn or second turr first turn on ble	l can ⁱ t cho n n on			except <0	00> in SE	Q2)		

Address Name	Register Address	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
		Function				SEQ2	Trim					
100	0,406	Meaning	Reserved	Reserved	SEQ2_LDO <2:0> SEQ2_E					2:0>		
A06	0x06	Default	0	0	0	0	1	0	1	0		
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
				Define LDO power on sequence in SEQ2 (Note : every channel can't choose the same code except <000> in SEQ2)								
SE	SEQ2_LDO <2:0>		100 : the last turn on 011 : the third turn on 010 : the second turn on 001 : the first turn on 000 : disable									
			Define Buck3 power on sequence in SEQ2 (Note : every channel can't choose the same code except <000> in SEQ2)									
SEQ2_Buck3 <2:0>		011 : the t 010 : the s	ast turn on hird turn on second turn irst turn on ble									

Address Name	Register Address	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
		Function				SEQ3	Trim				
A07	0,07	Meaning	Reserved	served Reserved SEQ3_Buk2 <2:0> SEQ3_LS\						2:0>	
AUT	0x07	Default	0	0	0	0	1	0	1	1	
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
SE	SEQ3_Buck2 <2:0>			Define Buck2 power on sequence in SEQ3 (Note : every channel can't choose the same code except <000> in SEQ3) 100 : the last turn on 011 : the third turn on 010 : the second turn on 001 : the first turn on							
SEQ3_LSW <2:0>			(Note : eve 100 : the la 011 : the the 010 : the s	W power on ery channel ast turn on nird turn on second turn irst turn on	can't choo			except <00	00> in SEC	23)	

R	T2	0	7	0

Address Name	Register Address	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
		Function				SEQ3	Trim						
4.00	0200	Meaning	Reserved	Reserved	SEC	23_LDO <	2:0>	SEC	\3_Buk3 <	2:0>			
A08	0x08	Default	0	0	1	0	0	0	1	0			
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
				Define LDO power on sequence in SEQ3 (Note : every channel can't choose the same code except <000> in SEQ3)									
SE	SEQ3_LDO <2:0>		011 : the 010 : the	last turn on third turn or second turn first turn on ble	on								
			Define Buck3 power on sequence in SEQ3 (Note : every channel can't choose the same code except <000> in SEQ3)										
SEQ3_Buck3 <2:0>		011 : the 010 : the	last turn on third turn or second turn first turn on ble	on									

Address Name	Register Address	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
		Function		SEQ4 Trim									
A09	0x09	Meaning	Reserved	served Reserved SEQ4_Buk2 <2:0>				SEC	Q4_LSW <	2:0>			
AU9	0x09	Default	0	0	0	0	1	1	0	0			
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
SE	SEQ4_Buck2 <2:0>			Define Buck2 power on sequence in SEQ4 (Note : every channel can't choose the same code except <000> in SEQ4) 100 : the last turn on 011 : the third turn on 010 : the second turn on 001 : the first turn on 000 : disable						Q4)			
SE	EQ4_LSW	<2:0>	(Note : ev 100 : the 011 : the t 010 : the	W power or ery channe ast turn on hird turn or second turn first turn on ble	l can ⁱ t cho n i on			except <0	00> in SE	Q4)			

Address Name	Register Address	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
		Function		SEQ4 Trim									
A10	0.40.4	Meaning	Reserved	Reserved Reserved SEQ4_LDO <2:0>					SEQ4_Buk3 <2:0>				
A10	0x0A	Default	0	0	0	1	1	0	1	0			
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
I I				Define LDO power on sequence in SEQ4 (Note : every channel can't choose the same code except <000> in SEQ4)									
SE	SEQ4_LDO <2:0>			011 : the third turn on 010 : the second turn on 001 : the first turn on 000 : disable									
				Define Buck3 power on sequence in SEQ4 (Note : every channel can't choose the same code except <000> in SEQ4)									
SEQ4_Buck3 <2:0>			011 : the t 010 : the s	ast turn on hird turn on second turn irst turn on ble									

Address Name	Register Address	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
		Function		SEQ5 Trim								
A11		Meaning	Reserved	Reserved Reserved SEQ5_Buk2 <2:0>					25_LSW <	2:0>		
	0x0B	Default	0	0	0	1	0	0	0	1		
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
				Define Buck2 power on sequence in SEQ5 (Note : every channel can't choose the same code except <000> in SEQ5)								
SE	SEQ5_Buck2 <2:0>			ast turn on hird turn on second turn irst turn on ole								
			Define LSW power on sequence in SEQ5 (Note : every channel can't choose the same code except <000> in SEQ5)							Q5)		
SE	Q5_LSW	<2:0>	011 : the t 010 : the s	ast turn on hird turn on second turn irst turn on ole								

RT2070

Address Name	Register Address	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
		Function	SEQ5 Trim									
A 1 0	0,000	Meaning	Reserved	eserved Reserved SEQ5_LDO <2:0> SEQ5_Buk3 <								
A12	0x0C	Default	0	0	0	1	1	1	0	0		
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
SE	EQ5_LDO	<2:0>	Define LDO power on sequence in SEQ5 (Note : every channel can't choose the same code except <000> in SEQ5) 100 : the last turn on 011 : the third turn on 010 : the second turn on 001 : the first turn on 000 : disable									
SE	Q5_Buck3	3 <2:0>	(Note : ev 100 : the I 011 : the t 010 : the s	ast turn on hird turn on second turn irst turn on	l can't cho n i on			e except <0	00> in SE	Q5)		

Address Name	Register Address	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
		Function		OTP/OVP Function Level Trim								
A13	0x0D	Meaning	OTP_ TypeSel	Reserved	Reserved	Reserved	Reserved	VINOVP_ TypeSel		P_TdSel I:0>		
		Default	1	0	0	0	0	1	1	0		
	Read/Write			R/W	R/W	R/W	R/W	R/W	R/W	R/W		
				P protectio	on operatior	n mode.						
	OTP_TypeSel			protection off protection								
			Define OVP protection operation mode.									
VI	VINOVP_TypeSel			protection off protection								
				Define OVP deglitch time								
VIN	VINOVP_TdSel <1:0>											

Address Name	Register Address	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
		Function			Bu	ck2/3 Perfe	ormance T	rim					
A14	0x0E	Meaning		/IP_Cur :0>	Buck3Drv <1:0>		Buck2MP_Cur <1:0>		Buck2D	rv <1:0>			
		Default	1	0	1	0	1	0	1	0			
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
			Define the Buck3 Minimum Peak Current Level										
Buc	k3MP_Cu	r <1:0>	10 : Minir 01 : Minir	11 : Minimum Peak Current Level = 210mA 10 : Minimum Peak Current Level = 170mA 01 : Minimum Peak Current Level = 110mA 00 : Minimum Peak Current Level = 70mA									
			Define Bu	uck3 Drive	r ability								
В	Buck3Drv <1:0>			ger le ær æst									
			Define the Buck2 Minimum Peak Current Level										
Buc	k2MP_Cu	r <1:0>	 11 : Minimum Peak Current Level = 210mA 10 : Minimum Peak Current Level = 170mA 01 : Minimum Peak Current Level = 110mA 00 : Minimum Peak Current Level = 70mA 										
			Define Buck2 Driver ability										
Buck2Drv <1:0>			11 : stron 10 : midd 01 : weak 00 : weak	le ter									

Address Name	Register Address	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
		Function			HVBuck fs	w selectio	n / Eerror i	nformatior	1	-		
A15	0x0F	Meaning	HVBuc <1	_	Err_Base	Err_ HVBuck	Err_LSW	Err_ Buck2	Err_ Buck3	Err_LDO		
		Default	1	1	0	0	0	0	0	0		
		Read/Write	R/W	R/W	R	R	R	R	R	R		
HVI	Buck_OS	C <1:0>	11 : 2MH 10 : 2MH 01 : 1MH 00 : 500k Mark Bas	z z z Hz	itching freq	-	hen ENA	= <0> an	d Hiccup	recycle to		
	Err_Bas	e	1 : Happen VINUVLO or VINOVP or OTP or sequence time too long 0 : Didn't happen VINUVLO, VINOVP, OTP and sequence time too long									
	Err_HVB	Jok		Buck prote sequence	ection happ e	oen, reset	when ENA	∖ = <0> ar	nd Hiccup	recycle to		
		JCK			k UVP or C IVBuck UV		P					
	Err I SI	۸/	Mark LSW protection happen, reset when ENA = <0> and Hiccup recycle to power on sequence									
	Err_LS\	v	1 : Happen LSW UVP or OCP 0 : Didn't happen LSW UVP and OCP									
	Err Duo	2	Mark Buck2 protection happen, reset when ENA = <0> and Hiccup recycle to power on sequence									
	Err_Buc	κz	1 : Happen Buck2 UVP or OCP 0 : Didn't happen Buck2 UVP and OCP									
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Mark Buck3 protection happen, reset when ENA = <0> and Hiccup recycle to power on sequence									
	Err_Buc	к <b>о</b>	1 : Happen Buck3 UVP or OCP 0 : Didn't happen Buck3 UVP and OCP									
		2	Mark LDO protection happen, reset when ENA = <0> and Hiccup recycle to power on sequence									
	Err_LD	J			VP or OCP DO UVP a							



Address Name	Register Address	Description	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
		Function	Disat	ble Normal	Read / Rel	oad defa	ult setting	Error fund	ction inform	nation		
A16	0x10	Meaning	DIS_NR	RELOAD	Reserved	Err_ UVLO2	Err_OVP	Err_OTP	Err_UVP	Err_OCP		
		Default	0	0	0	0	0	0	0	0		
		Read/Write	R/W	R/W	R	R	R	R	R	R		
			Disable Normal Read Control									
	DIS_NI	२	register s 0 : Enab	1 : Didn't load normal read data while power on (ENA = Hi) again. Hold original register setting of sRG0x00 to sRG0x0E and sRG0x0F <7:6>. 0 : Enable normal read while power on (ENA = Hi), reset register sRG0x00 to sRG0x0E and sRG0x0F <7:6>								
			Reload default register setting Control									
	RELOA	D	RELOAD	<ul> <li>1 : Reload normal read result into register table and can't write register when RELOAD = &lt;1&gt;</li> <li>0 : register can be wrote</li> </ul>								
		02		LO2 prote	ection happ	en, reset	when EN	A = <0> (	or hiccup	recycle to		
	Err_UVL	02		en UVLO2 happen U								
	Err_OV	D	MarkVINOVP protection happen, reset when ENA = <0> or hiccup recycle to power on sequence									
	EII_OV	F	1 : Happen VINOVP 0 : Didn't happen VINOVP									
		D	Mark OTP protection happen, reset when ENA = <0> or hiccup recycle to power on sequence									
	Err_OT	F	1 : Happen OTP 0 : Didn't happen OTP									
			Mark UVP protection happen, reset when ENA = <0>									
	Err_UV	Р	1 : Happen UVP 0 : Didn't happen UVP									
				Mark OCP protection happen, reset when ENA = <0>								
	Err_OC	Р	1 : Happe 0 : Didn't	en OCP happen O	CP							

#### **Protections List**

	Protection Type	Threshold (Typical Value)	Mask Time	Protection Method	Reset Method
	UVLO2	VIN < 3.9V	32µs	Disable all channels	Hiccup protection, Restart if VIN > 4.4V and EN = Hi
VIN	OVP	VIN > 15.5V	5ms	Disable all channels	Latch-off protection, VIN < 13.5V, VDDA < 1.6V or EN = low
	OCP	PMOS current > 3A	10ms	Cycle-by-Cycle detection then disable all channels	Latch-off protection, VDDA < 1.6V or EN = low
CH1	UVP	VOUT1 < VOUT1 x 0.5 (50%)	No mask	Disable all channels	Latch-off protection, VDDA < 1.6V or EN = low
	VOUT1 OVP	VOUT1 > 5.5V	No mask	Disable CH1	Hiccup Until fail event to be dissolved
CH2	OCP	PMOS current > 1.3A	10ms	Cycle-by-Cycle detection then disable all channels	Latch-off protection, VDDA < 1.6V or EN = low
	UVP	VOUT2 < VOUT2 x 0.5 (50%)	No mask	Disable all channels	Latch-off protection, VDDA < 1.6V or EN = low
CH3	OCP	PMOS current > 1.3A	10ms	Cycle-by-Cycle detection then disable all channels	Latch-off protection, VDDA < 1.6V or EN = low
	UVP	VOUT3 < VOUT3 x 0.5 (50%)	No mask	Disable all channels	Latch-off protection, VDDA < 1.6V or EN = low
CH4	OCP	PMOS current > 0.75A	10ms*	Disable all channels	Latch-off protection, VDDA < 1.6V or EN = low
СП4	UVP	VOUT4 < VOUT4 x 0.4 (40%)	No mask	Disable all channels	Latch-off protection, VDDA < 1.6V or EN = low
	Current Limit	NMOS current > 0.75A	No mask	Disable all channels	Latch-off protection, VDDA < 1.6V or EN = low
LSW	UVP	VSWI - VSWO > 0.7V	No mask	Disable all channels	Latch-off protection, VDDA < 1.6V or EN = low
		VSWO < 0.85V	No mask	Disable all channels	Latch-off protection, VDDA < 1.6V or EN = low
Thermal	Thermal Shutdown	Temperature > 160°C	No mask	Disable all channels	Latch-off protection, EN = High and Temperature < 140°C

* When current limit is working, VOUT4 drops and UVP trigger less than 10ms.



#### **Thermal Considerations**

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula:

#### $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$

where  $T_{J(MAX)}$  is the maximum junction temperature,  $T_A$  is the ambient temperature, and  $\theta_{JA}$  is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 150°C. The junction to ambient thermal resistance,  $\theta_{JA}$ , is layout dependent. For WQFN-24L 4x4 package, the thermal resistance,  $\theta_{JA}$ , is 28°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at T_A = 25°C can be calculated by the following formula :

 $P_{D(MAX)} = (150^{\circ}C - 25^{\circ}C) / (28^{\circ}C/W) = 4.46W$  for WQFN-24L 4x4 package

The maximum power dissipation depends on the operating ambient temperature for fixed  $T_{J(MAX)}$  and thermal resistance,  $\theta_{JA}$ . The derating curve in Figure 5 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

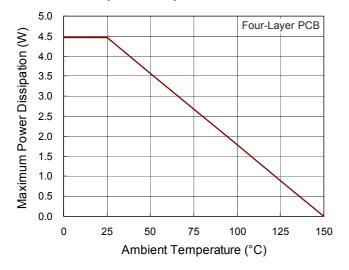
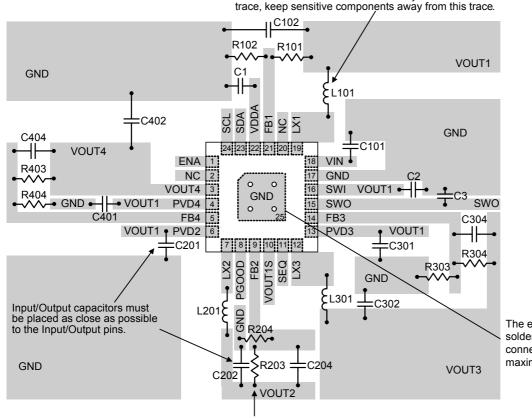



Figure 5. Derating Curve of Maximum Power Dissipation


#### Layout Consideration

For the best performance of the RT2070, the following PCB layout guidelines must be strictly followed.

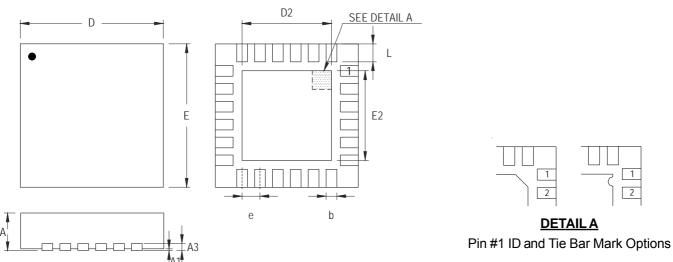
- > Place the input and output capacitors as close as possible to the input and output pins respectively for good filtering.
- Keep the main power traces as wide and short as possible.
- The switching node area connected to LX and inductor should be minimized for lower EMI.
- Place the feedback components as close as possible to the FBx pin and keep these components away from the noisy devices.
- Connect the GND and Exposed Pad to a strong ground plane for maximum thermal dissipation and noise protection.
- Directly connect the output capacitors to the feedback network of each channel to avoid bouncing caused by parasitic resistance and inductance from the PCB trace.

Copyright ©2016 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. www.richtek.com





LX should be connected to inductor by wide and short trace, keep sensitive components away from this trace.


The exposed pad must be soldered to a large PCB and connected to GND for maximum thermal dissipation.

Place the feedback components as close as possible to the FBx pin and keep away from noisy devices.

Figure 6. PCB Layout Guide



### **Outline Dimension**



Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

	wmhol	Dimensions I	n Millimeters	Dimension	s In Inches
3	symbol	Min	Max	Min	Max
	А	0.700	0.800	0.028	0.031
	A1	0.000	0.050	0.000	0.002
	A3	0.175	0.250	0.007	0.010
	b	0.180	0.300	0.007	0.012
	D	3.950	4.050	0.156	0.159
D2	Option 1	2.400	2.500	0.094	0.098
DZ	Option 2	2.650	2.750	0.104	0.108
	E	3.950	4.050	0.156	0.159
E2	Option 1	2.400	2.500	0.094	0.098
	Option 2	2.650	2.750	0.104	0.108
	е	0.5	500	0.0	20
	L	0.350	0.450	0.014	0.018

W-Type 24L QFN 4x4 Package

### **Richtek Technology Corporation**

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.