RICHTEK®

DDR Termination Regulator

General Description

The RT2526Q is a 2A sink/source tracking termination regulator. It is specifically designed for low-cost and low-external component count systems. The RT2526Q possesses a high speed operating amplifier that provides fast load transient response and only requires 20μ F of ceramic output capacitance. The RT2526Q supports remote sensing functions and all features required to power the DDRII/DDRIII VTT bus termination according to the JEDEC specification. In addition, the RT2526Q includes integrated sleep-state controls placing VTT in High-Z in S3 (suspend to RAM) The RT2526Q is available in the thermal efficient package SOP-8 (Exposed Pad).

Ordering Information

RT2526Q

Package Type SP : SOP-8 (Exposed Pad-Option 1) Lead Plating System

G : Green (Halogen Free and Pb Free)

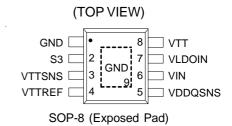
Note :

Richtek products are :

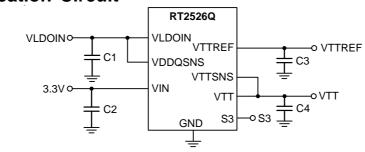
- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Marking Information

RT2526Q GSPYMDNN RT2526QGSP : Product Number YMDNN : Date Code


Features

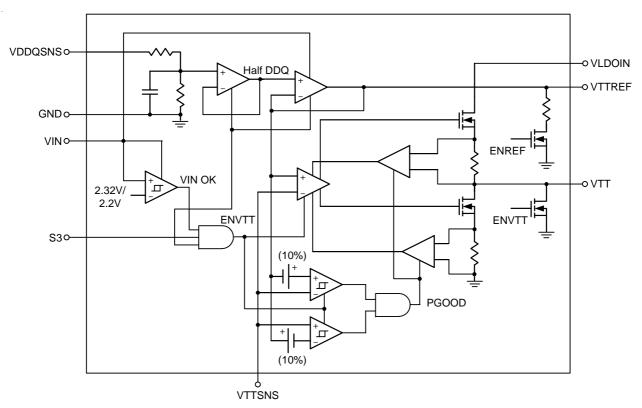
- Supports DDRII and DDRIII, Low-Power Requirement
 - Source/Sink 2A for DDRII and DDRIII
- Input Voltage Range : 3.1V to 3.6V
- VLDOIN Voltage Range : 1.2V to 1.8V
- Requires Only 20µF Ceramic Output Capacitance
- Supports High-Z in S3
- Integrated Divider Tracks 1/2 VDDQSNS for Both VTT and VTTREF
- Remote Sensing (VTTSNS)
- ±20mV Accuracy for VTT and VTTREF
- 10mA Buffered Reference (Sourcing/Sinking) (VTTREF)
- Built-In Soft-Start
- Current Limit
- Thermal Shutdown
- RoHS Compliant and Halogen Free


Applications

- DDRII, DDRIII Memory Termination
- SSTL-2, SSTL-18, HSTL Termination

Pin Configurations

Simplified Application Circuit



Functional Pin Description

Pin No.	Pin Name	Pin Function
1, 9 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.
2	S3	Active Low Suspend to RAM Mode Control Input. In S3 state, VTT is turned off and left High-Z, VTTREF is active.
3	VTTSNS	VTT Voltage Sense Input. Connect to plus terminal of the output capacitor.
4	VTTREF	Buffered Output. The reference output voltage equals to VDDQSNS / 2.
5	VDDQSNS	VLDOIN Sense Input.
6	VIN	Supply Voltage Input for Control Circuit.
7	VLDOIN	Power Input for VTT Output Stage.
8	VTT	Power Output of the Regulation. The output voltage equals to VDDQSNS / 2.

Function Block Diagram

Table	1.	S3	Control	Table
Iabio		00	00110101	IGNIO

State	S3	VTT	VTTREF
Normal	High	0.75V	0.75V
Standby	Low	High-Z	0.75V

Operation

Shutdown Mode

The shutdown mode will happen when the S3 input voltage is under the logic threshold. The VTT pin will be high impedance and VTTREF will remain active under shutdown mode.

VIN OK and Thermal Shutdown

The regulator will detect VIN voltage and junction temperature. When VIN is lower than the VIN OK threshold or the junction temperature is over the thermal shutdown threshold, both the VTT and VTTREF will be discharged to GND.

VTTREF Buffer

The buffer senses the input voltage from VDDQSNS and provides an internal reference voltage of VDDQSNS/2 for VTT regulator.

VTT Regulator

The VTT output is capable of sinking and sourcing current while sensing from the VTTSNS pin to regulate the output precisely to VTTREF.

Absolute Maximum Ratings (Note 1)

 Supply Input Voltage, VIN Supply Input Voltage, VLDOIN, VDDQSNS 	
 Power Dissipation, P_D @ T_A = 25°C SOP-8 (Exposed Pad) 	2 04\\/
Package Thermal Resistance (Note 2)	2.0477
SOP-8 (Exposed Pad), θ_{JA}	49°C/W
SOP-8 (Exposed Pad), θ_{JC}	15°C/W
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV

Recommended Operating Conditions (Note 4)

Supply Input Voltage, VIN	3.1V to 3.6V
Supply Input Voltage, VLDOIN, VDDQSNS	1.2V to 1.8V
Junction Temperature Range	–40°C to 125°C
Ambient Temperature Range	–40°C to 85°C

Electrical Characteristics

(V_{IN} = 3.3V, VLDOIN = VDDQSNS = 1.5V, $T_A = -40^{\circ}C$ to 85°C, unless otherwise specified)

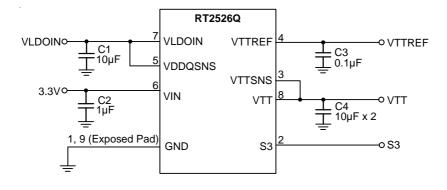
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
VIN Supply Current	I _{VIN}	No Load, S3 = 3.3V			2	mA
VIN Standby Current	I _{VINSTB}	No Load, S3 = 0V			300	μA
VLDOIN Supply Current	I _{VLDOIN}	No Load, S3 = 3.3V			2	mA
VLDOIN Standby Current	I _{VLDOINSTB}	No Load, S3 = 0V			10	μA
VDDQSNS Input Current	IVDDQSNS	S3 = 3.3V			50	μA
VTTSNS Input Current	I _{VTTSNS}	S3 = 3.3V			1	μΑ
VTT Output Voltage	VTT	VDDQSNS = VLDOIN = 1.5V	0.735	0.75	0.768	V
VTTREF, VTT Output	Vvtttol	VDDQSNS = VLDOIN = 1.5V, I _{VTT} = 0A	-20		20	mV
Tolerance		VDDQSNS = VLDOIN = 1.5V, I _{VTT} = 1.5A	-40		40	ΠV
VTT Source Current Limit	I _{VTTOCLsr}	VTT = 0V	2.3	3.3		А
VTT Sink Current Limit	IVTTOCLsk	VTT = VDDQSNS	2.3	4.3		А
	Vvttref	VDDQSNS = 1.5V, I _{VTTREF} = 0mA	0.735	0.75	0.768	v
VTTREF Output Voltage		VDDQSNS = 1.5V, I _{VTTREF} < 10mA	0.728	0.75	0.772	v

RICHTEK

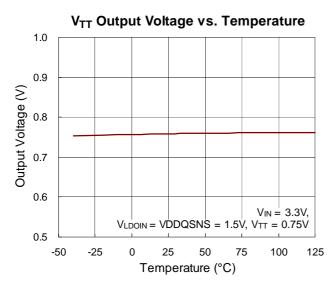
RT2526Q

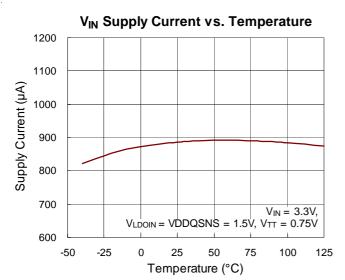
Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit
UVLO Threshold Voltage			Rising			2.7	
		Vuvlo	Falling	1.4		2.4	
S3 Input	Logic-High	VIH		1.6			v
Voltage	Logic-Low	VIL				0.4	
S3 Input Leak	age Current	l _{ILK}				1	μA
Thermal Shutdown Protection		T _{SD}			160		°C
Thermal Shutdown Hysteresis		ΔT_{SD}			20		°C

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

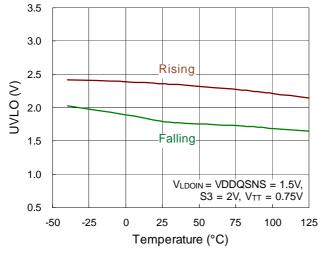

Note 2. θ_{JA} is measured at $T_A = 25^{\circ}C$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{JC} is measured at the exposed pad of the package.

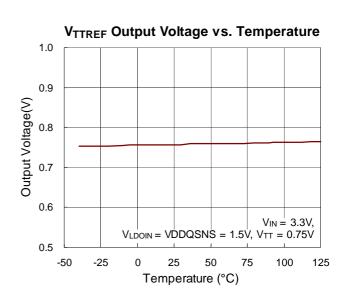
Note 3. Devices are ESD sensitive. Handling precaution is recommended.

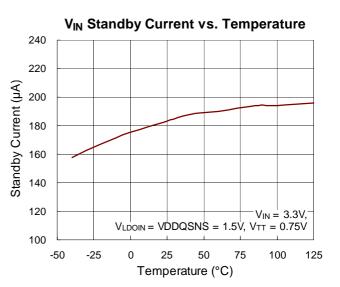

Note 4. The device is not guaranteed to function outside its operating conditions.

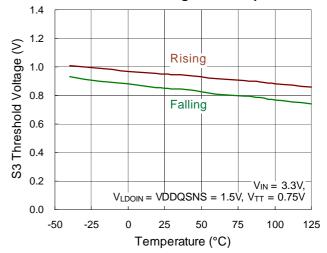


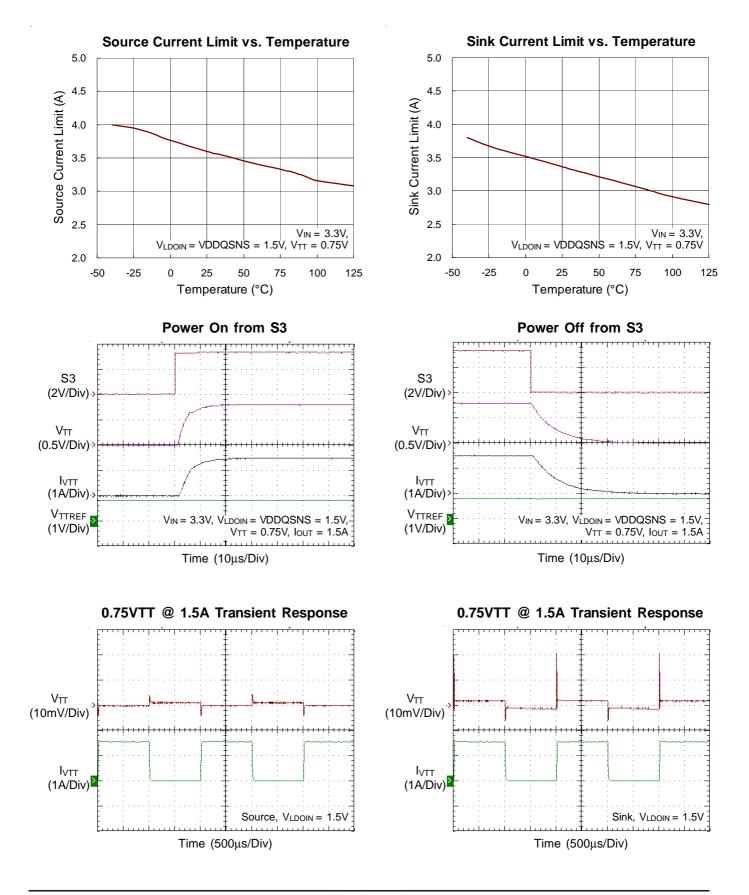
Typical Application Circuit




Typical Operating Characteristics







S3 Threshold Voltage vs. Temperature

Copyright ©2015 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Copyright ©2015 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

8

RICHTEK

Application Information

The RT2526Q is a 2A sink/source tracking termination regulator. It is specifically designed for low-cost and low-external component count system such as notebook PC applications. The RT2526Q possesses a high speed operating amplifier that provides fast load transient response and only requires a 10μ F ceramic input capacitor and two 10μ F ceramic output capacitors.

VTTREF Regulator

VTTREF is a reference output voltage with source/sink current capability up to 10mA. To ensure stable operation 0.1μ F ceramic capacitor between VTTREF and GND is recommended.

S3 Logic Control

The S3 terminal should be connected to SLP_S3 signals respectively. Both VTTREF and VTT are turned on at normal state (S3 = High). In standby state (S3 = Low), VTTREF is kept alive while VTT is turned off and left high impedance.

Table 2. S3 0	Control Talbe
---------------	---------------

STATE	S3	VTT	VTTREF
Normal	Н	ON	ON
Standby	L	OFF (High-Z)	ON

Capacitor Selection

Good bypassing is recommended from VLDOIN to GND to help improve AC performance. A 10μ F or greater input capacitor located as close as possible to the IC is recommended. The input capacitor must be located at a distance of less than 0.5 inches from the VLDOIN pin of the IC.

Adding a 1μ F ceramic capacitor close to the VIN pin and it should be kept away from any parasitic impedance from the supply power. For stable operation, the total capacitance of the ceramic capacitor at the VTT output terminal must not be larger than 30μ F. The RT2526Q is designed specifically to work with low ESR ceramic output capacitor in space saving and performance consideration. Larger output capacitance can reduce the noise and improve load transient response, stability and PSRR. The output capacitor should be located near the VTT output terminal pin as close as possible.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :

 $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{JA}}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 125°C. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. For SOP-8 (Exposed Pad) package, the thermal resistance, θ_{JA} , is 49°C/W on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $T_A = 25^{\circ}$ C can be calculated by the following formula :

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (49^{\circ}C/W) = 2.04W$ for SOP-8 (Exposed Pad) package

The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance, θ_{JA} . The derating curve in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

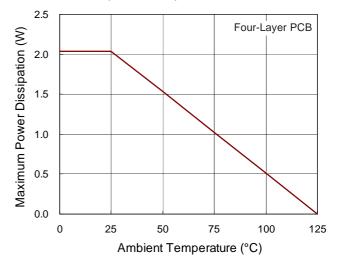
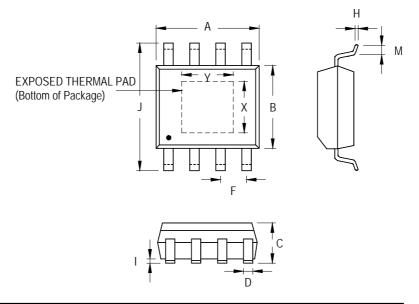



Figure 1. Derating Curve of Maximum Power Dissipation

RICHTEK

Outline Dimension

Symbol		Dimensions I	n Millimeters	Dimensions In Inches		
		Min	Max	Min	Max	
А		4.801	5.004	0.189	0.197	
В		3.810	4.000	0.150	0.157	
С		1.346	1.753	0.053	0.069	
D		0.330	0.510	0.013	0.020	
F		1.194	1.346	0.047	0.053	
н		0.170	0.254	0.007	0.010	
I		0.000	0.152	0.000	0.006	
J		5.791	6.200	0.228	0.244	
М		0.406	1.270	0.016	0.050	
Option 1	Х	2.000	2.300	0.079	0.091	
Option 1	Y	2.000	2.300	0.079	0.091	
Option 2	Х	2.100	2.500	0.083	0.098	
	Y	3.000	3.500	0.118	0.138	

8-Lead SOP (Exposed Pad) Plastic Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.