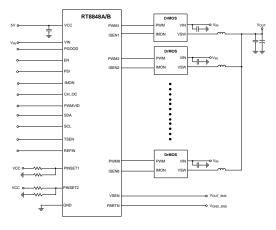
RICHTEK

Multi-Phase PWM Controller with PWM-VID Reference

General Description

The RT8848A/B is a 8/7/6/5/4/3/2/1 multi-phase synchronous Buck controller which is optimized for high performance graphic microprocessor and support nVidia OVR4i+ spec with PWM-VID interface. The RT8848A/B adopts AC G-NAVPTM (Green Native AVP) which is Richtek's proprietary topology derived from finite DC gain of internal GM amplifier with current mode control. By utilizing the AC G-NAVPTM topology, the operating frequency of the RT8848A/B varies with VID, load and input voltage to further enhance the efficiency even in CCM. Besides, for current sensing application, the RT8848A/B can support either a traditional DCR network current sense from inductor or a smart power stage (SPS) which can directly provide a current monitor signal (IMON).

The RT8848A/B features external reference input and PWM-VID dynamic output voltage control, in which the output voltage is regulated and tracks external input reference voltage. The RT8848A/B can set internal RAMP amplitude through PINSETx pin and this can optimize stability and load transient performance. The RT8848A/B also provides complete fault protection functions including over-voltage protection (OVP), under-voltage protection (UVP), channel over-current limit (CH_OC), sum output current protection (SOC) and over-temperature protection (OTP).


Features

- Multi-Phase PWM Controller
- PWM-VID Dynamic Voltage Control
- Support 1.8V PWM-VID Interface
- Power State Indicator
 - ► LPC (Low Phase Count), PSI = Low
 - ► APS (Auto Phase Shedding), PSI = Mid
 - HPC (High Phase Count), PSI = High
- External Reference Input Control
- 8/7/6/5/4/3/2/1 Phase Hardware Setting
- Adjustable Soft-Start Time
- Adjustable Switching Frequency
- Adjustable Phase Current Balance
- Support Standby Mode
- UVP/OVP/OTP/SOC/CH_OC/TSEN Protection
- Adjustable Protection Thresholds
- Power Good Indicator
- ADC Reporting for IMON, TSEN and VSEN
- Support I²C Interface for Programming
- RoHS Compliant and Halogen Free

Applications

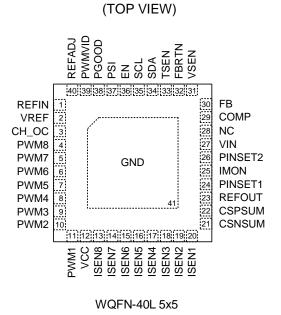
• GPU Core Power for OVR4i+ Spec

Simplified Application Circuit

1

Ordering Information

RT8848 🗖 🗖 🗖


Package Type QW : WQFN-40L 5x5 (W-Type) Lead Plating System G : Green (Halogen Free and Pb Free) 1 Phase Operation Mode A : DEM/CCM (Auto) B : FCCM

Note :

Richtek products are :

- ► RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes.

Pin Configuration

Marking Information

RT8848AGQW

RT8848AGQW : Product Number YMDNN : Date Code

RT8848BGQW

RT8848BGQW : Product Number YMDNN : Date Code

Functional Pin Description

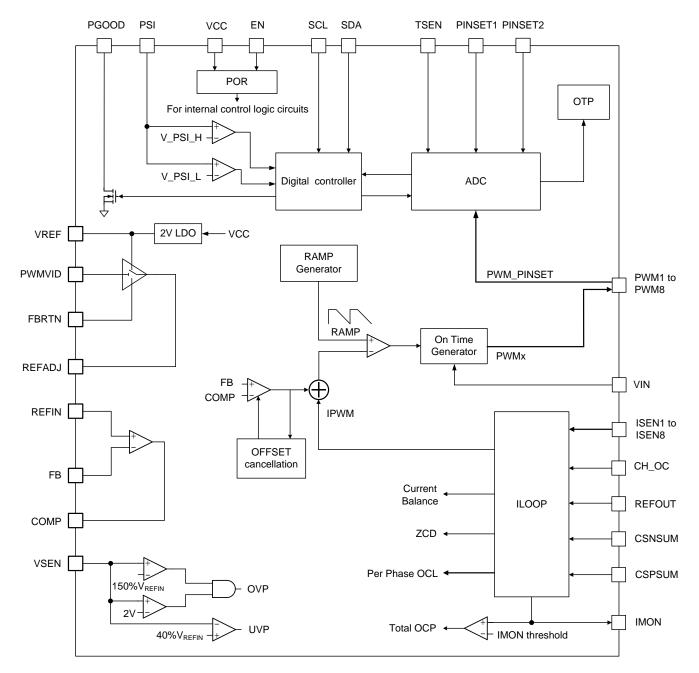
Pin No.	Pin Name	Pin Function	
1	REFIN	External reference input. Connect this pin to an external voltage source through a RC filter (R = $2.2\Omega/0603$ and C = 1μ F/0603) or connect to the output of REFADJ circuit.	
2	VREF	Reference voltage output. Connect a $0.1\mu\text{F}/0603$ decoupling capacitor between VREF and GND. The reference voltage is 2V.	
3	CH_OC	Channel current limit. Connect a resistor from CH_OC to GND to adjust the per-phase current limit threshold. The resistor setup for current limit threshold can refer to application information. Besides, if CH_OC is floated, voltage of CH_OC is fixed in 5V for maximum current limit level.	
4	PWM8	PWM control output for phase 8 driver circuit. As PWM output is high (pull up to VCC), high-side MOSFET is turned on. As PWM output is in tri-state level (1.6V or 1.9V), both MOSFETs are turned off. As PWM output is low (pull down to GND), low-side MOSFET is turned on. The resistor value should be equal or smaller than $20k\Omega$. The driver input resistance value should be considered for PWM pin setting. In addition, the parasitic capacitor on the PWM pin should be smaller than $100pF$.	
5	PWM7	PWM control output for phase 7 driver circuit and function setting for auto-phase shedding threshold 4. As PWM output is high (pull up to VCC), high-side MOSFET is turned on. As PWM output is in tri-state level (1.6V or 1.9V), both MOSFETs are turned off. As PWM output is low (pull down to GND), low-side MOSFET is turned on. Moreover, connect a resistor from this pin to GND to set the "auto-phase shedding threshold 4". The resistor selection guide can refer to application information. The resistor value should be larger than $30k\Omega$. The driver input resistance value should be considered for PWM pin setting. In addition, the parasitic capacitor on the PWM pin should be smaller than 100pF.	
6	PWM6	PWM control output for phase 6 driver circuit and function setting for soft-start phase number during cold-boot and warm-boot. As PWM output is high (pull up to VCC), high-side MOSFET is turned on. As PWM output is in tri-state level (1.6V or 1.9V), both MOSFETs are turned off. As PWM output is low (pull down to GND), low-side MOSFET is turned on. Moreover, connect a resistor from this pin to GND to set the "soft-start phase number during cold-boot and warm-boot". The resistor selection guide can refer to application information. The resistor value should be larger than $20k\Omega$. The driver input resistance value should be considered for PWM pin setting. In addition, the parasitic capacitor on the PWM pin should be smaller than 100pF.	

RICHTEK

Pin No.	Pin Name	Pin Function		
7	PWM5	PWM control output for phase 5 driver circuit and function setting for auto-phase shedding threshold 3. As PWM output is high (pull up to VCC), high-side MOSFET is turned on. As PWM output is in tri-state level (1.6V or 1.9V), both MOSFETs are turned off. As PWM output is low (pull down to GND), low-side MOSFET is turned on. Moreover, connect a resistor from this pin to GND to set the "auto-phase shedding threshold 3". The resistor selection guide can refer to application information. The resistor value should be larger than $30k\Omega$. The driver input resistance value should be considered for PWM pin setting. In addition, the parasitic capacitor on the PWM pin should be smaller than 100pF.		
8	PWM4	PWM control output for phase 4 driver circuit and function setting operating phase number under PSI = L (< 0.4V) status. As PWM output is high (pull up to VCC), high-side MOSFET is turn on. As PWM output is in tri-state level (1.6V or 1.9V), both MOSFETs turned off. As PWM output is low (pull down to GND), low-side MOSF is turned on. Moreover, connect a resistor from this pin to GND to set "operation phase number as PSI = L". The resistor selection guide can refer to application information. The resistor value should be larger than $20k\Omega$. The driver input resistant value should be considered for PWM pin setting. In addition, parasitic capacitor on the PWM pin should be smaller than 100pF.		
9	PWM3	PWM control output for phase 3 driver circuit and function setting for auto-phase shedding threshold 2. As PWM output is high (pull up to VCC), high-side MOSFET is turned on. As PWM output is in tri-state level (1.6V or 1.9V), both MOSFETs are turned off. As PWM output is low (pull down to GND), low-side MOSFET is turned on. Moreover, connect a resistor from this pin to GND to set the "auto-phase shedding threshold 2". The resistor selection guide can refer to application information. The resistor value should be larger than $30k\Omega$. The driver input resistance value should be considered for PWM pin setting. In addition, the parasitic capacitor on the PWM pin should be smaller than 100pF.		
10	PWM2	PWM control output for phase 2 driver circuit and function setting for auto-phase shedding threshold 1. As PWM output is high (pull up to VCC), high-side MOSFET is turned on. As PWM output is in tri-state level (1.6V or 1.9V), both MOSFETs are turned off. As PWM output is low (pull down to GND), low-side MOSFET is turned on. Moreover, connect a resistor from this pin to GND to set the "auto-phase shedding threshold 1". The resistor selection guide can refer to application information. The resistor value should be larger than $30k\Omega$. The driver input resistance value should be considered for PWM pin setting. In addition, the parasitic capacitor on the PWM pin should be smaller than 100pF.		

RT8848A/B

Pin No.	Pin Name	Pin Function		
11	PWM1	PWM control output for phase 1 driver circuit and function setting for both soft-start slew rate and PWM high-Z level. As PWM output is high (pull up to VCC), high-side MOSFET is turned on. As PWM output is in tri-state level (1.6V or 1.9V), both MOSFETs at turned off. As PWM output is low (pull down to GND), low-side MOSFE is turned on. Moreover, connect a resistor from this pin to GND to set th "soft-start slew rate" and "PWM high-Z level". The resistor selection guide can refer to application information. The resistor value should be larger than $20k\Omega$. The driver input resistant value should be considered for PWM pin setting. In addition, the parasitic capacitor on the PWM pin should be smaller than 100pF.		
12	VCC	Bias voltage for control logic. The required bias voltage for VCC is 5 typ. For avoiding noise disturbance, the supplied bias voltage must be stable, Besides, a RC filter (R = $2.2\Omega/0603$ and C = 1μ F/0603) from bia voltage to VCC pin is necessary which should be placed as close a physically possible to VCC pin. There is around 50mA sink currer during POR duration, the maximum resistance of RC filter should be smaller than 2.2Ω .		
13 to 20	ISEN8 to ISEN1	Current sense inputs of phase1 to phase 8. These pins can be used for differentially sensing output current from DCR current sensing networ or connecting to IMON output pin of SPS (Smart Power Stage) for eac phase. DO NOT add additional RC filter. Besides, the ISENx pins can also be used for hardware setting of maximum phase number. When ISENx pin is pulled up to VCC with $100k\Omega$ resistor, the PHASEx is disabled and the maximum phase number reduces to X-1. For example, if ISEN7 pin is pulled up to VCC the maximum phase number is 6. Both PHASE7 and PHASE8 ar disabled.		
21	CSNSUM	Inverting input of total current sense amplifier. DO NOT add RC filter on this pin. Only add a decoupling cap. (10nF/0603) to GND.		
22	CSPSUM	Non-inverting input of total current sense amplifier. DO NOT add additional RC filter on this pin.		
23	REFOUT	Reference output pin. As for SPS application by setting the PINSET1 to SPS mode, REFOUT outputs 1.38V (typ.) to the REFIN pin of SPS. Connect a 0.47 μ F/0603 decoupling capacitor near this pin, and the equivalent capacitance on this pin should be limited at ±10% of 0.47 μ F. Besides, as for DCR current sensing application by setting the PINSET1 to DCR mode, REFOUT is regarded as an input pin and it should be connected to the positive terminal of output capacitor. A small decoupling capacitor (10nF/0603) to GND is necessary.		
24	PINSET1	PINSET 1 I/O pin. Connect a pair of voltage divider to adjust the internation setting for internal ramp amplitude, AI gain and SPS selection. The design value of resistors can refer to the application information. Moreover, DO NOT put any decoupling capacitor near this pin.		
25	IMON	Output current monitor. The output current of this pin is proportional to the total load current. The total load current is sensed and flows out of this pin, and a resistor from this pin to GND makes the IMON voltage proportional to the total output current. The IMON resistor selection should follow the application type (SPS or DCR). The guide is introduced in application information. Don't put any decoupling capacitor near this pin since it affects the accuracy of IMON reporting. The minimum value of IMON resistor should be larger than 30kOhm.		


Pin No.	Pin Name	Pin Function		
26	PINSET2	PINSET 2 I/O pin. Connect a pair of voltage divider to adjust the interna function setting for per-phase switching frequency, PWM pin setting enable and address code for slave device. The design value of resistors can refer to the application information. Moreover, DO NOT put any decoupling capacitor near this pin.		
27	VIN	VIN monitor pin. It is recommended to place a RC filter before VIN pin for stable operation. The suggested design value of RC filter is R = $2.2\Omega/0603$ and C = 1μ F/0603.		
28	NC	No connection pin. For better heat dissipation, rout this pin to GND.		
29	COMP	Output of control loop error amplifier.		
30	FB	Inverting input of the error amplifier.		
31	VSEN	Output voltage sensing input. This pin is the positive input from differential output voltage remote sense. Connect to the positive terminal of output capacitors at GPU side with a resistor ($0\Omega/0603$) for OVP and UVP detection. Besides, to prevent output overvoltage when GPU is disconnected, connect to positive terminal of output capacitors at local side with a resistor ($100\Omega/0603$).		
32	FBRTN	Output voltage feedback return. This pin is the negative input from differential output voltage remote sense. Connect to the remote sensing ground at GPU side with a resistor ($0\Omega/0603$). Besides, to prevent output overvoltage when GPU is disconnected, connect to output capacitors' ground at local side with a resistor ($100\Omega/0603$).		
33	TSEN	Thermal monitor input. Connect a voltage divider with a NTC thermistor for VR temperature sensing or connect to the DrMOS's temperature monitor output.		
34	SDA	I ² C data pin. This pin is the input and output of serial bus data signal.		
35	SCL	I ² C clock pin. This pin is the input of serial bus clock signal.		
36	EN	Enable control input. Connect a resistor (R = $60k\Omega/0603$) to GND in parallel with a NMOS switch. As EN voltage is lower than 0.3V, RT8848A/B is in shutdown mode and all power rails are disabled. As EN is higher than 1.8V, RT8848A/B is woken up.		
37	PSI	Power state input. Depending on different input voltage levels of PSI, the controller can be operated in full phase mode (PSI > 1.6V), auto-phase shedding mode (0.8V < PSI < 1.2V) or low phase count mode (PSI < 0.4V) separately.		
38	PGOOD	Power good indicator. This open-drain is pulled low as UVP, OVP, OT EN low and output voltage is not regulated (such as before soft-start). A external pull-up resistor to VCC or other external rail is required, and $10k\Omega$ pull-up resistor is recommended.		
39	PWMVID	PWMVID input pin. The reference of output voltage can be programmed by adjusting the PWMVID input signal.		
40	REFADJ	PWMVID output pin for output reference adjustment. Connect this p with a RC filter to generate REFIN voltage. The recommended RC val is R = $6.19k\Omega$ (0603) and C = $4.7nF(0603)$. Please refer to applicate information for further information about RC filter.		

Pin No.	Pin Name	Pin Function	
41 (Exposed Pad)	GND	Ground. The exposed pad is the ground of logic control circuits. For better power dissipation, it should be soldered to a large ground plane with enough thermal vias.	

Functional Block Diagram

Operation

VCC Power On Reset (POR), UVLO

The power ready detection circuit is shown in Figure 1. The VCC voltage is monitored for power on reset with typically 4.3V rising edge threshold. There is around 200mV hysteresis voltage for the comparator. When VCC is above POR threshold, the controller starts up after EN is higher than 1.8V. In contrast, as EN pin is driven below 0.3V, the controller will be turned off, and all fault states are cleared. Moreover, for avoiding noise disturbance, the supplied bias voltage must be stable. A RC filter (R = $2.2\Omega/0603$ and C = 1μ F/0603) from bias voltage to VCC pin is necessary which should be placed as close as possible to VCC pin. There is around 50mA sink current during POR duration, the maximum resistance of RC filter should be smaller than 2.2Ω .

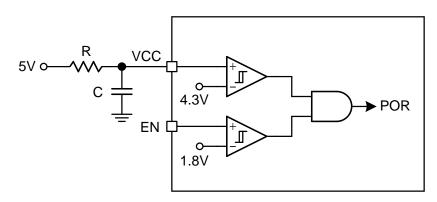


Figure 1. Circuit of Power Ready Detection

EN Control Circuit

As PWM controller's VCC is higher than POR threshold (typical value is 4.3V), an internal I_{SOURCE_EN} current is generated. A simplified enable sequence control circuit is shown in Figure 2. There is a MOSFET, Q1, in parallel with R_{EN} to control the high/low status of EN. For first power on, as Q1 is open, a source current (I_{SOURCE_EN}) flows through R_{EN} to GND to enable the controller, and the initial value of I_{SOURCE_EN} is 10 μ A during PWM pin setting detection process. At the end of PWM pin setting process, the I_{SOURCE_EN} increases to 90 μ A and V_{EN} is clamped by VCC at 4.5V. The controller will follow the power on sequence setting to ramp up the output voltage with a determined ramp up slope which can refer to the power on sequence section. In order to accomplish the PWM pin setting detection successfully without the loading effect of internal resistance from MOSFET driver, the enable sequence design is crucial. The selection of MOSFET driver should consider the PWMx INPUT pin status when EN_D is lower than POR threshold and PVCC is higher than POR threshold. As shown in Figure 2, the PWMx INPUT should be high impedance as EN_D is below POR threshold. Some MOSFET drivers without this characteristic will make the PWM pin setting function fail. Moreover, the sequence of EN and EN_D should follow the sequence as depicted in Figure 3. The delay time (T_{EN_D}) from EN high to EN_D high should be smaller than 100µsec to prevent abnormal operation. The recommended design value of R_{EN} is $60k\Omega$.

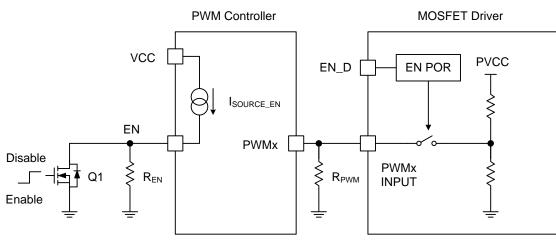


Figure 2. Enable Sequence Control Circuit

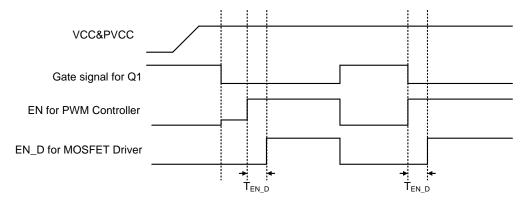


Figure 3. EN Sequence Control Signal Diagram

Power On and Power Off Sequence

The RT8848A/B features a programmable soft-start function to limit the inrush current from power supply input. During the first power on, controller starts PWM pin setting when $V_{EN} > 0.5V$ within typical 1ms initialization time (T_{INIT1}), where V_{EN} is established by a sourcing current ISOURCE_EN = 10μ A flowing through REN. After the end of PWM pin setting, the ISOURCE EN increases to 90μ A and the V_{EN} is clamped by VCC at 4.5V. When $V_{EN} > 1.8V$, there is an around 200µs delay time (TINIT2) before controller starts soft-start process. In the 200µs delay time, controller keeps the PWM pins in tri-state status and REFOUT outputs to 1.38V (typ.) if SPS mode is applied. The ramping up slew rate (SR_{RAMP}) of output voltage during soft-start process is determined by the resistor, RPWM1. The soft-start slew rate and recommended RPWM1 are listed in Table 1. The recommended soft-start slew rate is 6mV/µs for better power on performance. Besides, the PWM high-Z voltage is also determined by R_{PWM1} as shown

in Table 1. It should be noticed that the input resistance of driver should also be considered for RPWM1 resistor calculation, the recommended values listed in Table 2 doesn't consider the driver input resistance. The equivalent resistance on PWM1 pin should be less than $60k\Omega$. As output voltage reaches to V_{REFIN} after soft-start process, PGOOD will be pulled high by external voltage source with a resistor. The power on sequence of RT8848A/B at first power on is shown in Figure 4. Generally, the duration of power on sequence from EN goes high to PGOOD goes high is less than 2ms. Besides, the I²C R/W access can only work after the end of VR power on sequence.

Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation www.richtek.com

RT8848A/B

Table 1. R _{PWM1} PWM pin Setting						
R _{PWM1}	R _{PWM1} SR _{RAMP} PWM High-Z Voltage					
20kΩ	2mV/µs	1.9V				
25k Ω	2mV/µs	1.6V				
30kΩ	4mV/µs	1.9V				
35kΩ	4mV/µs	1.6V				
40kΩ	6mV/μs	1.9V				
45kΩ	6mV/μs	1.6V				

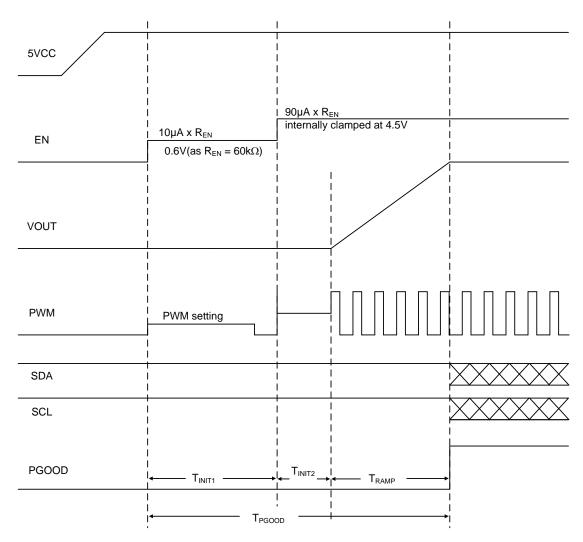


Figure 4. Power On Sequence of RT8848A/B at First Power On

Moreover, if RT8848A/B is powered up through EN re-toggle after first power on, there is no PWM pin setting process during power on sequence. VEN is directly established by a sourcing current ISOURCE EN = $90\mu A$ flowing through R_{EN}. When V_{EN} > 1.8V, there is an around 200µs delay time (TINIT2) before controller starts soft-start process. In the 200µs delay time, controller keeps the PWM pins in tri-state status and REFOUT outputs to 1.38V (typ.) if SPS mode is applied. The ramping up slew rate (SR_{RAMP}) of output voltage during soft-start process is determined by the resistor, RPWM1. The soft-start slew rate and recommended R_{PWM1} are listed in Table 1. The power on sequence of RT8848A/B by EN re-toggle after first power on is shown in Figure 5. It should be noticed that the I²C registers keep the data unless VCC power recycle and I²C R/W access only works after VR power on sequence.

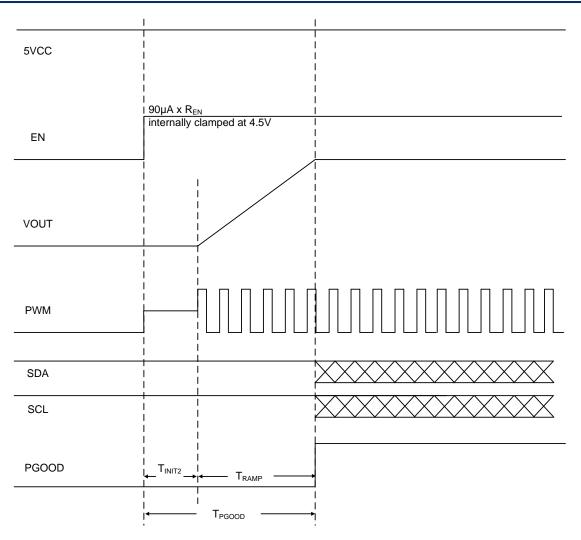


Figure 5. Power On Sequence of RT8848A/B by EN re-toggle After First Power On

As V_{EN} is pulled down to below 0.3V by external resistor or switch, the controller stops switching after 300ns delay and keeps all PWM output in tri-state. At the moment, the PGOOD signal is also pulled down by internal open-drain switch. In order to prevent short through from high-side MOSFET to low-side MOSFET, the PWM outputs a short low pulse before entering tri-state when PGOOD goes low. In a result, an internal switch will be turned on to discharge the output capacitors through the route from VSEN trace to GND. The discharge impedance is around 70 Ω . Besides, for the application of SPS mode, the REFOUT is also discharged by an internal resistor when EN goes low. The power off sequence of RT8848A/B by EN is shown in Figure 6.

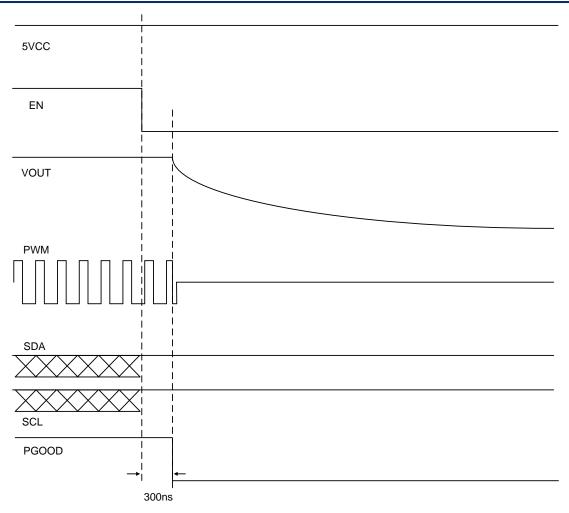


Figure 6. Power Off Sequence of RT8848A/B by EN

PWMVID Function

The RT8848A/B supports PWMVID function to dynamically adjust the REFIN voltage for different GPU operating conditions. As shown in Figure 7, a PWMVID circuit consists of a PWM buffer, a bias V_{REF} voltage and a RC filter. An external PWM signal is applied to VID pin, which controls the PWM buffer output's high/low status. The output of buffer(REFADJ) is integrated by the external RC filter, and divided by a resister network to achieve reference voltage(REFIN). The voltage of REFIN can be calculated as :

$$V_{\text{REFIN}} = V_{\text{REF}} \times D \times \frac{R_{2_\text{VID}} // (R_{3_\text{VID}} + R_{4_\text{VID}} + R_{5_\text{VID}})}{R_{1_\text{VID}} + R_{2_\text{VID}} // (R_{3_\text{VID}} + R_{4_\text{VID}} + R_{5_\text{VID}})} \times \frac{R_{4_\text{VID}} + R_{5_\text{VID}}}{R_{3_\text{VID}} + R_{4_\text{VID}} + R_{5_\text{VID}}} + R_{4_\text{VID}} + R_{5_\text{VID}}} + V_{\text{REF}} \times D \times \frac{R_{1_\text{VID}} // (R_{3_\text{VID}} + R_{4_\text{VID}} + R_{5_\text{VID}})}{R_{2_\text{VID}} + R_{1_\text{VID}} // (R_{3_\text{VID}} + R_{4_\text{VID}} + R_{5_\text{VID}})} \times \frac{R_{4_\text{VID}} + R_{5_\text{VID}}}{R_{3_\text{VID}} + R_{4_\text{VID}} + R_{5_\text{VID}}} \times \frac{R_{4_\text{VID}} + R_{5_\text{VID}}}{R_{3_\text{VID}} + R_{4_\text{VID}} + R_{5_\text{VID}}}$$

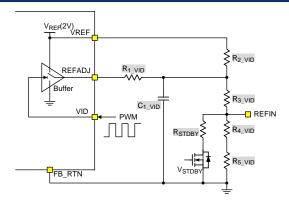


Figure 7. PWMVID Circuit

where V_{REF} is the bias reference voltage (typical value is 2V), and D is the duty cycle of PWM input signal. For internal LDO compensation, a decoupling capacitor of 0.1µF/0603 between VREF pin and local GND is necessary.

For PWMVID dynamic output voltage transition, the settling time of output voltage transits from the old voltage to a new voltage depends on the time constant of PWMVID circuit, which can be calculated as :

$$\tau = \mathsf{R}_{1_\mathsf{VID}} / / \mathsf{R}_{2_\mathsf{VID}} / / \left(\mathsf{R}_{3_\mathsf{VID}} + \mathsf{R}_{4_\mathsf{VID}} + \mathsf{R}_{5_\mathsf{VID}} \right)$$

The settling time T_{SET_VID} of REFIN transition is around 5 times of τ which is independent of the voltage step size and PWM frequency.

$T_{SET_VID} = 5 \times \tau$

Moreover, it should be noticed that the PWMVID function is only active after PGOOD goes high. Before activating PWMVID function, the REFADJ pin keeps at high impedance status.

BOOT Mode and Standby Mode

There are two operation modes included in PWMVID structure: boot mode and standby mode. Boot mode is the operation of output voltage ramps up in a power on sequence. During boot mode, controller ignores the PWMVID signal and REFADJ enters high impedance status before PGOOD goes high. The operating phase number in boot mode can be set via selecting the resistor value of RPWM6. The setting of operating phase number can refer to Table 2. It should be noticed that the input resistance of driver should also be considered when designing the RPWM6 resistor, the recommended value listed in Table 2 doesn't consider the driver input resistance. For example, if driver input resistance is 2.5MΩ, the equivalent resistance on PWM6 output pin becomes 2.5M Ω in parallel with R_{PWM6}; therefore, the RPWM6 design value will be larger than the value listed on Table 2.

Operating Phase Count During Boot Mode	R _{PWM6} Equivalent Resistance	
1phase	20kΩ	
2phase	25kΩ	
3phase	30kΩ	
4phase	35kΩ	
5phase	40kΩ	
6phase	45kΩ	
7phase	50kΩ	
8phase	55kΩ	

 Table 2. Operating Phase Count Setting in Boot Mode

During standby mode, GPU stops the PWMVID transaction and sends a standby control signal to enter standby mode. An additional switch in parallel with original PWMVID resistors will be switched on to reduce the REFIN voltage. When V_{REFIN} is lower than 0.15V, the controller enters standby mode and all PWM outputs enter tri-state. On the other hand, the controller exits standby mode once V_{REFIN} is higher than 0.2V as standby control signal is released. Controller follows R_{PWM6} setting to decide the phase number during VOUT reboot. Besides, the PGOOD signal keeps high in standby mode. The V_{REFIN} in standby mode can be calculated as following equation :

$$V_{\text{REFIN}} = V_{\text{REF}} \times \frac{R_{\text{STDBY}} // (R_{4_\text{VID}} + R_{5_\text{VID}})}{R_{2_\text{VID}} + R_{3_\text{VID}} + R_{\text{STDBY}} // (R_{4_\text{VID}} + R_{5_\text{VID}})}$$

Current Balance

The RT8848A/B senses each phase current through ISENx pin for current balance. The sensed current ICBx is mirrored to the current balance circuit, comparing with the average current, and adjusting each phase PWM width to optimize current and thermal balance. The current balance circuit increases the duty cycle of the phase which has smaller phase current as compared to other rails and decreases the duty cycle of the phase which has larger phase current. In addition, there are some registers for improving the current balance performance when default setting can't achieve good current balance result. The current balance gain and current balance offset can be adjusted through I²C register 0x11~0x20. The settings for each register are summarized at the section of register tables behind. Increase current balance gain of the phase which has larger current than other rails or reduce current balance gain of the phase which has smaller current than other rails. If current balance can't be improved by adjusting current balance gain, adding an offset on the phase which has larger phase current than other rails.

Power State Input

The RT8848A/B supports automatic phase shedding and adjustable high/low phase count according to PSI input voltage. There are three operation modes: High Phase Count (HPC) mode, Auto Phase Shedding (APS) mode and Low Phase Count (LPC) mode. Table 3 shows recommended PSI setting voltage threshold of three operation modes. In LPC mode, the operation phase number is determined by RPWM4 resistor value. The operation phase number and suggested RPWM4 are listed in Table 4. It should be noticed that the input resistance of driver should also be considered for R_{PWM4} resistor calculation, the recommended values listed in Table 4 doesn't consider the driver input resistance. Besides, the operation phase number in LPC mode can also be programmed by I²C register 0x45[2:0]. In APS mode, the operation phase number dynamically increases or decreases depending on output load current. In HPC mode, the controller operates in maximum phase number, which is determined by detecting the status of ISENx pins during PWM pin setting process at first power on.

Table 3. Operation Mode and PSI Voltage Setting

Operation Mode	PSI Voltage Setting	
High Phase Count Mode	1.6V to 5.5V	
Auto Phase Shedding Mode	0.8V to 1.2V	
Low Phase Count Mode	0V to 0.4V	

Table 4. Operation Phase Number Setting in LPC Mode				
R _{PWM4}	Low Phase Count	Register 0x45[2:0]		
20k Ω	1Phase	000		
25kΩ	2Phase	001		
30kΩ	3Phase	010		
35kΩ	4Phase	011		
40kΩ	5Phase	100		

6Phase

7Phase

8Phase

 $45k\Omega$

 $50 k\Omega$

 $55k\Omega$

101

110

111

RICHTEK

Auto Phase Shedding

The RT8848A/B provides Auto Phase Shedding (APS) function to dynamically change operating phase number depending on different output currents. The switching loss and conduction loss can be reduced in light load by reducing the phase number to improve light load efficiency. Moreover, the system efficiency can be optimized through changing phase number according to output load. The APS function is active when following conditions are satisfied :

- 1. PSI pin voltage is within 0.8V to 1.2V.
- 2. APS function works as PGOOD goes high after power on sequence

During the PWM pin setting process at first power on, the APS current thresholds (APL1/APL2/APL3/APL4) are determined by RPWM2/RPWM3/RPWM5/RPWM7 resistor values respectively. The hysteresis of APL1/APL2/APL3/APL4 and operating phase number at each stage are programmable through I²C registers (0x05~0x08, 0x09~0x0D) as shown in Table 5 and Table 6. The APL1~APL4 thresholds can be calculated as :

 $V_{APL1} = (20\mu A \times R_{PWM2} - 0.6V) \times 2$

 $V_{APL2} = (20 \mu A \times R_{PWM3} - 0.6V) \times 2$

 $V_{APL3} = (20 \mu A \times R_{PWM5} - 0.6 V) \times 2$

 $V_{APL4} = (20 \mu A \times R_{PWM7} - 0.6V) \times 2$

In other words, the $\mathsf{R}_{\mathsf{PWM}}$ value can be calculated by substitution.

$$\begin{split} R_{PWM2} &= (V_{APL1}/2 + 0.6V) / 20\mu A \\ R_{PWM3} &= (V_{APL2}/2 + 0.6V) / 20\mu A \\ R_{PWM5} &= (V_{APL3}/2 + 0.6V) / 20\mu A \\ R_{PWM7} &= (V_{APL4}/2 + 0.6V) / 20\mu A \end{split}$$

It should be noticed that the input resistance of driver should also be considered when designing the R_{PWM} resistor, the calculated value by above formula doesn't consider the driver input resistance.

The V_{IMON} reporting value is applied to compare with each APL threshold to change the phase number with regard to register setting. There are five current zones summarized as below :

If V_{IMON} < V_{APL1}, controller operates in phase number PH_LCS0 as addressed in Register 0x0D.

If V_{APL1} < V_{IMON} < V_{APL2}, controller operates in phase number PH_LCS1 as addressed in Register 0x0C.

If V_{APL2} < V_{IMON} < V_{APL3}, controller operates in phase number PH_LCS2 as addressed in Register 0x0B.

If $V_{APL3} < V_{IMON} < V_{APL4}$, controller operates in phase number PH_LCS3 as addressed in Register 0x0A.

If $V_{IMON} > V_{APL4}$, controller operates in phase number PH_LCS4 as addressed in Register 0x09.

When setting the operating phase number of each current zone, always keep the following rules :

PH_LCS0 < PH_LCS1 < PH_LCS2 < PH_LCS3 < PH_LCS4

VAPL1 < VAPL2 < VAPL3 < VAPL4

If violating either rule1 or rule2, controller is forced into full phase operation mode.

The RT8848A/B also supports Soft Phase Shedding Down that there is a delay time (80μ s) within each phase zone transition to prevent output undershoot or overshoot from PSI switching during down phase shedding. However, the delay time doesn't exist during phase adding, the phase will increase to determined number according to V_{IMON} level.

Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation
WWW.richtek.com
DS8848A/B-02 February 2021

Table 5. APL Hyst	eresis Register Setting
-------------------	-------------------------

	I ² C Register				
APL_HYS	APL_HYS1 APL_HYS2 0x05[2:0] 0x06[2:0]		APL_HYS3 0x07[2:0]	APL_HYS4 0x08[2:0]	
0mV	000	000	000	000	
12.5mV	001	001 001		001	
25mV	010	010	010	010	
37.5mV	011	011	011	011	
50mV	100	100	100	100	
62.5mV	101	101	101	101	
75mV	110	110	110	110	
87.5mV	111	111	111	111	

Table 6. Operating Phase Number in Each Current Zone

	I ² C Register				
Phase Number	PH_LCS0 0x0D[2:0]	PH_LCS1 0x0C[2:0]	PH_LCS2 0x0B[2:0]	PH_LCS3 0x0A[2:0]	PH_LCS4 0x09[2:0]
1Phase	000	000	000	000	000
2Phase	001	001	001	001	001
3Phase	010	010	010	010	010
4Phase	011	011	011	011	011
5Phase	100	100	100	100	100
6Phase	101	101	101	101	101
7Phase	110	110	110	110	110
8Phase	111	111	111	111	111

AC Droop

The RT8848A/B adopts a new feature, i.e. AC-droop, to effectively suppress load transient ring back and to control overshoot well for zero loadline application. Figure 8 shows the condition without AC-droop control. The output voltage without AC-droop control has extra ring back Δ V2 due to C area charge.

Figure 9 shows the condition with AC-droop control. While loading occurs, controller temporarily changes VID target to short-term voltage target. Short-term voltage target is related to transient loading current Δ I_{CC} and can be represented as the following :

Short_Term_Voltage_Target

DCR type

 $\text{AC_DROOP} = \text{V}_{\text{CS}_\text{SUM}} \times \frac{\text{AI}_\text{SET}}{\text{AV}} = \frac{\text{I}_{\text{OUT}_\text{SUM}} \times \text{DCR}}{\text{N}} \times \frac{\text{AI}_\text{SET}}{\text{AV}}$

N = phase number, AV = EA gain = R_{1_comp}/R_{2_comp}

AI_SET = 48/24/12/6

SPS type

$$AC_DROOP = \frac{V_{CS_SUM}}{8} \times \frac{AI_SET}{AV} = \frac{I_{OUT_SUM} \times DCR}{8} \times \frac{AI_SET}{AV}$$

AI_SET = 12/6/3/2

 $AV = EA_GAIN = R_{1_comp}/R_{2_comp}$

where the V_{CS_SUM} is the sum of current sensing signal from DCR sensing or SPS current sensing. For DCR sensing, the V_{CS_SUM} = V_{CSPSUM}-V_{CSNSUM} = $I_{OUT_SUM} \times DCR/N$. The current gain (AI) can be set by Pin Setting of AI Gain. Users can adjust AI gain by I²C register 0x41[3:2] to set desired short term voltage target. The short-term voltage target reverts to VID target slowly after approximately 100µs. The short-term voltage target can help inductor current not to exceed loading current too much and then the ring back can be suppressed. Referring to Figure 9, the overshoot

amplitude is reduced to only $\Delta V3.$

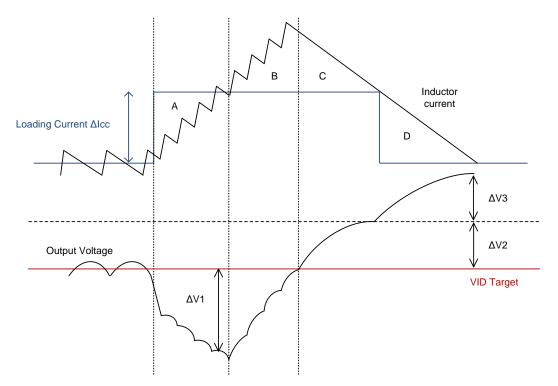


Figure 8. Zero Loadline without AC-droop Control

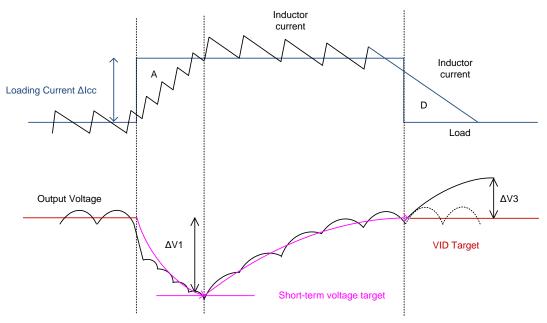
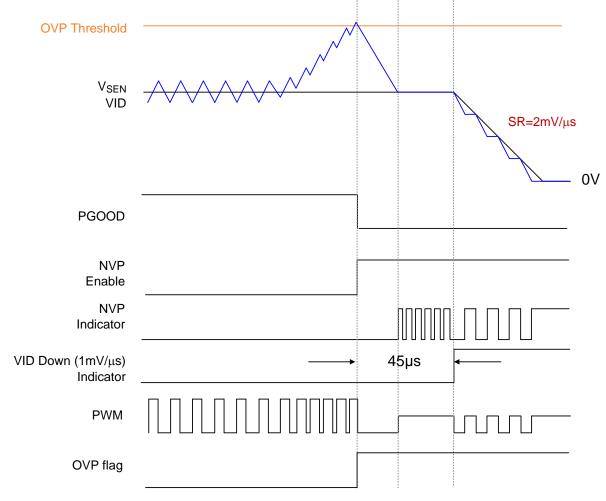
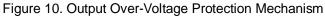


Figure 9. Zero Loadline with AC-droop Control

Power Good

The PGOOD pin is an open-drain output, and requires a pull-up resistor ($10k\Omega/0603$). During soft-start time period, the PGOOD remains at low. When the output voltage reaches to REFIN voltage, PGOOD is pulled high and latched. If one of the protections (OVP/UVP/SOC/TSEN/OTP) is triggered or EN goes low during operation, the PGOOD will be pulled low immediately.


Output Over-Voltage Protection (OVP)


In order to prevent abnormal output high voltage which may induce catastrophic damage on chip or power devices, the RT8848A/B features an output OVP mechanism. According to different VREFIN voltage setup, the OVP threshold has two methods to define. First, if V_{REFIN} is lower than 1.33V, the OVP threshold is fixed at absolute OVP protection threshold (typical value is 2V, programmable by I^2C register 0x25[1:0]). Second, if VREFIN is higher than 1.33V, the OVP threshold is a relative OVP protection threshold, which equals to 1.5 times VREFIN (the weighting factor is programmable by I²C register 0x26[1:0]). A typical OVP protection mechanism is shown in Figure 10. When V_{SEN} is larger than OVP threshold for longer than 1µs deglitch time, the OVP protection is triggered. In the moment, the PGOOD is pulled down and NVP function is enabled. The OVP status is also recorded in I²C register 0x2A[0]. After NVP function is enabled, the

RT8848A/B

controller holds PWM at low status to discharge output capacitors until reaching VID reference. Besides, in order to prevent over large negative inductor current that may damage MOSFETs or driver, the controller switches PWM in tri-state or low pulse to regulate the output voltage at VID reference within 45µs before VID down. After 45µs delay time from the beginning of OVP triggering point, the controller starts to discharge the output voltage with a slow ramping down slew rate (2mV/µs). Within the soft-stop process, the controller holds PWM in tri-state as VSEN is higher than VID reference and holds PWM in low status as VSEN is larger than VID reference. Once OVP is triggered, the controller needs to re-toggle EN or re-cycle VCC to release from latched mode and clear I²C flag 0x2A[0].

Moreover, the OVP function can be enabled or disabled through I²C register 0x29[0].

Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation DS8848A/B-02 February 2021 www.richtek.com

RICHTEK

Output Under-Voltage Protection (UVP)

In order to prevent power stages from over-heating because of output voltage has been clamped by OCP, the RT8848A/B features an output UVP mechanism. A typical UVP protection mechanism is shown in Figure 11. If the output voltage drops below UVP trip threshold for longer than 3µs (typical), the UVP is triggered, and the controller forced all PWM outputs to tri-state and an internal switch will be turned on to discharge the output capacitors through the route from VSEN trace to GND. The discharge impedance is around 70Ω . At the same time, the PGOOD is pulled down and the UVP status is recorded in I²C register 0x2A[1]. Besides, the UVP threshold is programmable through I²C register 0x27[1:0]. Default threshold is 0.4 times VREFIN. Once UVP is triggered, the controller needs to re-toggle EN or re-cycle VCC to release from latched mode and clear I²C flag 0x2A[1].

Moreover, the UVP function can be enabled or disabled through I^2C register 0x29[1]. It should be noticed that the UVP protection is masked during power on sequence before PGOOD goes high.

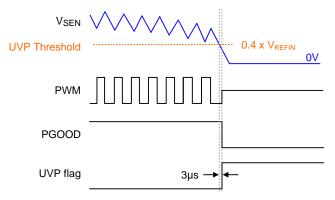


Figure 11. Typical UVP Protection Mechanism

Over-Temperature Protection (OTP)

The RT8848A/B features an OTP circuitry to prevent die overheating due to excessive power dissipation. A typical OTP protection mechanism is shown in Figure 12. When die temperature exceeds 150°C (programmable through I^2C register 0x28[1:0]) for longer than 45µs deglitch time, the controller forces all PWM outputs to tri-state. At the moment, the PGOOD is pulled down and the OTP status is recorded in I^2C register 0x2A[3]. For continuous operation, provide adequate cooling so that the junction temperature does

not exceed OTP threshold. Once OTP is triggered, the controller needs to re-toggle EN or re-cycle VCC to release from latched mode and clear I²C flag 0x2A[3]. Moreover, the OTP function can be enabled or disabled

through I^2C register 0x29[3].

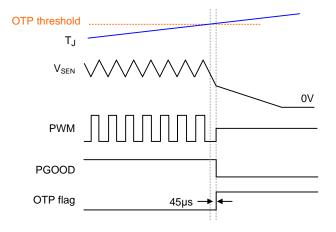


Figure 12. Typical OTP Protection Mechanism

TSEN Over-Temperature Protection (TSEN OTP)

The RT8848A/B features TSEN protection function which monitors the local temperature of power stages (MOSFETs or power inductors) during heavy load operation to prevent devices from overheating and catastrophic damage. According to operation modes of the controller, the TSEN protection can be categorized as DCR mode application and SPS mode application. As shown in Figure 13, the VTSEN voltage is generated by a voltage divider. For different thermistor selection, the temperature can be monitored by a NTC or a PTC. For NTC case, a NTC thermistor is suggested to place near the hottest point of the power stage and in parallel with R_P, generally close to the power inductor and low-side MOSFET at phase 1. Besides, for PTC case, a PTC thermistor should be placed in parallel with Rs and near the hottest point of the power stage. For both cases, as temperature rises, the V_{TSEN} increases. The VTSEN voltage is then converted to 8-bits digital data by internal ADC converter. The ADC result is compared with VTSEN shutdown threshold, VTSEN_SD, to trigger the protection mechanism. If VTSEN is higher than VTSEN SD (VTSEN SD = 0.8V) for longer than deglitch time, which is programmable through I²C register 0x33[1:0], the controller forces all PWM outputs to tri-state. At the moment, the PGOOD is pulled down

RT8848A/B

and the TSEN OTP status is recorded in I^2C register 0x2A[4]. The protection mechanism is shown in Figure 15.

For PTCthermistor case, $V_{TSEN} = \frac{(R_S / / R_{PTC})}{R_P + (R_S / / R_{PTC})} \times V_{CC}$

For NTCthermistor case, $V_{TSEN} = \frac{R_S}{R_S + (R_P // R_{NTC})} \times V_{CC}$

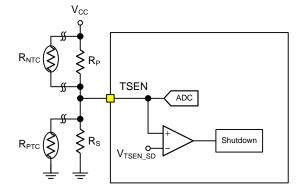


Figure 13. TSEN Pin Application Circuit in DCR Mode On the other hand, Figure 14 shows a SPS mode application. The TSEN pin is connected to the TMON pin of SPS IC with a decoupling capacitor (C_F = 1nF/0603/6.3V) placed at local side of the controller to reduce noise coupling through layout trace. Generally, the temperature characteristic of SPS's TMON reporting is positive temperature coefficient. Therefore, as temperature rises, the V_{TSEN} increases. The V_{TSEN} voltage is then converted to 8-bits digital data by internal ADC converter. The ADC result is compared with V_{TSEN} shutdown threshold, V_{TSEN} sp, to trigger the protection mechanism. If VTSEN is larger than VTSEN SD (VTSEN SD = 0.8V) for longer than deglitch time, which is programmable through I²C register 0x33[1:0], the controller forces all PWM outputs to tri-state. At the moment, the PGOOD is pulled down and the TSEN OTP status is recorded in I²C register 0x2A[4]. Besides, the design of RTS1 and RTS2 are based on the transfer function of T_J and V_{TMON} from SPS's datasheet. The protection mechanism is shown in Figure 15.

$$V_{TSEN} = \frac{R_{TS2}}{R_{TS1} + R_{TS2}} \times V_{TMON}$$

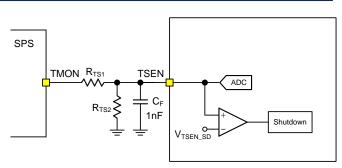


Figure 14. TSEN Pin Application Circuit in SPS Mode

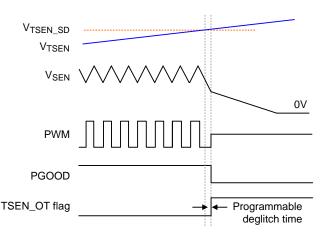


Figure 15. TSEN OTP Protection Mechanism with NTC or PTC

For both SPS mode and DCR mode, the controller needs to re-toggle EN or re-cycle VCC to release from latched mode and clear I^2C flag 0x2A[4] after TSEN OTP is triggered. Moreover, the TSEN OTP function can be enabled or disabled through I^2C register 0x29[4].

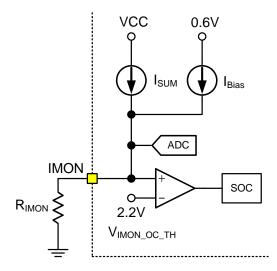
Sum Over-Current Protection (SOCP)

The RT8848A/B provides Sum Over-Current Protection (SOCP) to prevent power system from over-current operation. The SOCP protection circuit is shown in Figure 16. First, the per-phase inductor currents are added together to generate a mirrored current I_{SUM}. The I_{SUM} is in parallel with a I_{BIAS}, which provides a fixed 0.6V offset on V_{IMON}, and flowing out of IMON pin to an external resistor, R_{IMON}. The voltage across R_{IMON} is then converted to 8-bit digital data by internal ADC converter. The ADC result is compared with SOCP threshold, V_{IMON_OC_TH} (programmable through I²C register 0x24[5:0]), to trigger the protection mechanism. According to the application type (SPS type or DCR type), the V_{IMON} has different calculation formula. The formulas are demonstrated as below :

```
Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation
```

DS8848A/B-02 February 2021

For SPS type, V_{IMON} (V) = V_{CS_SUM} (V)/8 x 1.5 x R_{IMON} (k Ω) + 0.6V


For DCR type, V_{IMON} (V) = V_{CS_SUM} (V) x 1.5 x R_{IMON} (k Ω) + 0.6V

, where V_{CS_SUM} is the current sensing voltage from DCR sum current sensing network or SPS's IMON feedback signal. It should be noticed that SPS's V_{CS_SUM} current is the sum of current signal inputs from ISEN1 to ISEN8. Therefore, the selection of R_{IMON} for a specified total load current protection can be derived as below :

For SPS type, R_{IMON} (k Ω) = [V_{IMON_OC_TH} (V) - 0.6V] / V_{CS_SUM,max} (V) / 1.5 x 8

For DCR type, R_{IMON} (k Ω) = [V_{IMON_OC_TH} (V) – 0.6V] / V_{CS_SUM,max} (V) / 1.5

, where $V_{\text{CS}_\text{SUM},\text{max}}$ is the current sensing voltage at the specified limitation of total load current.

The protection mechanism of SOCP is shown in Figure 17. As the total load current increases, the voltage of V_{IMON} increases proportionally. If V_{IMON} is larger than V_{IMON_OC_TH} for longer than deglitch time, which is programmable through I^2C register 0x23[1:0], the controller forces all PWM outputs to tri-state. At the moment, the PGOOD is pulled down and the SOCP status is recorded in I^2C register 0x2A[2]. Once SOCP is triggered, the controller needs to re-toggle EN or re-cycle VCC to release from latched mode and clear I^2C flag 0x2A[2].

Moreover, the SOCP function can be enabled or disabled through I^2C register 0x29[2]. DO NOT put any

decoupling capacitor near IMON pin since it affects the accuracy of IMON reporting.

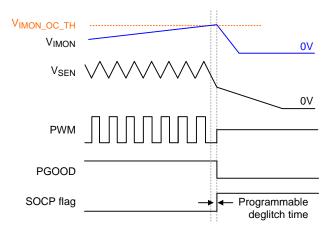


Figure 17. Sum OCP Protection Mechanism

Per-Phase Over-Current Protection (Per-Phase OCP)

The RT8848A/B features per phase current limit mechanism to prevent over-current event. The per phase current limit circuit employs a unique "valley" current sensing algorithm. If the magnitude of the current sense signal is above the current limit threshold, the PWM is not allowed to initiate a new cycle. The per-phase OCP protection circuit is shown in Figure 18. The per-phase current limit threshold is decided by the differential voltage across RCH OC, VCH OC, which is generated by an internal current source (programmable through I²C register 0x21[7:0], 0x22[7:0]). When DCR sensing circuit is adopted, in order to ensure the accuracy of current signal over a wide range of temperatures, it is recommended to use a PTC thermistor in parallel with RCH OC. The PTC thermistor should be placed near power inductor at phase 1. Then, the current limit threshold can be calculated as following equation :

 $V_{CH_OC}(V) = 20\mu \times R_{CH_OC}(\Omega)$

$$I_{OC_PH_Valley}(A) = \frac{V_{CH_OC}(V) - 0.6}{32 \times DCR(\Omega)}$$

Where the I_{OC_PH_Valley} is the per phase inductor valley current limit threshold and DCR is the inductor's DCR resistor. For SPS type application, the DCR represents the current reporting gain of SPS chip. Moreover, it should be noticed that the per-phase OCP

limits the inductor valley current instead of average current. When average output current is larger than $(I_{OC_PH_Valley} + \Delta I_L/2)$, the output voltage will start to ramp down because inductor valley current is limited by OCP threshold. The output capacitor is discharged by the current deviation between inductor current and output load. Besides, the OCP indicator is detected dynamically according to the comparator output of per-phase OCP protection circuit. The protection mechanism of per-phase OCP is shown in Figure 19. The per-phase OCP flag (recorded in I²C register 0x2B[7:0]) is asserted as inductor sensing current, IMON PH, is larger than IOC PH. On the other hand, if inductor sensing current is lower than IOC PH, the OCP flag is de-asserted. There is around 100ns comparator delay time in per-phase OCP protection circuit. By the way, the PGOOD remains at high status during OCP process.

In addition, for multi-phase application with common-N DCR current sensing circuit, the PCB impedance from inductor output point to VOUT remoting point (GPU side) induces a DC offset on current feedback signal as shown in Figure 34 at Application Information section.

$$V_{CSi} = \frac{\left(1 + \frac{sL}{DCR}\right)}{\left(1 + sC_XR_X\right)} \times DCR \times I_{Li} + \frac{I_{Li} \times R_{pcbi} - \frac{1}{N} \times \sum_{i=1}^{N} I_{Li} \times R_{pcbi}}{\left(1 + sC_XR_X\right)}$$

The OCP design threshold should be adjusted according to Rpcb values. There are OCP gains which are programmable through I^2C registers (0x21[7:0], 0x22[7:0]) to adjust OCP threshold for each phase based on V_{CH_OC} which is decided by R_{CH_OC}. The OCP threshold with OCP gain factor for each phase

can be represented as below :

$$I_{OC_PH_Valley}(A) = \frac{V_{CH_OC}(V) \times OCP_gain - 0.6}{32 \times DCR(\Omega)}$$

When considering the Rpcb term in current sensing feedback signal, the OCP should follow below methods to design. The OCP gain is applied to compensate the Rpcb term offset on DCR term (real current signal). The design target is to make each phase's real OCP threshold equally. Therefore, the one with Rpcb_min should be programmed with minimum OCP gain (ex. 0.7x). And the equation can be simplified as below :

$$I_{OC} \times (DCR + R_{pcb_min} - R_{pcb_avg}) \times 32 + 0.6V = V_{CH_OC} \times 0.7$$

The other phases should follow the Rpcb deviation value to choose suitable OCP gain.

$$OCP_gain = \frac{I_{OC} \times (DCR + R_{pcb_n} - R_{pcb_avg}) \times 32 + 0.6}{V_{CH_OC}}$$

, where Rpcb_n is the Rpcb trace value of phase N.

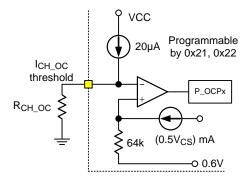


Figure 18. Per-Phase OCP Protection Circuit

Output Current Increasing

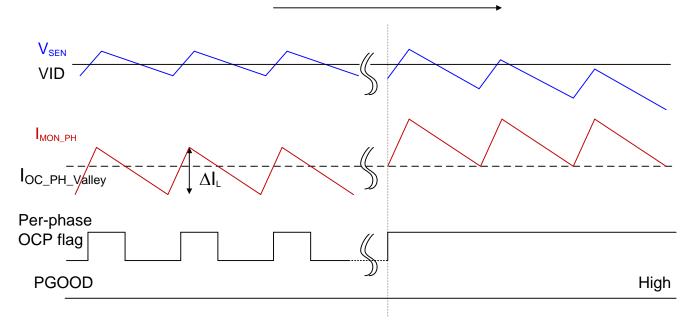


Figure 19. Per-Phase OCP Protection Mechanism

ADC Function

The RT8848A/B supports analog to digital converter (ADC) to monitor VSEN, VIMON and VTSEN voltages. The ADC function is initialized and starts to work after PGOOD signal has been pulled high. The ADC circuits for VSEN and TSEN operates periodically with time space of 40.5µsec and the ADC circuit for VIMON operates periodically with time space of 13.5µsec. The user can access the ADC results from I²C registers 0x2E[7:0], 0x2F[7:0] and 0x30[7:0] for voltage of VIMON, VSEN and VTSEN respectively. The voltage measurement reported in these registers are an average measurement over time period defined in I²C register 0x31[1:0], 0x32[1:0] and 0x33[1:0] respectively. Besides, the ADC circuit for VIMON conversion will shorten the operation time space to 6.75µsec when SOCP is triggered to prevent power stage from over-current operation. The SOCP delay time can be programmed by I²C register 0x23[1:0]. The definition of registers are summarized in the section of register tables below.

Absolute Maximum Ratings (Note 1)

VIN to GND	–0.3 to 28V
VCC to GND	–0.3 to 6V
• FBRTN to GND	–0.3 to 0.3V
Other Pins	–0.3 to 6V
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
WQFN-40L 5x5	3.63W
Package Thermal Resistance (Note 2)	
WQFN-40L 5x5, θ _{JA}	27.5°C/W
WQFN-40L 5x5, 0JC	6°C/W
• Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C
ESD Susceptibility (Note 3)	
НВМ	2kV

Recommended Operating Conditions (Note 4)

٠	Input Voltage, V _{IN}	2.8 to 24V
٠	Supply Voltage, V _{VCC}	4.5 to 5.5V
٠	Junction Temperature Range	–10°C to 105°C

Electrical Characteristics

(V_{VCC} = 5V, typical values are referenced to $T_A = T_J = 25^{\circ}$ C, Min and Max Values are referenced to $T_A = T_J$ from -10° C to 105° C, unless other noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
PWM Controller						
VCC Supply Voltage	Vvcc		4.5	5	5.5	V
VCC Supply Current	Ivcc	EN = high, not switching		10	15	mA
VCC Shutdown Current	ISHDN	EN = 0V			200	μA
VCC POR Threshold		VCC rising voltage	4.1	4.3	4.5	V
VCC UVLO Threshold		VCC falling voltage	3.9	4.1	4.3	V
POR Hysteresis			90	200	310	mV
Reference Voltage						
Reference Voltage	VREF		1.98	2	2.02	V
REFOUT Output Voltage	VREFOUT		1.3	1.38	1.45	V
REFIN Standby Voltage	VREFIN_STD	$V_{\text{REFIN}} < 0.15 V$			0.15	V
External REFIN Voltage	Vrefin		0.25		2	V
PWMVID Input Voltage						
PWMVID Input Voltage Logic-High	V _{PWMVID_} H		1.2			V
PWMVID Input Voltage Logic-Low	Vpwmvid_L				0.6	V

RICHTEK

Symbol	Test Conditions	Min	Тур	Max	Unit
Vpwmvid_tri		0.8		1	V
		I	1	1	
	Slew rate set to 6mV/µs	5	6	7	mV/μs
tpgood	From EN go high to PGOOD go high			2	ms
V _{EN1_} H	$\mathbf{R}_{\rm EN} = 60 \mathrm{k} \Omega$	0.5			
V _{EN1_L}	$REN = 00RS2$, $ISOURCE_EN = 10\mu A$			0.3	V
V _{EN2_H}	$\mathbf{R}_{\mathrm{EN}} = 60k\Omega$	1.8			v
V _{EN2_L}	$REN = 60RS2$, $ISOURCE_EN = 90\mu A$			1.6	
	V _{EN} is higher than high threshold or lower than low threshold		1.6		μs
		-1		1	μΑ
		1			
V _{PSI_H}		1.6			V
V _{PSI_HIZ}		0.8		1.2	V
V _{PSI_L}				0.4	V
	•				
fsw	f _{SW} = 300kHz, I _{LOAD} = 0A	270	300	330	kHz
tpwm_min			50		ns
ET1 and PINSET	2)		1	1	
IPINSET	VPINSET _x = 1V, V _{VCC} = 5V	79.2	80	80.8	μA
IPWM_PINSET	V_{VCC} = 5V, during pin setting state	19.6	20	20.4	μA
L	1	1			
VEAOFS		-3		3	mV
	1		L	L	<u> </u>
VEAOFS		-1		1	mV
Input Offset VEAOFS -1 1 mV Protection Function 1 mV					
Vrovp	$V_{REFIN} \ge 1.33V$	142.5	150	157.5	%
Vabovp	Vrefin < 1.33V,	1.9	2	2.1	V
	FB forced above OV threshold		1	2	μS
Vruvp		35	40	45	%
	VPWMVID_TRI VPGOOD VEN1_H VEN1_L VEN2_H VEN2_L VPSI_H VPSI_HIZ VPSI_L fsw tPWM_MIN ET1 and PINSET IPINSET IPWM_PINSET VEAOFS VROVP VABOVP	VPWMVID_TRIVewMVID_TRIImage: Slew rate set to 6mV/µstPGOODFrom EN go high to PGOOD go highVEN1_HREN = 60kQ, ISOURCE_EN = 10µAVEN2_HREN = 60kQ, ISOURCE_EN = 90µAVEN2_LVEN is higher than high threshold or lower than low thresholdVPSL_HVEN is higher than high thresholdVPSL_HIZVentureVPSL_HIZImage: Slew = 300kHz, ILOAD = 0Atpwm_MINImage: Slew = 1V, Vvcc = 5VIpINSETVPINSETx = 1V, Vvcc = 5VIpWM_PINSETVvcc = 5V, during pin setting stateVEAOFSImage: Slew = 100000000000000000000000000000000000	VPWMVID_TRI0.8VemtSlew rate set to 6mV/µs5tPGOODFrom EN go high to PGOOD go highVEN1_HREN = 60kQ, ISOURCE_EN = 10µA0.5VEN2_HREN = 60kQ, ISOURCE_EN = 90µA1.8VEN2_LVEN is higher than high threshold or lower than low thresholdVSI_LVEN is higher than high threshold or lower than low thresholdVPSL_HImplement1.6VPSL_HImplement0.8VPSL_HImplement0.8VPSL_HImplement1.6VPSL_HImplement1.6VPSL_LImplement1.6VPSL_LImplement1.6VPSL_HImplement1.6VEAOFSImplem	VPWMVID_TRI0.8Veride Silew rate set to 6mV/μs56tPGOODFrom EN go high to PGOOD go highVEN1_LREN = 60kΩ, ISOURCE_EN = 10μA0.5VEN2_HREN = 60kΩ, ISOURCE_EN = 90μA1.8VEN2_LREN = 60kΩ, ISOURCE_EN = 90μA1.6VEN2_LVEN is higher than high threshold or lower than low threshold1.6VPSL_H0.8VPSL_H0.8VPSL_HIZ0.8VPSL_Lfswfsw = 300kHz, ILOAD = 0A270300tPWM_MIN5050ET1 and PINSET2VPINSETx = 1V, VVCC = 5V79.280IPWM_PINSETVVCC = 5V, during pin setting state19.620VEAOFS1VEAOFS1VROVPVREFIN ≥ 1.33V142.5150VABOVPVREFIN < 1.33V,	VPWMVID_TRI 0.8 1 Siew rate set to 6mV/µs 5 6 7 tPGOOD From EN go high to PGOOD go 2 VEN1_H REN = 60kΩ, ISOURCE_EN = 10µA 0.5 VEN1_L REN = 60kΩ, ISOURCE_EN = 90µA 1.8 VEN2_L REN = 60kΩ, ISOURCE_EN = 90µA 1.8 VEN2_L REN = 60kΩ, ISOURCE_EN = 90µA 1.6 VEN2_L REN = 60kΩ, ISOURCE_EN = 90µA 1.6 VEN2_L REN = 60kΩ, ISOURCE_EN = 90µA 1.6 VPSL_H Isource than low threshold 1.2 0.8 1.2 VPSL_H Isource than low threshold 50

Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation DS8848A/B-02 February 2021 www.richtek.com

RT8848A/B

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
UV Fault Delay		FB forced above UV threshold	2	4	6	μS
Thermal Shutdown Threshold	T _{SD}			150		°C
Per Phase OC Threshold	V _{CS_PH}	(VISENPx - VCSNSUM) when V _{CH_OC_SET} = 1.6V	28	31.25	34.5	mV
Channel OC Source Current	Існ_ос	Vvcc = 5V	19.6	20	20.4	μΑ
Sum OC Protection Threshold	VIMON_SOC_TH	V _{VCC} = 5V, 0x24[5:0] = 0x00	2.1	2.2	2.3	V
TSEN Protection Threshold Voltage	VTSEN_TH	Vvcc = 5V, PTC Application	0.72	0.8	0.88	V
PWM Driving Capability						
PWM Source Resistance	Rpwm_src	Pull up to VCC	15	25	35	Ω
PWM Sink Resistance	R _{PWM_SNK}	Pull down to GND		7	12	Ω
	V _{PWM_Tri}	V _{VCC} = 5V, 0x44[0] = 0	1.65	1.9	2.15	- V
PWM Tri-state Voltage		V _{VCC} = 5V, 0x44[0] = 1	1.4	1.65	1.9	
Power Good Indicator						
PGOOD Output Low Level	V _{PGOOD}	I _{SINK} = 4mA			0.3	V
PGOOD Leakage Current	IPGOOD_Leak	V _{PGOOD} = 5V			1	μΑ
I ² C Interface (SDA&SCL	.)	•				
Input High Level	VIH_I2C		1			V
Input Low Level	VIL_I2C				0.6	V
SDA Pull Down Resistance	RDOWN_12C			7	12	Ω
Leakage Current	ILEAK_I2C				1	μΑ
ADC Voltage Range						
TSEN ADC	VTSEN_ADC	ADC = 12.5mV/step	0		3.2	V
IMON ADC	VIMON_ADC	ADC = 6.25mV/step	0.6		2.2	V
VSEN ADC	VVSEN_ADC	ADC = 6.25mV/step	0		1.6	V

Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 2. θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a high effective-thermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the exposed pad of the package.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.

Typical Application Circuit

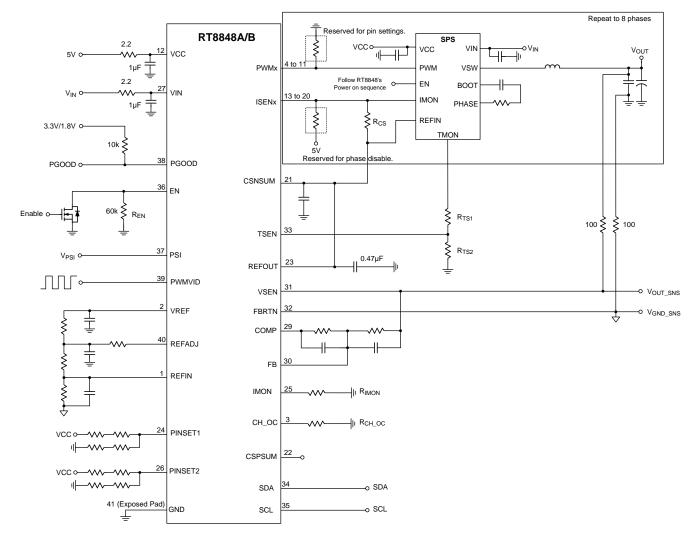
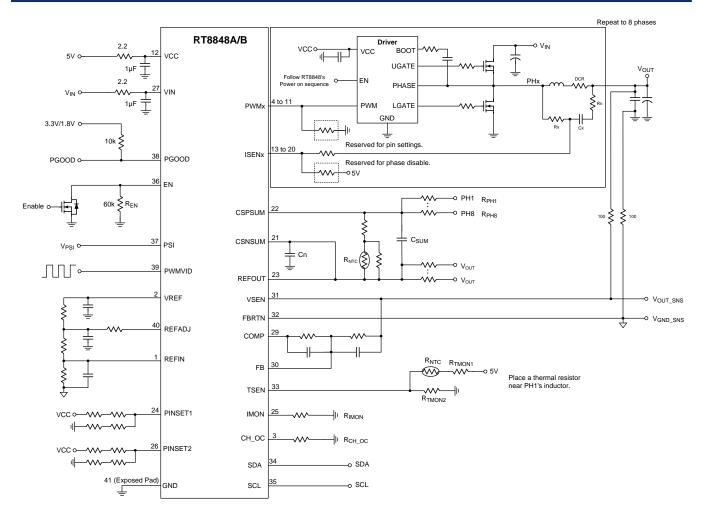
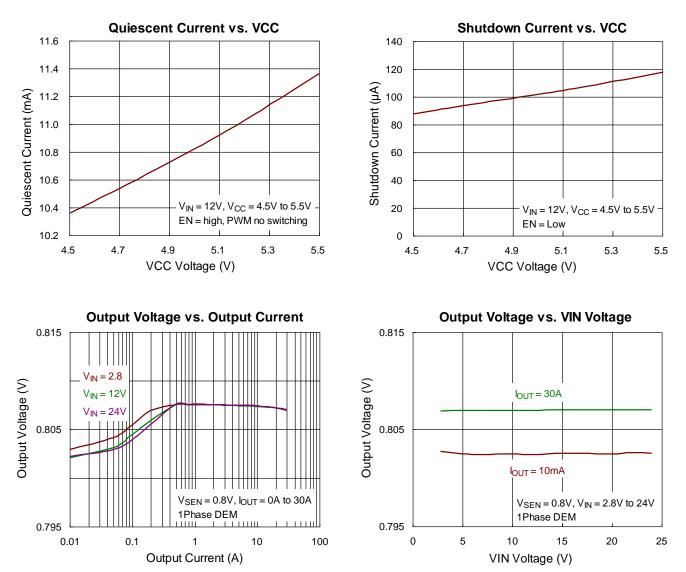
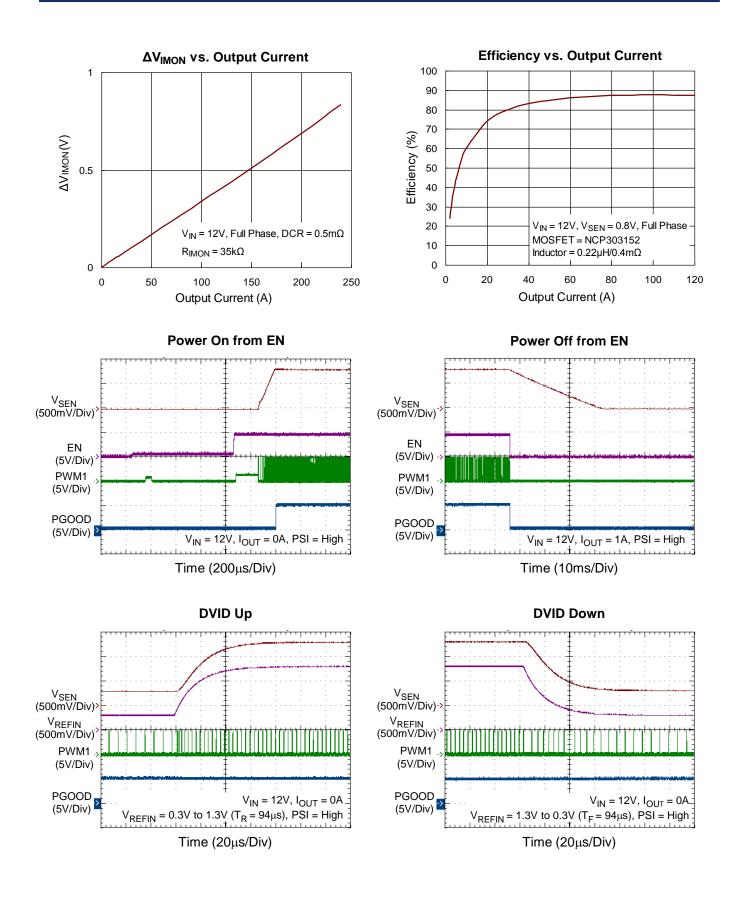



Figure 20. Typical Application Circuit for RT8848A/B with SPS's IMON Configuration

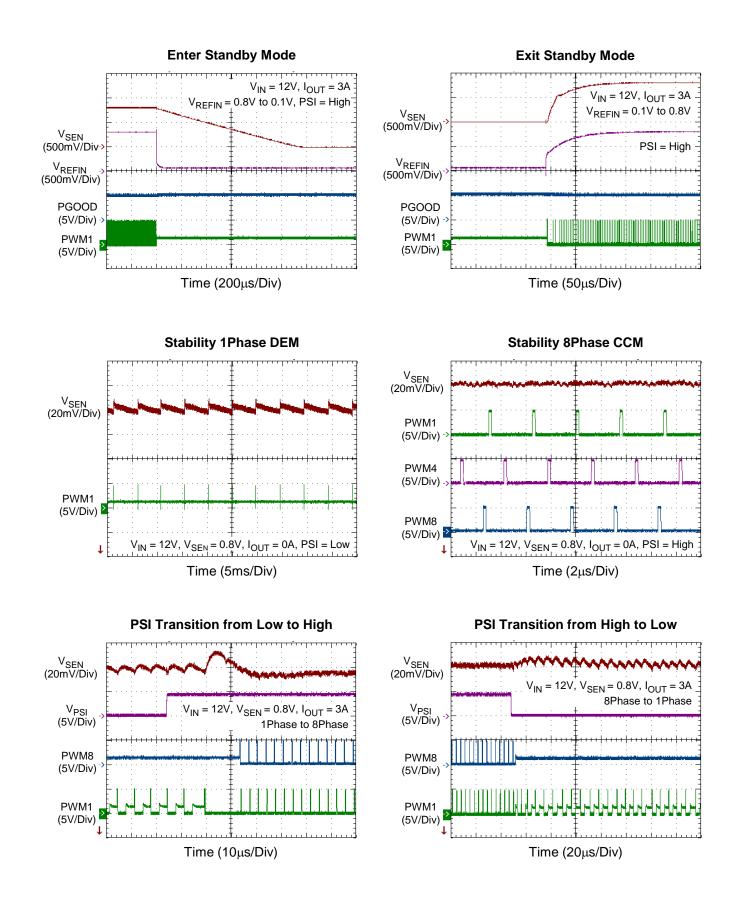
RT8848A/B

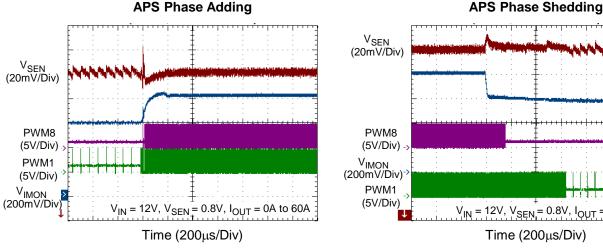


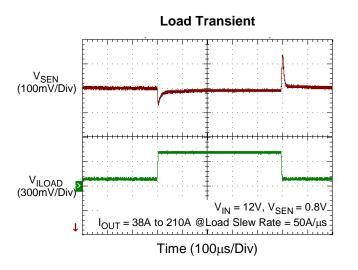


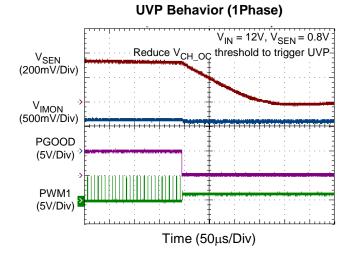
Typical Operating Characteristics

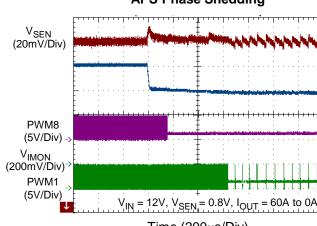
RT8848A/B

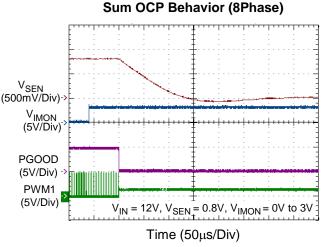

Performance waveforms are tested on the evaluation board of the Typical Application Circuit, V_{IN} = 12V, V_{SEN} = 0.8V, f_{SW} = 300kHz, L = 0.22µH, C_{OUT} = 330µF/2V POSCAP x 8pcs + 22µF/6.3V/X5R/0805 x 48pcs + 22µF/6.3V/X5R/0603 x 80pcs, T_C = 25°C, unless otherwise noted.

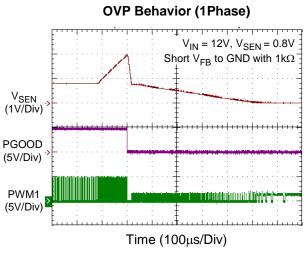


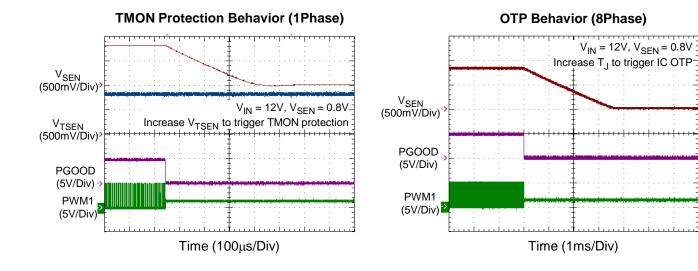



Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation www.richtek.com DS8848A/B-02 February








Time (200µs/Div)

Application Information

PWM Pin Setting Function

The RT8848A/B implements PWM pin setting function to provide more functional programming with a limited pin out. Function settings of each PWM pin are summarized in Table 7. Each function can be adjusted by placing different PWM resistor value. The recommended resistor values are also listed in Table 7. In order to ensure the correction of PWM pin setting function, the input impedance of PWM gate driver before driver's enable is driven high should be considered for PWM pin setting. Otherwise, all of function setting could be wrong and controller operates in undesired condition or abnormal operation. Besides, the PWM pin setting function can be enabled or disabled through PINSET2. Regarding to the setting of PINSET2 can refer to the section of PINSET pin setting. For detailed setting for each PWM pin can refer to the related section.

IC pin	Function Setting	Recommended Resistor		
PWM1	 Soft-start slew rate PWM high-Z level 	20kΩ~55kΩ		
PWM2	Auto phase shedding threshold 1	30kΩ~70kΩ		
PWM3	Auto phase shedding threshold 2 30kΩ~70kΩ			
PWM4	Operating phase number as PSI=L $20k\Omega \sim 55k\Omega$			
PWM5	Auto phase shedding threshold 3 $30k\Omega \sim 70k\Omega$			
PWM6	Soft-start phase number during cold-boot and warm-boot	20kΩ~55kΩ		
PWM7	Auto phase shedding threshold 4 $30k\Omega$ ~70k Ω			
PWM8	NA 20kΩ			

Table 7. PWM Pin Setting Table

PINSET Pin Setting

The RT8848A/B features PINSET pin setting function for multi-functional programming. For PINSET1 pin setting circuit as shown in Figure 22, a pair of voltage divider is used to set up the internal ramp amplitude, AI gain and SPS/DCR mode selection. There is an internal current source (80µA) flowing out of PINSET1 pin to external resistor. The voltage across R₂ PINSET1 is then sensed by internal sensor and decoded to decide the PINSET1 configuration. Besides, the ramp amplitude can also be set via I²C register 0x40[3:0]. The AI gain can be set via I^2C register 0x41[3:2]. The SPS/DCR mode selection can be set via I²C register 0x41[1]. For PINSET2 pin setting circuit as shown in Figure 23, a pair of voltage divider is used to set up the per-phase switching frequency, PWM pin setting enable/disable and address code for slave device. There is an internal current source (80µA) flowing out of PINSET2 pin to external resistor. The voltage across

 $R_{2_PINSET2}$ is then sensed by internal sensor and decoded to decide the PINSET2 configuration. Besides, the per-phase switching frequency can also be set via I²C register 0x42[3:0]. The PWM pin setting enable/disable can be set via I²C register 0x43[3]. The address code for slave device can be set via I²C register 0x43[2:1]. For different PINSET1/PINSET2 configuration, the recommended resistor values are summarized in Table 15. In order to reduce the complexity of design, a useful design tool and GUI are well prepared for the development of GPU power with RT8848A/B.

RICHTEK

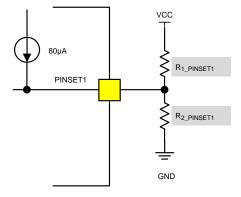


Figure 22. PINSET1 Pin Setting Circuit

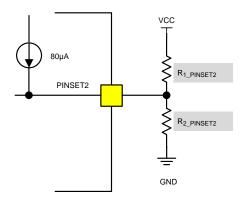


Figure 23. PINSET2 Pin Setting Circuit

Table 8. Configuration of Ramp Height via Register 0x40[3:0]				
Register 0x40[3:0]	Ramp Height (mV)			
0000	150			
0001	200			
0010	250			
0011	300			
0100	350			
0101	400			
0110	450			
0111	500			
1000	600			
1001	700			
1010	800			
1011	900			
1100	1000			
1101	1100			
1110	1200			
1111	1300			

 Copyright © 2021 Richtek Technology Corporation. All rights reserved.
 RICHTEK is a registered trademark of Richtek Technology Corporation

 www.richtek.com
 DS8848A/B-02
 February
 2021

Table 9. Configuration of Al Gain via Register 0x41[3:2]

Register 0x41[3:2]	Al Gain if 0x41[1]=1	Al Gain if 0x41[1]=0		
00	2	6		
01	3	12		
10	6	24		
11	12	48		

Table 10. Configuration of SPS/DCR Selection via Register 0x41[1]

Register 0x41[1]	SPS/DCR Selection
0	DCR Mode
1	SPS Mode

[Note] It should be noticed that register 0x41[1] can't be changed after controller is power on.

Table 11. Configuration of Per-phase Switching Frequency via Register 0x42[3:0]

Register 0x42[3:0]	Frequency (kHz)
0000	250
0001	300
0010	350
0011	400
0100	450
0101	500
0110	600
0111	700
1000	800
1001	900
1010	1000
1011	1100
1100	1200
1101	1300
1110	1400
1111	1600

Table 12. Configuration of PWM Pin Setting Enable/Disable via Register 0x43[3]

Register 0x43[3]	PWM Pin Setting Enable/Disable
0	Enable
1	Disable

Table 13. Configuration of Address Code for Slave Device via Register 0x43[2:1]

Register 0x43[2:1]	Slave Device Address Code
00	00
01	01
10	10
11	11

If PWM pin setting function is disabled by PINSET2 or I^2C register 0x43[3]=1, the configuration for each PWM pin setting is programmed as default code as shown in Table 14.

PWM Pin	Register	Default Code	Function Setting
PWM1	0x44[2:0]	100	Ramp up slew rate = 6mV/μs PWM HiZ Level = 2V
PWM4	0x45[2:0]	111	Operation phase number in LPC mode = 8Phase
PWM6	0x46[2:0]	111	Operation phase number during soft-start = 8Phase
PWM8	0x47[2:0]	000	NA
PWM2	0x01[7:0]	00010000	APL1 = 0.2V
PWM3	0x02[7:0]	00100000	APL2 = 0.4V
PWM5	0x03[7:0]	0100000	APL3 = 0.8V
PWM7	0x04[7:0]	01100000	APL4 = 1.2V

Table 14. PWM Pin Setting Configuration as 0x43[3]=1

 Copyright © 2021 Richtek Technology Corporation. All rights reserved.
 RICHTEK is a registered trademark of Richtek Technology Corporation

 www.richtek.com
 DS8848A/B-02
 February
 2021

	Table 15. PINSET1 / PINSET2 Register Table								
	PINSET1 / PINSET2 Register Table								
CODEV 0x40[3:0] 0x42[3:0]	CODEI 0x41[3:1] 0x43[3:1]	SETV (mV)	SETI (mV)	R1(kΩ)	R2(kΩ)				
0000	000	50	100	open	1.25				
0000	001	50	300	open	3.75				
0000	010	50	500	open	6.25				
0000	011	50	700	open	8.75				
0000	100	50	900	open	11.25				
0000	101	50	1100	open	13.75				
0000	110	50	1300	open	16.25				
0000	111	50	1500	open	18.75				
0001	000	150	100	41.67	1.29				
0001	001	150	300	125.00	3.87				
0001	010	150	500	208.33	6.44				
0001	011	150	700	291.67	9.02				
0001	100	150	900	375.00	11.60				
0001	101	150	1100	458.33	14.18				
0001	110	150	1300	541.67	16.75				
0001	111	150	1500	625.00	19.33				
0010	000	250	100	25.00	1.32				
0010	001	250	300	75.00	3.95				
0010	010	250	500	125.00	6.58				
0010	011	250	700	175.00	9.21				
0010	100	250	900	225.00	11.84				
0010	101	250	1100	275.00	14.47				
0010	110	250	1300	325.00	17.11				
0010	111	250	1500	375.00	19.74				
0011	000	350	100	17.86	1.34				
0011	001	350	300	53.57	4.03				
0011	010	350	500	89.29	6.72				
0011	011	350	700	125.00	9.41				
0011	100	350	900	160.71	12.10				

Copyright © 2021 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation DS8848A/B-02 February 2021 www.ri

RICHTEK

PINSET1 / PINSET2 Register Table							
CODEV 0x40[3:0] 0x42[3:0]	CODEI 0x41[3:1] 0x43[3:1]	SETV (mV)	SETI (mV)	R1(kΩ)	R2(kΩ)		
0011	101	350	1100	196.43	14.78		
0011	110	350	1300	232.14	17.47		
0011	111	350	1500	267.86	20.16		
0100	000	450	100	13.89	1.37		
0100	001	450	300	41.67	4.12		
0100	010	450	500	69.44	6.87		
0100	011	450	700	97.22	9.62		
0100	100	450	900	125.00	12.36		
0100	101	450	1100	152.78	15.11		
0100	110	450	1300	180.56	17.86		
0100	111	450	1500	208.33	20.60		
0101	000	550	100	11.36	1.40		
0101	001	550	300	34.09	4.21		
0101	010	550	500	56.82	7.02		
0101	011	550	700	79.55	9.83		
0101	100	550	900	102.27	12.64		
0101	101	550	1100	125.00	15.45		
0101	110	550	1300	147.73	18.26		
0101	111	550	1500	170.45	21.07		
0110	000	650	100	9.62	1.44		
0110	001	650	300	28.85	4.31		
0110	010	650	500	48.08	7.18		
0110	011	650	700	67.31	10.06		
0110	100	650	900	86.54	12.93		
0110	101	650	1100	105.77	15.80		
0110	110	650	1300	125.00	18.68		
0110	111	650	1500	144.23	21.55		
0111	000	750	100	8.33	1.47		
0111	001	750	300	25.00	4.41		
0111	010	750	500	41.67	7.35		

PINSET1 / PINSET2 Register Table							
CODEV 0x40[3:0] 0x42[3:0]	CODEI 0x41[3:1] 0x43[3:1]	SETV (mV)	SETI (mV)	R1(kΩ)	R2(kΩ)		
0111	011	750	700	58.33	10.29		
0111	100	750	900	75.00	13.24		
0111	101	750	1100	91.67	16.18		
0111	110	750	1300	108.33	19.12		
0111	111	750	1500	125.00	22.06		
1000	000	850	100	7.35	1.51		
1000	001	850	300	22.06	4.52		
1000	010	850	500	36.76	7.53		
1000	011	850	700	51.47	10.54		
1000	100	850	900	66.18	13.55		
1000	101	850	1100	80.88	16.57		
1000	110	850	1300	95.59	19.58		
1000	111	850	1500	110.29	22.59		
1001	000	950	100	6.58	1.54		
1001	001	950	300	19.74	4.63		
1001	010	950	500	32.89	7.72		
1001	011	950	700	46.05	10.80		
1001	100	950	900	59.21	13.89		
1001	101	950	1100	72.37	16.98		
1001	110	950	1300	85.53	20.06		
1001	111	950	1500	98.68	23.15		
1010	000	1050	100	5.95	1.58		
1010	001	1050	300	17.86	4.75		
1010	010	1050	500	29.76	7.91		
1010	011	1050	700	41.67	11.08		
1010	100	1050	900	53.57	14.24		
1010	101	1050	1100	65.48	17.41		
1010	110	1050	1300	77.38	20.57		
1010	111	1050	1500	89.29	23.73		
1011	000	1150	100	5.43	1.62		

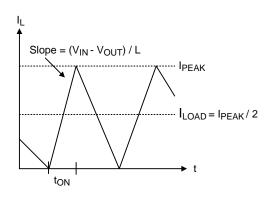
RICHTEK

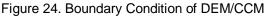
PINSET1 / PINSET2 Register Table							
CODEV 0x40[3:0] 0x42[3:0]	CODEI 0x41[3:1] 0x43[3:1]	SETV (mV)	SETI (mV)	R1(kΩ)	R2(kΩ)		
1011	001	1150	300	16.30	4.87		
1011	010	1150	500	27.17	8.12		
1011	011	1150	700	38.04	11.36		
1011	100	1150	900	48.91	14.61		
1011	101	1150	1100	59.78	17.86		
1011	110	1150	1300	70.65	21.10		
1011	111	1150	1500	81.52	24.35		
1100	000	1250	100	5.00	1.67		
1100	001	1250	300	15.00	5.00		
1100	010	1250	500	25.00	8.33		
1100	011	1250	700	35.00	11.67		
1100	100	1250	900	45.00	15.00		
1100	101	1250	1100	55.00	18.33		
1100	110	1250	1300	65.00	21.67		
1100	111	1250	1500	75.00	25.00		
1101	000	1350	100	4.63	1.71		
1101	001	1350	300	13.89	5.14		
1101	010	1350	500	23.15	8.56		
1101	011	1350	700	32.41	11.99		
1101	100	1350	900	41.67	15.41		
1101	101	1350	1100	50.93	18.84		
1101	110	1350	1300	60.19	22.26		
1101	111	1350	1500	69.44	25.68		
1110	000	1450	100	4.31	1.76		
1110	001	1450	300	12.93	5.28		
1110	010	1450	500	21.55	8.80		
1110	011	1450	700	30.17	12.32		
1110	100	1450	900	38.79	15.85		
1110	101	1450	1100	47.41	19.37		
1110	110	1450	1300	56.03	22.89		

PINSET1 / PINSET2 Register Table							
CODEV 0x40[3:0] 0x42[3:0]	CODEI 0x41[3:1] 0x43[3:1]	SETV (mV)	SETI (mV)	R1(kΩ)	R2(kΩ)		
1110	111	1450	1500	64.66	26.41		
1111	000	1550	100	4.03	1.81		
1111	001	1550	300	12.10	5.43		
1111	010	1550	500	20.16	9.06		
1111	011	1550	700	28.23	12.68		
1111	100	1550	900	36.29	16.30		
1111	101	1550	1100	44.35	19.93		
1111	110	1550	1300	52.42	23.55		
1111	111	1550	1500	60.48	27.17		

[Note] User should strictly follow the table for PINSET1/PINSET2 pin setting. The resistor value variation should be within \pm 1% of the recommended value.

Switching Frequency


The switching frequency of RT8848A/B is programmable by two methods. One is by PINSET2 pin setting with external resistors. The pin setting for switching frequency is detected at first power on and can be changed by I²C command later. Another method is by changing I²C register 0x42[3:0] after first power on. The register will keep the written data unless VCC power recycle.


The RT8848A/B supports diode emulation mode (DEM) to improve the efficiency at light load. It should be noticed that DEM can only be activated as controller operates in single phase and PSI=L or PSI=M. The DEM function is adjustable by I²C register 0x2D[1]. When 0x2D[1]=0, the DEM function is enable. In DEM, controller automatically the reduces switching frequency at light load conditions to maintain high efficiency. The reduction of frequency is achieved smoothly. As the output current decreases from heavy load conditions, the inductor current is also reduced, and eventually comes to the point that its current valley touches zero, which is the boundary between continuous conduction and discontinuous conduction modes. To emulate the behavior of diodes, the controller changes the PWM output from low-state to tri-state when the inductor sensing current is lower than

zero-current detection (ZCD) threshold (typical is 0A). The ZCD threshold can be adjusted by enabling ZCD offset function through I²C register 0x34[5:0]. As the load current is further decreased, it takes longer and longer time to discharge the output capacitor to the level that requires the next "ON" cycle. Contrarily, when the output current increases from light load to heavy load, the switching frequency increases to the preset value as the inductor current reaches the continuous conduction. The transition load point between DEM and CCM operation is shown in Figure 24 and can be calculated as follows :

$$I_{\text{LOAD}_\text{BCM}} = \frac{V_{\text{IN}} - V_{\text{OUT}}}{2L} \times t_{\text{ON}}$$

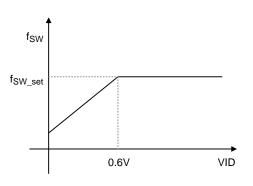
,where ton is the on-time of high side MOSFET.

43

The switching frequency in DEM can be calculated as follows :

$$f_{SW}\left(I_{LOAD}\right) = \frac{2LI_{LOAD}}{V_{IN}t_{ON}^2 \left(\frac{V_{IN}}{V_{OUT}} - 1\right)}$$

,where ILOAD is smaller than ILOAD_BCM.


As can be observed in the equation, switching frequency is a function of output load current, I_{LOAD} , and it is proportional to I_{LOAD} , which means it becomes higher at heavy load and reduces to almost zero at a very light load. Besides, inductor selection can also change the switching frequency in DEM. Choosing large inductance makes more switching loss as compared to small inductance. However, the core loss of inductor increases with larger inductor current ripple for a given inductor. That is, proper selection of inductor based on efficiency target is important.

On the other hand, as 0x2D[1]=1, the DEM function is disable. The controller always operates in continuous conduction mode (CCM). Unlike DEM that enables zero current detection to reject negative inductor current during low side MOSFET turns on. The inductor current can be negative until next on-time is generated in CCM. The switching frequency is approximately unchanged from no load to full load. Therefore, benefits like better transient response from light load to heavy load and smaller EMI/EMC come along with CCM. Nevertheless, poor efficiency in light load is a tradeoff.

There is a limitation to controller's output PWM frequency. Due to the minimum PWM pulse width is around 50nsec (typical), the switching frequency starts to decrease as the conversion ratio of VOUT to VIN is too small which makes equivalent on time pulse is smaller than minimum PWM pulse width. Besides, when VID is set below 0.6V, the switching frequency follows below equation to change.

$$f_{sw} = \frac{VID}{0.6} \times f_{sw_set}$$

, where the f_{SW_set} is the desired frequency set by PINSET2 or I^2C register 0x42[3:0]. The relation of fsw and VID setting is shown in Figure 25.

RICHTEK

Figure 25. Frequency Setting vs. VID

Remote Sense Setting

In order to allow the load voltage to be accurately detected to avoid the voltage drop from output to load, the RT8848A/B uses a high-accuracy differential amplifier to directly detect the voltage at the end of GPU through the VSEN and FBRTN pins. The VOUT sensing network from controller to the output load needs to be specially designed according to different load conditions. The output voltage detection circuit has two loops, the remote sense path (from the controller to the load end of GPU) and the local sense path (from the controller to the output capacitor) as shown in Figure 26. When the load is GPU, in order to make the GPU voltage consistent with REFIN, the R_{Remote} must be set to 0Ω . At this time, the purpose of local sense path is to avoid the output overvoltage caused by the GPU disconnection. Therefore, the R_{Local} must be placed a 10 Ω to 100 Ω resistor. If the GPU is not used, the R_{Local} must be set to 0Ω to avoid PWM jitter caused by delayed output voltage signal. Considering the components placement, it is recommended to place all the detecting resistors on the controller side. This setting can minimizes the path of local sense, and make the system debug easier as any noise coupling occurring on the sensing path.

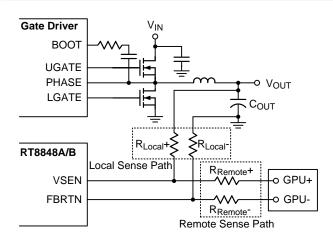


Figure 26. Output Voltage Sensing

Current Sensing

The RT8848A/B provides per phase current sensing amplifier for different current sensing topology including DCR current sensing and SPS current sensing. This current signal is used for loop control, zero current detection, current balance and per-phase current limit.

DCR Current Sensing

The RT8848A/B can support inductor DCR current sensing to get each phase current signal, as illustrated in Figure 27. An external low-pass filter R_{X1} and C_X

reconstruct the current signal. The low-pass filter time constant R_{X1} x C_X should match time constant L/DCR of Inductance and DCR. The R_{X1} and C_X can be fine-tuned for transient performance. If RC network time constant is smaller than inductor time constant L/DCR, Vcs current signal leads the inductor current signal, and early trigger per-phase current limit during load transient. If RC network time constant is larger than inductor time constant L/DCR, Vcs current signal has a sluggish rise and delay trigger per-phase current limit during load transient. If RC network time constant matches inductor time constant L/DCR, the trigger level of per-phase current limit will meet desired value. Rx1 is highly recommended as two 0603 size resistors in series to enhance the current signal accuracy. X7R type capacitor is suggested for C_X in the application. Rx2 is optional for preventing Vcs exceeding current sense amplifier input range (-10mV~90mV). The time constant of (R_{X1} // R_{X2}) x C_X should be match L/DCR. The current sense lines must be routed as differential pair from the inductor to the controller on the same layer. The recommended layout is shown in Figure 28. The selection of SPS/DCR mode can be configured by PINSET1 setting.

RT8848A/B

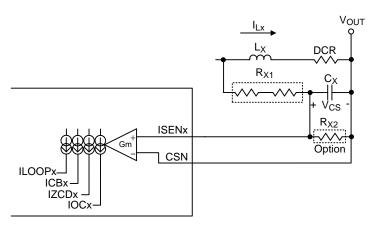
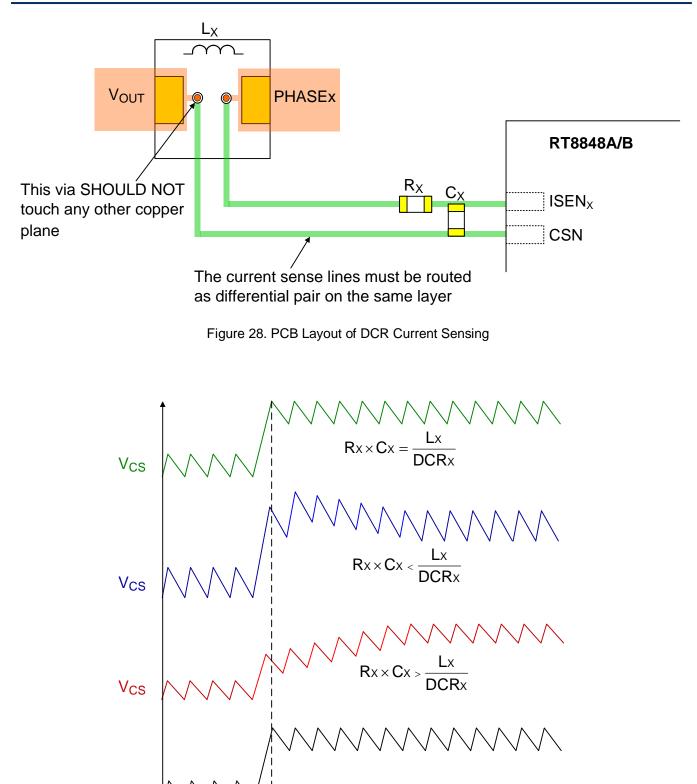



Figure 27. Inductor DCR Current Sensing Method

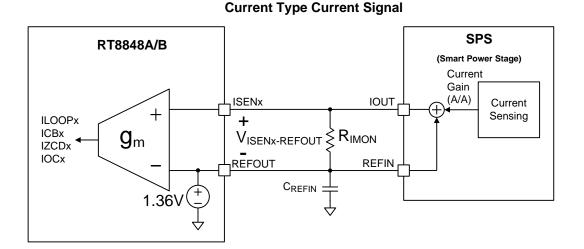
ΙL

► t

Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation www.richtek.com DS8848A/B-02 February 2021

SPS Current Sensing

The RT8848A/B current sensing circuit can also support SPS current sensing. SPS (Smart Power Stage) can accurately detect the internal MOSFET current for a reference of PWM controller, SPS current sensing circuit simplifies the quantity of components on the external circuit and provides a more accurate current signal unlike DCR detection circuit. SPS has two kinds of current signal, current output and voltage output. Figure 30 shows the current reporting circuit of different current signals respectively. When the SPS current sensing is used, the PINSET1 should be configured to SPS mode. The inverting input of the current-sense amplifier generates a 1.36V reference voltage for SPS current sensing circuit. The current is reported to the controller as a differential voltage between the ISENx and REFOUT pins with a conversion gain to represent the inductor current I_L , as shown in below equations.


Current Type Signal :

 $VISENx - REFOUT = gain(A/A) \times IL \times RIMON$

Voltage Type Signal :

 $VISENx - REFOUT = gain(V/A) \times IL \times \frac{RIMON2}{RIMON1 + RIMON2}$

For larger current sense gain as voltage type, it is recommended to place a voltage divider resistor between IOUT and REFIN pins to avoid the controller's current amplifier input voltage range exceeding -10mV~90mV

Voltage Type Current Signal

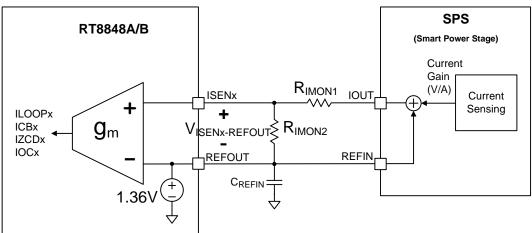
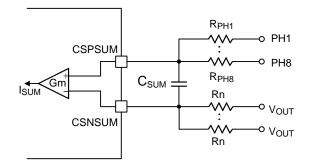


Figure 30. SPS Current Sensing

Copyright © 2021 Richtek Technology Corporation. All rights reserved.

Total Load Current Sense

The RT8848A/B can support both traditional DCR network sense from inductor and a smart power stage (SPS) which can directly provide a current monitor signal (IMON). For SPS application, the sum current can be achieved by adding the IMON signal on ISENx pin from each SPS. For DCR application, the RT8848A/B applies a low input offset current sense amplifier to sense the total load current flowing through inductors for droop function and IMON sum current signal as shown in Figure 31. The voltage across C_{SUM} is proportional to the total load current, and the output current of current amplifier (ISUM) is also proportional to the load current of the voltage regulator. The sensed current I_{SUM} represents the total output current of the regulator, and it is directly used for droop function, total output over current protection and auto-phase shedding function. The ISUM can be calculated as following equation :


$$I_{SUM} = I_{OUT} \times \frac{R_{DC}}{N}$$

, where R_{DC} is the DCR of output inductor L, N is the operation phase number. The maximum applicable value of V_{CS_SUM} is 50mV. If V_{CS_SUM} is higher than this limitation, the internal compensator may be saturated and perform abormally.

Moreover, in order to get the in-phase inductor current, the R_{PH1-8} and C_{SUM} should follow the equation as below.

$$\frac{L}{R_{DC}} = \frac{R_{PH} \times C_{SUM}}{N}$$

, where the R_{PH} is equal to R_{PH1-8}. Generally, the C_{SUM} is suggested to place a 100nF/0603 capacitor. Besides, connecting a resistor (Rn) between each phase's output feedback node to prevent large current if there is some voltage drop generated.

RICHTEK

Figure 31. Total Load Current Sense Circuit

Compensator Design

The RT8848A/B doesn't need a complex type II or type III compensator to optimize control loop performance. It can adopt a simple type I compensator (one pole, one zero) in the G-NAVPTM topology to fine tune ACLL performance. The one pole and one zero compensator is shown in Figure 32. For OVR4i+ specification, it is recommended to adjust compensator according to load transient ring back level. Default compensator values are referred to the design tool. The location of pole and zero can be calculated as following equation :

Pole position :
$$\frac{1}{2\pi R_{1_comp} \times C_{1_comp}}$$
Zero position :
$$\frac{1}{2\pi R_{2_comp} \times C_{2_comp}}$$

, where AV = EA gain = R_{1_comp} / R_{2_comp} , the AV gain is suggested to be at least 2x for enough gain error compensation.

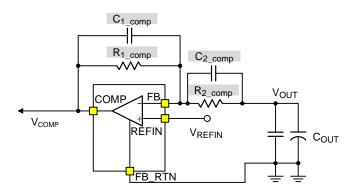


Figure 32. Type I Compensator

 Copyright © 2021 Richtek Technology Corporation. All rights reserved.
 RICHTEK is a registered trademark of Richtek Technology Corporation

 www.richtek.com
 DS8848A/B-02
 February
 2021

RT8848A/B

Output Voltage DC Offset

The RT8848A/B implements an output voltage offset function to adjust output DC voltage with a positive or negative offset. This function can be enabled by I²C register 0x0E[5]=1 and disabled as 0x0E[5]=0. When voltage offset function is activated, a source current flows out of FB pin to VOUT for generating a negative dc offset on VOUT, contrarily, a sink current flows into FB pin from V_{OUT} for generating a positive dc offset on VOUT. The equivalent circuit is shown in Figure 33. The magnitude of source and sink current can be adjusted by I²C register 0x0E[3:0]. The setting of register 0x0E[5:0] is summarized in the section of register tables below. As result, the output voltage can be calculated as following equation as output voltage offset function is enabled.

 $V_{OUT} = V_{REFIN} + I_{offset} \times R_2$ comp

, where the loffset is offset current set by register 0x0E[3:0].

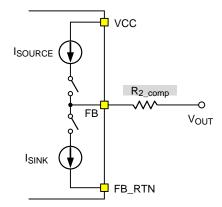


Figure 33. VOUT DC Offset Circuit

Phase Number of Operation

RT8848A/B supports 8/7/6/5/4/3/2/1 The phase operation. During PWM pin setting process in first power on sequence, the detection of hardware setting for maximum operating phase number is executed. The ISENx pins are detected and phase is disabled if voltage is higher than VCC-0.5V. Therefore, the phase can be disabled by connecting the ISENx pin to VCC = 5V with a pull high resistor (100k Ω). The maximum phase number of operation is determined and latched at each PWM pin setting detection. As shown in Table 16, configurations for 8/7/6/5/4/3/2/1 phase operation are summarized. It should be noticed that ISEN1 can't be connected to VCC since at least 1-phase operation is necessary. Strictly follow Table 16 for phase disable. Incorrect pin pull up/down connection may cause catastrophic fault during power on. When the ISENX pin is pulled high by 5VCC, the DCR current sensing circuit of that phase should be disconnected. Moreover, the phase number of operation by hardware setting has the highest priority to decide the maximum allowable phase number in actual operation. Other methods such as pin setting or I²C registers will be limited by hardware setting.

· · · · · · · · · · · · · · · · · · ·									
Configuration	Pin Configuration, Pull High to Target								
Configuration	ISEN8	ISEN7	ISEN6	ISEN5	ISEN4	ISEN3	ISEN2	ISEN1	
8-phase									
7-phase	VCC								
6-phase	Х	VCC							
5-phase	Х	Х	VCC						
4-phase	Х	Х	Х	VCC					
3-phase	Х	Х	Х	Х	VCC				
2-phase	Х	Х	Х	Х	Х	VCC			
1-phase	Х	Х	Х	Х	Х	Х	VCC		

Table 16. Operation Phase Number Hardware Settings

Note :

1. "--" denotes normal connection.

2. "X" denotes floating

3. Use $100k\Omega$ pull up resistor for connection with VCC = 5V

Design Considerations for Common N Current Sensing Circuit

The RT8848A/B adopts common N current sensing structure for saving the pin number of IC package. For DCR type application, the DCR current sensing RC circuit (Rx, Cx) is in parallel with power inductor of each phase. As shown in Figure 34, the negative sides of Cx are connected together and routed to CSNSUM pin of IC. In order to prevent large leakage current induced by differential voltage between each phases' output nodes, it is necessary to series a small resistor (Rn) to minimize the leakage current on common N circuit loop. However, the differential voltage from each phase's output node to common N point still affects the current feedback signal, and the feedback current signal can be derived as below.

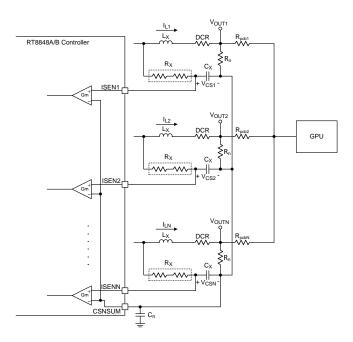
$$V_{CSi} = \frac{\left(1 + \frac{sL}{DCR}\right)}{\left(1 + sC_XR_X\right)} \times DCR \times I_{Li} + \frac{I_{Li} \times R_{pcbi} - \frac{1}{N} \times \sum_{i=1}^{N} I_{Li} \times R_{pcbi}}{\left(1 + sC_XR_X\right)}$$

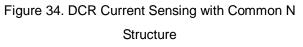
It can be observed that the differential voltage comes from the difference of Rpcb layout impedance. Therefore, for minimizing the effect of Rpcb impedance on current feedback signal, the PCB layout of each phase from inductor output to loading point (GPU) should be as symmetric as possible.

However, it is hard to layout the Rpcb perfectly match each other, and with different DCR selection, the Rpcb variation has different tolerance. Due to the current balance gain for Phase1~Phase8 can be programmed separately via I²C command, the Rpcb design criterion can be derived according to these parameters as below.

$$\frac{V_{CS_max}}{V_{CS_min}} = \frac{DCR + R_{pcb_max} - R_{pcb_avg}}{DCR + R_{pcb_min} - R_{pcb_avg}} < 1.82$$

where the 1.82 is calculated by dividing CBGain_max(1.24) with CBGain_min(0.68).


On the other hand, for SPS type application, the current feedback signal is generated by SPS's IMON signal and stands on a REFOUT reference voltage. Since REFOUT reference voltage is provided by controller and connected to CSNSUM pin with a short wire, there is no leakage route as DCR type application. The asymmetric problem of Rpcb impedance is solved.


RT8848A/B

The selection of Rn should consider the RC time delay on common-N voltage (VCSNSUM), the RC time constant of (Rn, Cn) affects the response time of current feedback signal, if RC time constant is larger than switching period(1/fsw), where fsw is switching frequency of PWM, the current feedback signal will be delayed and the loop response becomes slower. Therefore, the RC time constant should be smaller than switching period to guarantee the transient performance. Generally, the minimum value of Cn is suggested to be larger than 10nF/0603/6.3V for noise filtering on local CSNSUM pin. Then, the selection guide of Rn follows below criterion:

$$2\pi R_n C_n < \frac{1}{f_{SW}}$$

For example, if Cn is designed with 10nF and f_{SW} = 300kHz, the Rn is recommended to be 50Ω .

Inductor Selection Guide

Selecting an inductor involves specifying its inductance and also its required peak current. The exact inductor value is generally flexible and is ultimately chosen to obtain the best mix of cost, physical size, and circuit efficiency. Lower inductor values benefit from reduced size and cost and they can improve the circuit's transient response, but they increase the inductor

ripple current and output voltage ripple and reduce the efficiency due to the resulting higher peak currents. Conversely, higher inductor values increase efficiency, but the inductor will either be physically larger or have higher resistance since more turns of wire are required and transient response will be slower since more time is required to change current (up or down) in the inductor. A good compromise between size, efficiency, and transient response is to use a ripple current (ΔIL) about 20-50% of the desired full output load current. Calculate the approximate inductor value by selecting the input and output voltages, the switching frequency (fsw), the maximum output current (IOUT(MAX)) and estimating a ΔI_L as some percentage of that current.

$$L = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times f_{SW} \times \Delta I_L}$$

Once an inductor value is chosen, the ripple current (ΔI_L) is calculated to determine the required peak inductor current.

$$\Delta I_{L} = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times f_{SW} \times L} \text{ and } I_{L(PEAK)} = I_{OUT(MAX)} + \frac{\Delta I_{L}}{2}$$

To guarantee the required output current, the inductor needs a saturation current rating and a thermal rating that exceeds These are minimum IL(PEAK). requirements. To maintain control of inductor current in overload and short-circuit conditions. some applications may desire current ratings up to the current limit value. However, the IC's output under-voltage shutdown feature makes this unnecessary for most applications.

For best efficiency, choose an inductor with a low DC resistance that meets the cost and size requirements. For low inductor core losses some type of shielded ferrite core is usually best, although possibly larger or more expensive, will probably give fewer EMI and other noise problems.

Output Cap Selection Guide

The Buck output regulator of RT8848A/B is optimized for ceramic output capacitors and the best performance will be obtained by using them. The total output capacitance value is usually determined by the desired output voltage ripple level and transient response requirements for sag (undershoot on positive load steps) and soar (overshoot on negative load steps).

RICHTEK

Output ripple at the switching frequency is caused by the inductor current ripple and its effect on the output capacitor's ESR and ESL and stored charge. These three ripple components are called ESR ripple, ESL ripple and capacitive ripple. Since ceramic capacitors have extremely low ESR, ESL and relatively little capacitance, all these components should be considered if ripple is critical. The decomposition of output ripple is shown in Figure 35. The formulas to describe each component are listed below.

 $V_{RIPPLE} = V_{RIPPLE(ESR)} + V_{RIPPLE(ESL)} + V_{RIPPLE(C)}$ $V_{RIPPLE(ESR)} = \Delta I_L \times R_{ESR}$

$$V_{\text{RIPPLE(ESL)}} = \frac{d}{dt}I_{\text{L}} \times \text{ESI}$$
$$V_{\text{RIPPLE(ESL)}} = \frac{\Delta I_{\text{L}}}{\Delta I_{\text{L}}}$$

$$(RIPPLE(C)) = \frac{1}{8 \times C_{OUT} \times f_{SW}}$$

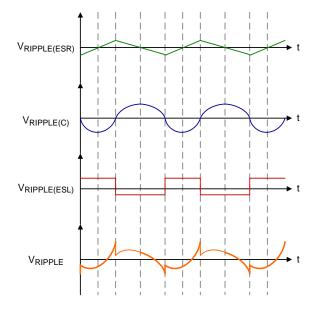


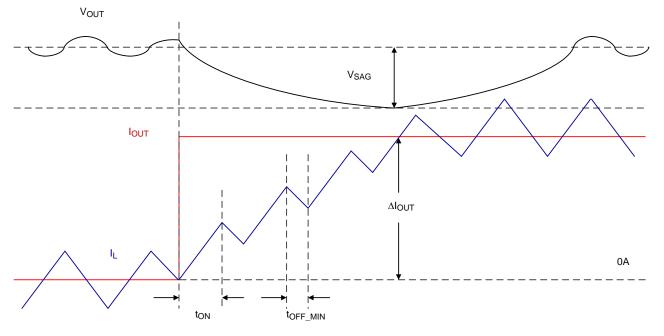
Figure 35. Output Ripple Decomposition

It should be noticed that the output voltage ripple reduces as operating phase number increases. For multi-phase operation, the frequency of output inductor sum current increases to N times (N is the operating phase number) of single phase current, and the output voltage ripple is also reduced to 1/N as compared to single phase condition.

In addition to voltage ripple at the switching frequency, the output capacitor and its ESR also affect the voltage

RT8848A/B

sag (undershoot) and soar (overshoot) when the load steps up and down abruptly. The G-NAVPTM transient response is very quick and output transients are usually small. However, the combination of small ceramic output capacitors (with little capacitance), low output voltages (with little stored charge in the output capacitors), and low duty cycle applications (which require high inductance to get reasonable ripple currents with high input voltages) increases the size of voltage variations in response to very quick load changes. Typically, load changes occur slowly with respect to the IC's switching frequency. But some modern digital loads can exhibit nearly instantaneous load changes and the following section shows how to calculate the worst-case voltage swings in response to very fast load steps.


The amplitude of the capacitive sag is a function of the load step, the output capacitor value, the inductor value, the input-to-output voltage differential, and the

maximum duty cycle. The maximum duty cycle during a fast transient is a function of the on-time and the minimum off-time since the G-NAVPTM control scheme will ramp the current using on-times spaced apart with minimum off-times, which is as fast as allowed. The behavior diagram of output voltage drop is depicted as Figure 36. Calculate the approximate on-time (neglecting parasitic) and maximum duty cycle for a given input and output voltage as :

$$t_{ON} = \frac{V_{OUT}}{V_{IN} \times f_{SW}}$$
, and $D_{MAX} = \frac{t_{ON}}{t_{ON} + t_{OFF}MIN}$

The actual on-time will be slightly longer as the IC compensates for voltage drops in the circuit, but it can be neglected both of these since the on-time increase compensates for the voltage losses. Calculate the output voltage sag as :

$$V_{SAG} = \frac{L \times (\Delta I_{OUT})^2}{2 \times C_{OUT} \times (V_{IN(MIN)} \times D_{MAX} - V_{OUT})}$$

The amplitude of the capacitive soar is a function of the load step, the output capacitor value, the inductor value and the output voltage :

$$V_{\text{SOAR}} = \frac{L \times (\Delta I_{\text{OUT}})^2}{2 \times C_{\text{OUT}} \times V_{\text{OUT}}}$$

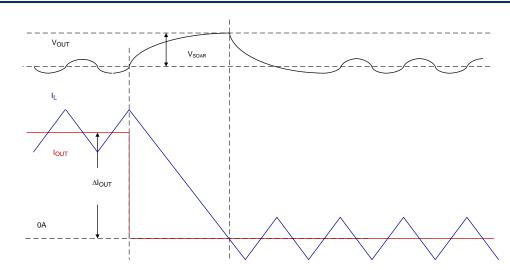


Figure 37. Output Voltage Soar (VSOAR) Estimation as Output Load Current Step Down

Most applications never experience instantaneous full load steps and the RT8848A/B's high switching frequency and fast transient response can easily control voltage regulation at all times. Therefore, sag and soar are seldom an issue except in very low-voltage CPU core or DDR memory supply applications, particularly for devices with high clock frequencies and quick changes into and out of sleep modes. In such applications, simply increasing the amount of ceramic output capacitor (sag and soar are directly proportional to capacitance) or adding extra bulk capacitance can easily eliminate any excessive voltage transients.

In any application with large quick transients, it should calculate soar and sag to make sure that over-voltage protection and under-voltage protection will not be triggered.

In addition, the recommended dielectric type of the capacitor is X7R which has the best performance among temperature and DC and AC bias voltage variations. The variation of the capacitance value with temperature, DC bias voltage and switching frequency needs to be taken into consideration. For example, the capacitance value of a capacitor decreases as the DC bias across the capacitor increases. Be careful to consider the voltage coefficient of ceramic capacitors when choosing the value and case size. Most ceramic capacitors lose 50% or more of their rated value when used near their rated voltage.

Input Cap Selection Guide

A buck converter generates a pulsating ripple current with high di/dt at the input. Without input capacitors, ripple current is supplied by the upper power source. Printed circuit board (PCB) resistance and inductance causes high-voltage ripple that disrupts electronic devices. The circulating ripple current results in increased conducted and radiated EMI. Input capacitors provide a short bypass path for ripple current and stabilize bus voltage during a transient event.

The capacitor voltage rating should meet reliability and safety requirements. Generally, selecting an input capacitor with voltage rating 1.5 times greater than the maximum input voltage is a conservatively safe design. Among the different types of capacitors, the multilayer ceramic capacitor (MLCC) is particularly good regarding allowable ripple current due to low ESR and ESL. The following equation is used to estimate the required effective capacitance that will meet the ripple requirement.

$$C_{IN} \geq \frac{I_{OUT} \times D \times (1-D)}{\Delta V_{IN PP} \times f_{SW}}$$

where D is calculated as below :

$$\mathsf{D} = \frac{\mathsf{V}_{\mathsf{O}}}{\mathsf{V}_{\mathsf{IN}} \times \eta}$$

Besides the ripple-voltage requirement, the ceramic capacitors should meet the thermal stress requirement as well. The input capacitor is used to supply the input

RT8848A/B

RMS current, which can be approximately calculated using the following equation :

$$I_{RMS} = \sqrt{\frac{V_{OUT}}{V_{IN}}} \times \left[(1 - \frac{V_{OUT}}{V_{IN}}) \times I_{OUT}^2 + \frac{\Delta I_L^2}{12} \right]$$

Note that ripple current ratings from capacitor manufacturers are often based on only 2000 hours of life which makes it advisable to further de-rate the capacitor, or choose a capacitor rated at a higher temperature than required.

Besides, since the ESL of ceramic capacitors plays a significant role on voltage spike at input and phase node, it is desirable to add a small capacitor with low ESL near VIN pin.

While the MLCC is excellent regarding allowable ripple current, it is well-known regarding effective capacitance that is necessary to meet transient response requirements. There could be two VIN spikes during the transient: the first spike is related to the ESR; and the second spike is caused by the difference between the buck converter input current ($i_{IN}B$) and the VIN bus converter output current (i_{PS}) as depicted in Figure 38. Both spikes should be lower than the VIN undershoot or overshoot requirement (VIN_tran). First, since the MLCCs have very small ESR, the component of ESR drop can almost be ignored. The second spike is related to the response of the VIN bus converter. The rising time of the converter output current during a transient event, T_{R_PS}, can be approximated by the following equation :

$$f_{R_PS} \cong \frac{0.35}{f_{BW_PS}}$$

, where f_{BW_PS} is the control loop bandwidth of buck converter.

The equivalent capacitance of the input capacitors should be greater than that calculated with following equation :

$$C_{IN} \geq \frac{\frac{1}{2} \times I_{Step} \times D_{max} \times T_{R_PS}}{V_{IN_Tran}}$$

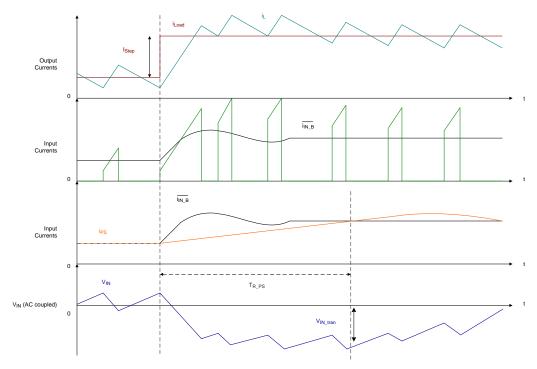


Figure 38. VIN Transient Current Diagram

Either Vin ripple (ΔV_{IN_PP}) or Vin transient ripple (V_{IN_Tran}) should meet the design requirements. For RTQ5119A, the input voltage should be always higher than VIN_UVLO threshold to confirm the PMIC's

functionality. Moreover, it should be noticed that many de-rating factors, including Vbias dc voltage, ac voltage and operating temperature, make equivalent capacitance be smaller than the capacitance without bias.

RICHTEK

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula :

 $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WQFN-40L 5x5 package, the thermal resistance, θ_{JA} , is 27.5°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at T_A = 25°C can be calculated as below :

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (27.5^{\circ}C /W) = 3.63W$ for WQFN-40L 5x5 package

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curve in Figure 39 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

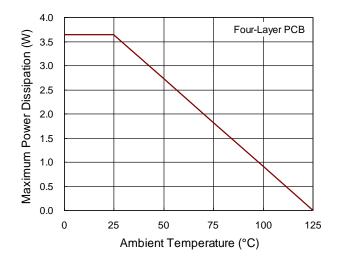
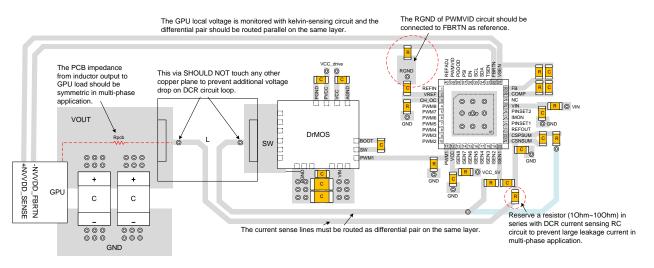


Figure 39. Derating Curve of Maximum Power Dissipation

Layout Considerations

Layout is very important in high frequency switching converter design. If designed improperly, the PCB could radiate excessive noise and contribute to the loop instability. There are some layout rules should be followed when using the RT8848A/B as controller.

- When using the RT8848A/B with DCR current sensing type application, the current sense lines MUST be routed as differential pair on the same layer. Noise couple should be away from these traces. The RC components of DCR current sensing network should be placed at controller side.
- When using the RT8848A/B with DCR current sensing type application, the PCB impedance from inductor output to GPU load should be symmetric to other phases in multi-phase application. Symmetrically layout can improve current balance performance. Bad layouts which are not symmetric will induce worse current balance.
- When using the RT8848A/B with DCR current sensing type application, the vias at inductor side SHOULD NOT touch any other copper plane to prevent additional voltage drop on DCR circuit loop.
- ► When using the RT8848A/B with DCR current sensing type application, RESERVE a resistor (Rn)


RT8848A/B

in series with DCR current sensing RC circuit to prevent large leakage current in multi-phase application. SHOULD NOT place this resistor between inductor output node and CSNSUM pin as shown in Figure 41. This connection will make RT8848A/B false trigger current protection.

- The GPU local voltage should be monitored with kelvin-sensing circuit and the differential pair should be routed parallel on the same layer. Keep these traces away from the high switching signal and coupling noise.
- The RGND of PWMVID circuit should be connected to FBRTN pin as reference. PWMVID circuit includes VREF, REFIN, REFADJ and PWMVID. Connect the components with RGND as reference ground to these pins. The VREF decoupling capacitor should be placed near VREF pin.
- The parasitic capacitor on each PWM pin (PWM1~PWM8) should be smaller than 100pF. If parasitic capacitor is larger than 100pF, the PWM pin setting detection could be wrong.
- A RC filter (R=2.2Ω/0603 and C = 1µF/0603) from bias voltage to VCC pin is necessary which should be placed as close to physically possible to VCC pin. There is around 50mA sink current during POR duration, the maximum resistance of RC filter should be smaller than 2.2Ω.
- A decoupling capacitor (10nF/0603) from CSNSUM to GND should be placed as close to CSNSUM pin as possible.

- For the connection of REFOUT pin. As for SPS application by setting the PINSET1 to SPS mode, REFOUT outputs 1.38V (typ.) to the REFIN pin of SPS. Connect a 0.47uF/0603 decoupling capacitor near this pin, and the equivalent capacitance on this pin should be limited at ±10% of 0.47uF. Besides, as for DCR current sensing application by setting the PINSET1 to DCR mode, REFOUT is regarded as an input pin and it should be connected to the positive terminal of output capacitor.
- DO NOT put any decoupling capacitor near IMON pin since it affects the accuracy of IMON reporting. Place a resistor from IMON pin to GND as close as possible. For NTC compensation, user can place a NTC resistor at power inductor side (phase1) and in parallel with IMON resistor at controller side.
- Place a RC filter before VIN pin for stable operation.
 The filter capacitor should be placed as close to VIN pin as possible.
- NC pin can be routed to GND for better heat dissipation.
- The exposed pad is the ground of logic control circuits. For better power dissipation, it should be soldered to a large ground plane with enough thermal vias.

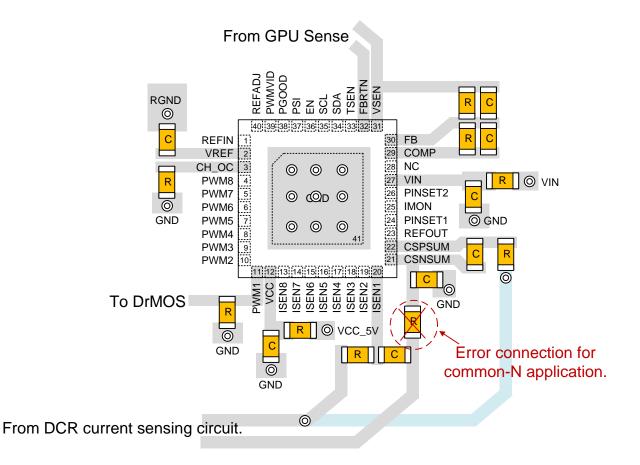


Figure 41. Error Connection for DCR Common-N Application

 Copyright © 2021 Richtek Technology Corporation. All rights reserved.
 RICHTEK is a registered trademark of Richtek Technology Corporation

 www.richtek.com
 DS8848A/B-02
 February
 2021

I²C Interface (SDA & SCL)

The RT8848A/B features an I²C interface to allow user to adjust various operating parameters. The supported operating parameters that can be adjusted through I²C communication are summarized as below register tables. The data transfers follow the format shown in Figure 42. After the START condition (S), a slave address is sent. The address is 7 bits long followed by an 8 bits which is a data direction bit (R/W). A data transfer is always terminated by a STOP condition (P) generated by the master. However, if a master still wishes to communicate on the bus, it can generate a repeated START condition (Sr) and address another slave without first generating a STOP condition. Various combinations of read/write formats are then possible within such a transfer.

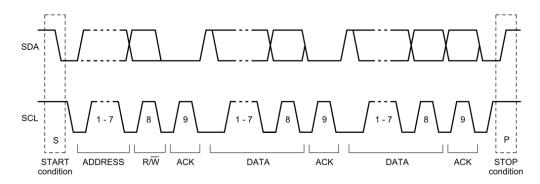


Figure 42. An Example of I²C Data Transfer

Register Tables

0x00[7:0]	0x00[7:0] for Updating Register 0x01 to 0x0F					
Bits	Attribute	Default	Description			
7:0	RW	0	0x00[7:0]: Receive I ² C data after PGOOD = H, otherwise, NAK when PGOOD = L 10100101 = enable write for R01 to R0F 11111111 = update data to R01 to R0F			

[Note] For updating the data of R01 to R0F, please follow the step as below: First, write R00=A5 to unlock the register R01 to R0F, and then write the data to R01 to R0F. In the end, write R00=FF to update data to R01 to R0F and lock the registers.

0x01[7:0] APL1 Threshold in Auto-phase Shedding Mode					
Bits	Attribute	Default	Description		
7:0	RW	00010000	0x01[7:0]: APL1 threshold Default data is detected from PINSET PWM2 if PWM pin setting function is enabled. APL1 = DEC(0x01[7:0]) x 12.5mV		

0x02[7:0]	0x02[7:0] APL2 Threshold in Auto-phase Shedding Mode				
Bits	Attribute	Default	Description		
7:0	RW	00100000	0x02[7:0]: APL2 threshold Default data is detected from PINSET PWM3 if PWM pin setting function is enabled. APL2 = DEC(0x02[7:0]) x 12.5mV		

RICHTEK

0x03[7:0] APL3 Threshold in Auto-phase Shedding Mode

Bits	Attribute	Default	Description
7:0	RW	01000000	0x03[7:0]: APL3 threshold Default data is detected from PINSET PWM5 if PWM pin setting function is enabled. APL3 = DEC(0x03[7:0]) x 12.5mV

0x04[7:0]	0x04[7:0] APL4 Threshold in Auto-phase Shedding Mode					
Bits	Attribute	Default	Description			
7:0	RW	01100000	0x04[7:0]: APL4 threshold Default data is detected from PINSET PWM7 if PWM pin setting function is enabled. APL4 = DEC(0x04[7:0]) x 12.5mV			

0x05[2:0] APL1 Hysteresis Margin in Auto-phase Shedding Mode

Bits	Attribute	Default	Description
2:0	RW	100	0x05[2:0]: APL1 hysteresis margin The APL1 high threshold = APL1 + APL1_Hys The ALP1 low threshold = APL1 – APL1_Hys APL1_Hys = DEC(0x05[2:0]) x 12.5mV

0x06[2:0]	0x06[2:0] APL2 Hysteresis Margin in Auto-phase Shedding Mode						
Bits	Attribute	Default	Description				
2:0	RW	100	0x06[2:0]: APL2 hysteresis margin The APL2 high threshold = APL2 + APL2_Hys The ALP2 low threshold = APL2 – APL2_Hys APL2_Hys = DEC(0x06[2:0]) x 12.5mV				

0x07[2:0]	0x07[2:0] APL3 Hysteresis Margin in Auto-phase Shedding Mode					
Bits	Attribute	Default	Description			
2:0	RW	100	0x07[2:0]: APL3 hysteresis margin The APL3 high threshold = APL3 + APL3_Hys The ALP3 low threshold = APL3 – APL3_Hys APL3_Hys = DEC(0x07[2:0]) x 12.5mV			

0x08[2:0]	0x08[2:0] APL4 Hysteresis Margin in Auto-phase Shedding Mode					
Bits	Attribute	Default	Description			
2:0	RW	100	0x08[2:0]: APL4 hysteresis margin The APL4 high threshold = APL4 + APL4_Hys The ALP4 low threshold = APL4 – APL4_Hys APL4_Hys = DEC(0x08[2:0]) x 12.5mV			

0x09[2:0]	0x09[2:0] LCS4 Operating Phase Number in Auto-phase Shedding Mode					
Bits	Attribute	Default	Description			
2:0	RW	111	0x09[2:0]: LCS4 operating phase number 000: 1Phase 001: 2Phase 010: 3Phase 011: 4Phase 100: 5Phase 101: 6Phase 110: 7Phase 111: 8Phase			

0x0A[2:0] LCS3 Operating Phase Number in Auto-phase Shedding Mode

Bits	Attribute	Default	Description	
2:0	RW	101	0x0A[2:0]: LCS3 operating phase number 000: 1Phase 001: 2Phase 010: 3Phase 011: 4Phase 100: 5Phase 101: 6Phase 110: 7Phase 111: 8Phase	

0x0B[2:0]	0x0B[2:0] LCS2 Operating Phase Number in Auto-phase Shedding Mode					
Bits	Attribute	Default	Description			
2:0	RW	011	0x0B[2:0]: LCS2 operating phase number 000: 1Phase 001: 2Phase 010: 3Phase 011: 4Phase 100: 5Phase 101: 6Phase 110: 7Phase 111: 8Phase			

0x0C[2:0]	0x0C[2:0] LCS1 Operating Phase Number in Auto-phase Shedding Mode					
Bits	Attribute	Default	Description			
2:0	RW	001	0x0C[2:0]: LCS1 operating phase number 000: 1Phase 001: 2Phase 010: 3Phase 011: 4Phase 100: 5Phase 101: 6Phase 110: 7Phase 111: 8Phase			

0x0D[2:0]	x0D[2:0] LCS0 Operating Phase Number in Auto-phase Shedding Mode					
Bits	Attribute	Default	Description			
2:0	RW	000	0x0D[2:0]: LCS0 operating phase number 000: 1Phase 001: 2Phase 010: 3Phase 011: 4Phase 100: 5Phase 101: 6Phase 110: 7Phase 111: 8Phase			

RT	8848	A/B
----	------	-----

0x0E[5:0] for Output Voltage DC Offset

Bits	Attribute	Default	Description	
5	RW	0	0x0E[5]: Enable or Disable 0 = Disable 1 = Enable	
4	RW	0	0x0E[4]: Positive or Negative 0 = Negative (sink current) 1 = Positive (source current)	
3:0	RW	0000	$\begin{array}{l} 0 \times 0 \mathbb{E}[5] : \text{ Offset Current, } I_{\text{offset}} \\ 0000 = 0 \mu \text{A} \\ 0001 = 1 \mu \text{A} \\ 0010 = 2 \mu \text{A} \\ 0011 = 3 \mu \text{A} \\ 0100 = 4 \mu \text{A} \\ 0101 = 5 \mu \text{A} \\ 0110 = 6 \mu \text{A} \\ 0111 = 7 \mu \text{A} \\ 1000 = 8 \mu \text{A} \\ 1001 = 9 \mu \text{A} \\ 1001 = 9 \mu \text{A} \\ 1010 = 10 \mu \text{A} \\ 1011 = 11 \mu \text{A} \\ 1100 = 12 \mu \text{A} \\ 1110 = 14 \mu \text{A} \\ 1111 = 15 \mu \text{A} \end{array}$	

0x0F[4:0] Frequency Setup					
Bits	Attribute	Default	Description		
4:0	RW	00001	0x0F[4:0]: Frequency Setup 00000: 250kHz 00001: 300kHz 00010: 350kHz 00011: 400kHz 00100: 450kHz 00101: 500kHz 00101: 500kHz 01001: 700kHz 01001: 700kHz 01101: 800kHz 10111: 100kHz 10011: 1100kHz 10111: 1200kHz 10111: 1400kHz 10111: 1400kHz 11011: 1600kHz		

0x11[2:0] Current Balance Gain for Phase1

Bits	Attribute	Default	Description
2:0	RW	100	0x11[2:0]: Current Balance Gain for Phase1 000 = 0.65x 001 = 0.77x 010 = 0.85x 011 = 0.92x 100 = 1x (default) 101 = 1.08x 110 = 1.15x 111 = 1.23x

0x12[6:0] Current Balance Offset for Phase1 Bits Attribute Default Description 0x12[6:4]: Current Balance Offset for Phase1 Add ton width 000 = t_{ON} x 0mV/V_{REFIN} (default) $001 = t_{ON} \times 30 \text{mV/V}_{REFIN}$ $010 = t_{ON} \times 60 \text{mV/V}_{REFIN}$ RW 0 6:4 $011 = t_{ON} \times 90 \text{mV/V}_{REFIN}$ $100 = t_{ON} \times 120 \text{mV/V}_{REFIN}$ $101 = t_{ON} \times 150 \text{mV/V}_{REFIN}$ $110 = t_{ON} \times 180 \text{mV/V}_{REFIN}$ $111 = t_{ON} x 210 mV/V_{REFIN}$ RO 0x12[3:0]: Trimmed value according to each IC. Read only. 3:0 --

0x13[2:0] (x13[2:0] Current Balance Gain for Phase2				
Bits	Attribute	Default	Description		
2:0	RW	100	$\begin{array}{l} 0x13[2:0]: \mbox{ Current Balance Gain for Phase2} \\ 000 = 0.65x \\ 001 = 0.77x \\ 010 = 0.85x \\ 011 = 0.92x \\ 100 = 1x \mbox{ (default)} \\ 101 = 1.08x \\ 110 = 1.15x \\ 111 = 1.23x \end{array}$		

0x14[6:0] Current Balance Offset for Phase2

Bits	Attribute	Default	Description
6:4	RW	0	$\begin{array}{l} 0x14[6:4]: \mbox{ Current Balance Offset for Phase2} \\ \mbox{Add } t_{ON} \ width \\ 000 = t_{ON} \ x \ 0mV/V_{REFIN} \\ 001 = t_{ON} \ x \ 30mV/V_{REFIN} \\ 010 = t_{ON} \ x \ 60mV/V_{REFIN} \\ 011 = t_{ON} \ x \ 90mV/V_{REFIN} \\ 100 = t_{ON} \ x \ 120mV/V_{REFIN} \\ 101 = t_{ON} \ x \ 150mV/V_{REFIN} \\ 110 = t_{ON} \ x \ 180mV/V_{REFIN} \\ 111 = t_{ON} \ x \ 210mV/V_{REFIN} \\ 111 = t_{ON} \ x \ 210mV/V_{REFIN} \\ \end{array}$
3:0	RO		0x14[3:0]: Trimmed value according to each IC. Read only.

0x15[2:0] Current Balance Gain for Phase3

Bits	Attribute	Default	Description
2:0	RW	100	0x15[2:0]: Current Balance Gain for Phase3 000 = 0.65x 001 = 0.77x 010 = 0.85x 011 = 0.92x 100 = 1x (default) 101 = 1.08x 110 = 1.15x 111 = 1.23x

x16[6:0] Current Balance Offset for Phase3				
Bits	Attribute	Default	Description	
6:4	RW	0	$\begin{array}{l} 0x16[6:4]: \mbox{ Current Balance Offset for Phase3} \\ \mbox{Add } t_{ON} \ width \\ 000 = t_{ON} \ x \ 0mV/V_{REFIN} \\ 001 = t_{ON} \ x \ 30mV/V_{REFIN} \\ 010 = t_{ON} \ x \ 60mV/V_{REFIN} \\ 101 = t_{ON} \ x \ 90mV/V_{REFIN} \\ 100 = t_{ON} \ x \ 120mV/V_{REFIN} \\ 101 = t_{ON} \ x \ 150mV/V_{REFIN} \\ 110 = t_{ON} \ x \ 180mV/V_{REFIN} \\ 111 = t_{ON} \ x \ 210mV/V_{REFIN} \\ \end{array}$	
3:0	RO		0x16[3:0]: Trimmed value according to each IC. Read only.	

0x17[2:0] Current Balance Gain for Phase4

Bits	Attribute	Default	Description
2:0	RW	100	0x17[2:0]: Current Balance Gain for Phase4 000 = 0.65x 001 = 0.77x 010 = 0.85x 011 = 0.92x 100 = 1x (default) 101 = 1.08x 110 = 1.15x 111 = 1.23x

0x18[6:0]	0x18[6:0] Current Balance Offset for Phase4					
Bits	Attribute	Default	Description			
6:4	RW	0	$\begin{array}{l} 0x18[6:4]: \mbox{ Current Balance Offset for Phase4} \\ \mbox{Add } t_{ON} \mbox{ width} \\ 000 = t_{ON} \mbox{ MV/V}_{REFIN} \\ 001 = t_{ON} \mbox{ MV/V}_{REFIN} \\ 010 = t_{ON} \mbox{ MV/V}_{REFIN} \\ 011 = t_{ON} \mbox{ MV/V}_{REFIN} \\ 100 = t_{ON} \mbox{ MV/V}_{REFIN} \\ 101 = t_{ON} \mbox{ MMV/V}_{REFIN} \\ 110 = t_{ON} \mbox{ MMV/V}_{REFIN} \\ 111 = t_{ON} \mbox{ MMV/V}_{RE$			
3:0	RO		0x18[3:0]: Trimmed value according to each IC. Read only.			

0x19[2:0]	0x19[2:0] Current Balance Gain for Phase5					
Bits	Attribute	Default	Description			
2:0	RW	100	0x19[2:0]: Current Balance Gain for Phase5 000 = 0.65x 001 = 0.77x 010 = 0.85x 011 = 0.92x 100 = 1x (default) 101 = 1.08x 110 = 1.15x 111 = 1.23x			

0x1A[6:0] Current Balance Offset for Phase5

Bits	Attribute	Default	Description
6:4	RW	0	$\begin{array}{l} 0x1A[6:4]: \mbox{ Current Balance Offset for Phase5} \\ \mbox{Add } t_{ON} \ \mbox{width} \\ 000 = t_{ON} \ \ x \ 0mV/V_{REFIN} \\ 001 = t_{ON} \ \ x \ 30mV/V_{REFIN} \\ 010 = t_{ON} \ \ x \ 60mV/V_{REFIN} \\ 011 = t_{ON} \ \ x \ 90mV/V_{REFIN} \\ 100 = t_{ON} \ \ x \ 120mV/V_{REFIN} \\ 101 = t_{ON} \ \ x \ 150mV/V_{REFIN} \\ 110 = t_{ON} \ \ x \ 180mV/V_{REFIN} \\ 111 = t_{ON} \ \ x \ 210mV/V_{REFIN} \\ \end{array}$
3:0	RO		0x1A[3:0]: Trimmed value according to each IC. Read only.

0x1B[2:0] Current Balance Gain for Phase6

Bits	Attribute	Default	Description	
2:0	RW	100	0x1B[2:0]: Current Balance Gain for Phase6 000 = 0.65x 001 = 0.77x 010 = 0.85x 011 = 0.92x 100 = 1x (default) 101 = 1.08x 110 = 1.15x 111 = 1.23x	

0x1C[6:0]	0x1C[6:0] Current Balance Offset for Phase6				
Bits	Attribute	Default	Description		
6:4	RW	0	$\begin{array}{l} 0x1C[6:4]: Current Balance Offset for Phase6\\ Add t_{ON} width\\ 000 = t_{ON} x 0mV/V_{REFIN}\\ 001 = t_{ON} x 30mV/V_{REFIN}\\ 010 = t_{ON} x 60mV/V_{REFIN}\\ 011 = t_{ON} x 90mV/V_{REFIN}\\ 100 = t_{ON} x 120mV/V_{REFIN}\\ 101 = t_{ON} x 150mV/V_{REFIN}\\ 110 = t_{ON} x 180mV/V_{REFIN}\\ 111 = t_{ON} x 210mV/V_{REFIN}\\ \end{array}$		
3:0	RO		0x1C[3:0]: Trimmed value according to each IC. Read only.		

0x1D[2:0] Current Balance Gain for Phase7

Bits	Attribute	Default	Description	
2:0	RW	100	0x1D[2:0]: Current Balance Gain for Phase7 000 = 0.65x 001 = 0.77x 010 = 0.85x 011 = 0.92x 100 = 1x (default) 101 = 1.08x 110 = 1.15x 111 = 1.23x	

0x1E[6:0] Current Balance Offset for Phase7

Bits	Attribute	Default	Description
6:4	RW	0	$\begin{array}{l} 0x1E[6:4]: \ Current \ Balance \ Offset \ for \ Phase7\\ \ Add \ t_{ON} \ width\\ 000 = t_{ON} \ x \ 0mV/V_{REFIN}\\ 001 = t_{ON} \ x \ 30mV/V_{REFIN}\\ 010 = t_{ON} \ x \ 60mV/V_{REFIN}\\ 011 = t_{ON} \ x \ 90mV/V_{REFIN}\\ 100 = t_{ON} \ x \ 120mV/V_{REFIN}\\ 101 = t_{ON} \ x \ 150mV/V_{REFIN}\\ 110 = t_{ON} \ x \ 180mV/V_{REFIN}\\ 111 = t_{ON} \ x \ 210mV/V_{REFIN}\\ \end{array}$
3:0	RO		0x1E[3:0]: Trimmed value according to each IC. Read only.

0x1F[2:0] Current Balance Gain for Phase8					
Bits	Attribute	Default	Description		
2:0	RW	100	0x1F[2:0]: Current Balance Gain for Phase8 000 = 0.65x 001 = 0.77x 010 = 0.85x 011 = 0.92x 100 = 1x (default) 101 = 1.08x 110 = 1.15x 111 = 1.23x		

0x20[6:0] Current Balance Offset for Phase8

Bits	Attribute	Default	Description		
6:4	RW	0	$\begin{array}{l} 0x20[6:4]: \mbox{ Current Balance Offset for Phase8} \\ \mbox{Add } t_{ON} \mbox{ width} \\ 000 = t_{ON} \ x \ 0mV/V_{REFIN} \\ 001 = t_{ON} \ x \ 30mV/V_{REFIN} \\ 010 = t_{ON} \ x \ 60mV/V_{REFIN} \\ 011 = t_{ON} \ x \ 90mV/V_{REFIN} \\ 100 = t_{ON} \ x \ 120mV/V_{REFIN} \\ 101 = t_{ON} \ x \ 150mV/V_{REFIN} \\ 110 = t_{ON} \ x \ 180mV/V_{REFIN} \\ 111 = t_{ON} \ x \ 210mV/V_{REFIN} \\ 111 = t_{ON} \ x \ 210mV/V_{REFIN} \\ \end{array}$		
3:0	RO		0x20[3:0]: Trimmed value according to each IC. Read only.		

0x21[7:0]	0x21[7:0] Per-phase OCP Threshold Gain Setting (Phase1 to Phase4)				
Bits	Attribute	Default	Description		
7:6	RW	0	0x21[7:6]: Phase 4 OCP threshold gain 00 = 1x 01 = 0.9x 10 = 0.8x 11 = 0.7x		
5:4	RW	0	0x21[5:4]: Phase 3 OCP threshold gain 00 = 1x 01 = 0.9x 10 = 0.8x 11 = 0.7x		
3:2	RW	0	0x21[3:2]: Phase 2 OCP threshold gain 00 = 1x 01 = 0.9x 10 = 0.8x 11 = 0.7x		
1:0	RW	0	0x21[1:0]: Phase 1 OCP threshold gain 00 = 1x 01 = 0.9x 10 = 0.8x 11 = 0.7x		

0x22[7:0]	0x22[7:0] Per-phase OCP Threshold Gain Setting (Phase5 to Phase8)					
Bits	Attribute	Default	Description			
7:6	RW	0	0x22[7:6]: Phase 8 OCP threshold gain 00 = 1x 01 = 0.9x 10 = 0.8x 11 = 0.7x			
5:4	RW	0	0x22[5:4]: Phase 7 OCP threshold gain 00 = 1x 01 = 0.9x 10 = 0.8x 11 = 0.7x			
3:2	RW	0	0x22[3:2]: Phase 6 OCP threshold gain 00 = 1x 01 = 0.9x 10 = 0.8x 11 = 0.7x			
1:0	RW	0	0x22[1:0]: Phase 5 OCP threshold gain 00 = 1x 01 = 0.9x 10 = 0.8x 11 = 0.7x			

0x23[1:0]	0x23[1:0] Sum OCP Delay Time						
Bits	Attribute	Default	Description				
1:0	RW	01	0x23[1:0]: Sum OCP delay time $00 = 112\mu s$ $01 = 56\mu s$ (default) $10 = 28\mu s$ $11 = 14\mu s$				

0x24[5:0]	0x24[5:0] Sum OCP Threshold Adjustment				
Bits	Attribute	Default	Description		
5	RW	0	0x24[5]: Sum OCP threshold increase or decrease 0 = Positive (increase) 1 = Negative (decrease)		
4:0	RW	0	0x24[4:0]: Sum OCP Threshold Offset If 0x24[5] = 0, SOCP_th = 2.2V + DEC(0x24[4:0])*50mV If 0x24[5] = 1, SOCP_th = 2.2V - DEC(0x24[4:0])*50mV		

[Note] Default SOCP threshold is 2.2V, user can adjust SOCP threshold via adjusting this bit for design requirement.

0x25[1:0]	0x25[1:0] Absolute OVP Threshold Setting					
Bits	Attribute	Default	Description			
1:0	RW	0	0x25[1:0]: Absolute OVP threshold setting 00 = 2V 01 = 1.8V 10 = 2.2V 11 = 2.4V			

0x26[1:0] Relative OVP Threshold Setting

Bits	Attribute	Default	Description
1:0	RW	0	0x26[1:0]: Relative OVP threshold setting 00 = 150% of V _{REF} 01 = 140% of V _{REF} 10 = 130% of V _{REF} 11 = 120% of V _{REF}

0x27[1:0]	0x27[1:0] UVP Threshold Setting					
Bits	Attribute	Default	Description			
1:0	RW	0	0x27[1:0]: UVP threshold setting 00 = 40% of V _{REF} 01 = 30% of V _{REF} 10 = 50% of V _{REF} 11 = 60% of V _{REF}			

0x28[1:0]	0x28[1:0] OTP Threshold Setting					
Bits	Attribute	Default	Description			
1:0	RW	0	0x28[1:0]: OTP threshold setting 00 = 150°C 01 = 160°C 10 = 170°C 11 = 140°C			

0x29[4:0]	0x29[4:0] Protection Disable Setting				
Bits	Attribute	Default	Description		
4	RW	0	0x29[4]: TMON_OTP function 0 = Enable 1 = Disable		
3	RW	0	0x29[3]: OTP function 0 = Enable 1 = Disable		
2	RW	0	0x29[2]: Sum OCP function 0 = Enable 1 = Disable		
1	RW	0	0x29[1]: UVP function 0 = Enable 1 = Disable		
0	RW	0	0x29[0]: OVP function 0 = Enable 1 = Disable		

0x2A[4:0]	0x2A[4:0] Protection Indication Bits for TMON_OTP, OTP, SOCP, UVP and OVP					
Bits	Attribute	Default	Description			
4	RO	0	0x2A[4]: TMON_OTP indication 0 = No TMON_OTP 1 = TMON_OTP is triggered			
3	RO	0	0x2A[3]: OTP indication 0 = No OTP 1 = OTP is triggered			
2	RO	0	0x2A[2]: Sum OCP indication 0 = No Sum OCP 1 = Sum OCP is triggered			
1	RO	0	0x2A[1]: UVP indication 0 = No UVP 1 = UVP is triggered			
0	RO	0	0x2A[0]: OVP indication 0 = No OVP 1 = OVP is triggered			

0x2B[7:0]	0x2B[7:0] Protection Indication Bit for Per-phase OCP					
Bits	Attribute	Default	Description			
7	RO	0	0x2B[7]: Phase8 OCP indication 0 = No per-phase OCP 1 = Per-phase OCP is triggered			
6	RO	0	0x2B[6]: Phase7 OCP indication 0 = No per-phase OCP 1 = Per-phase OCP is triggered			
5	RO	0	0x2B[5]: Phase6 OCP indication 0 = No per-phase OCP 1 = Per-phase OCP is triggered			
4	RO	0	0x2B[4]: Phase5 OCP indication 0 = No per-phase OCP 1 = Per-phase OCP is triggered			
3	RO	0	0x2B[3]: Phase4 OCP indication 0 = No per-phase OCP 1 = Per-phase OCP is triggered			
2	RO	0	0x2B[2]: Phase3 OCP indication 0 = No per-phase OCP 1 = Per-phase OCP is triggered			
1	RO	0	0x2B[1]: Phase2 OCP indication 0 = No per-phase OCP 1 = Per-phase OCP is triggered			
0	RO	0	0x2B[0]: Phase1 OCP indication 0 = No per-phase OCP 1 = Per-phase OCP is triggered			

0x2C[1:0] AEAGM Gain Setting

Bits	Attribute	Default	Description
1:0	RW	10	0x2C[1:0]: AEAGM gain $00 = 401 = 610 = 8 (default)11 = 10$

0x2D[1:0]	0x2D[1:0] APS Mode Configuration and Pulse Skipping Mode Configuration				
Bits	Attribute	Default	Description		
0	RW	0	0x2D[1]: APS mode configuration as PSI = M 0 = Enable APS mode 1 = Disable APS mode and operating in full phase mode		
1	RW	0	0x2D[0]: PSK mode configuration as PSI = L 0 = Enable PSK mode (default for RT8848A) 1 = Disable PSK mode (default for RT8848B)		

0x2E[7:0]	0x2E[7:0] ADC Results for V _{IMON}					
Bits	Attribute	Default	Description			
7:0	RO	0	0x2E[7:0]: ADC Results for V _{IMON} , 1LSB = 6.25mV 0000000 = 0mV 00000001 = 6.25mV 11111110 = 1587.5mV 11111111 = 1593.75mV			

0x2F[7:0]	0x2F[7:0] ADC Results for V _{SEN}					
Bits	Attribute	Default	Description			
7:0	RO	0	0x2E[7:0]: ADC Results for V _{SEN} , 1LSB = 6.25mV 00000000 = 0mV 00000001 = 6.25mV 11111110 = 1587.5mV 11111111 = 1593.75mV			

0x30[7:0]	0x30[7:0] ADC Results for V _{TSEN}					
Bits	Attribute	Default	Description			
7:0	RO	0	0x2E[7:0]: ADC Results for V _{SEN} , 1LSB = 12.5mV 00000000 = 0mV 00000001 = 12.5mV 11111110 = 3175mV 11111111 = 3187.5mV			

0x31[1:0] ADC Average Times for VIMON

Bits	Attribute	Default	Description	
1:0	RW	0	0x31[1:0]: ADC Average Times for V _{IMON} 00 = average 8 times (112µsec) (default) 01 = average 4 times (56µsec) 10 = average 2 times (28µsec) 11 = average 16 times (224µsec)	

0x32[1:0]	0x32[1:0] ADC Average Times for V _{SEN}						
Bits	Attribute	Default	Description				
1:0	RW	0	0x32[1:0]: ADC Average Times for V _{SEN} $00 = average 8 times (336\mu sec) (default)$ $01 = average 4 times (168\mu sec)$ $10 = average 2 times (84\mu sec)$ $11 = average 16 times (672\mu sec)$				

0x33[1:0]	0x33[1:0] ADC Average Times for V _{TSEN}						
Bits	Attribute	Default	Description				
1:0	RW	0	0x33[1:0]: ADC Average Times for V _{TSEN} 00 = average 8 times (336µsec) (default) 01 = average 4 times (168µsec) 10 = average 2 times (84µsec) 11 = average 16 times (672µsec)				

0x34[5:0]	0x34[5:0] ZCD Threshold Offset Setting					
Bits	Attribute	Default	Description			
5	RW	0	0x34[5]: ZCD offset function enable/disable 0 = enable ZCD offset 1 = disable ZCD offset			
4	RW	0	0x34[4]: ZCD offset increase or decrease 0 = increase 1 = decrease			
3:0	RW	0	0x34[3:0]: ZCD threshold If 0x34[4] = 0, ZCD threshold = + DEC(0x34[3:0]) x 0.31mV If 0x34[4] = 1, ZCD threshold = - DEC(0x34[3:0]) x 0.31mV			

0x36[2:0] Operating Phase Number Indicator

Bits	Attribute	Default	Description
2:0	RO	0	0x36[2:0]: operating phase number indicator 000 = 1Phase 001 = 2Phase 010 = 3Phase 011 = 4Phase 100 = 5Phase 101 = 6Phase 110 = 7Phase 111 = 8Phase

0x37[7:0] Vendor ID

Bits	Attribute	Default	Description
7:0	RO	1E	0x37[7:0]: vendor ID

0x38[7:0]	0x38[7:0] Device ID						
Bits	Attribute	Default	Description				
7:0	RO	48	0x38[7:0]: device ID				

0x40[3:0] PINSET_V1

Bits	Attribute	Default	Description
3:0	RW	0	0x40[3:0]: PINSET_V1 Reference to Table 15 for setting.

0x41[3:0]	0x41[3:0] PINSET_I1						
Bits	Attribute	Default	Description				
3:0	RW	0	0x41[3:0]: PINSET_I1 Reference to Table 15 for setting.				

0x42[3:0] PINSET_V2

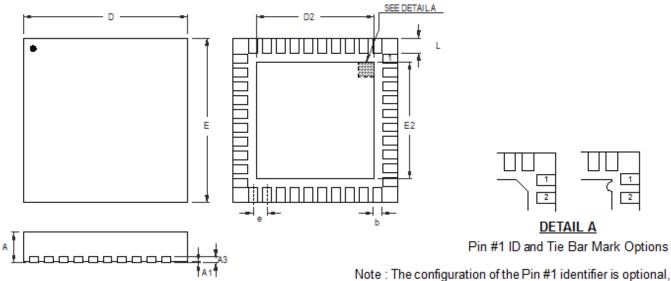
-	Bits	Attribute	Default	Description
	3:0	RW	0	Only read for PINSET, set frequency at register 0x0F

0x43[3:0] I	0x43[3:0] PINSET_I2						
Bits	Attribute	Default	Description				
3:0	RW	0	0x43[3:0]: PINSET_I2 Reference to Table 15 for setting.				

Г

0x44[2:0] PWM_SET1 (SS RAMP and PWM High-Z Voltage)

Bits	Attribute	Default	Description
2:0	RW	0	0x44[3:0]: SS ramp and PWM high-Z voltage 000 = SR _{RAMP} = 2mV/ μ s and V _{High-Z} = 1.9V 001 = SR _{RAMP} = 2mV/ μ s and V _{High-Z} = 1.6V 010 = SR _{RAMP} = 4mV/ μ s and V _{High-Z} = 1.9V 011 = SR _{RAMP} = 4mV/ μ s and V _{High-Z} = 1.6V 100 = SR _{RAMP} = 6mV/ μ s and V _{High-Z} = 1.9V 101 = SR _{RAMP} = 6mV/ μ s and V _{High-Z} = 1.6V

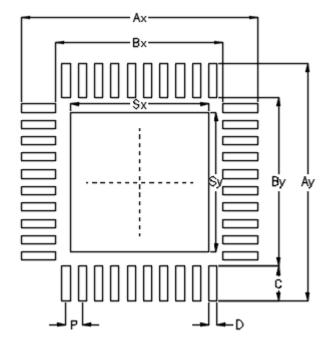

0x45[2:0] PWM_SET4 (Operating Phase Number as PSI = L)						
Bits	Attribute	Default	Description			
2:0	RW	0	0x45[2:0]: LPC at PSI = L Reference to Table 4 for setting.			

Bits	Attribute	Attribute Default Description					
2:0	RW	0	0x46[2:0]: LPC during SS (Boot mode) Reference to Table 2 for setting. 000 = 1Phase 001 = 2Phase 010 = 3Phase 011 = 4Phase 100 = 5Phase 101 = 6Phase 110 = 7Phase 111 = 8Phase				

 Copyright © 2021 Richtek Technology Corporation. All rights reserved.
 RICHTEK is a registered trademark of Richtek Technology Corporation

 www.richtek.com
 DS8848A/B-02
 February
 2021

Outline Dimension


Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Sumbal	Dimensions	In Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
А	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A3	0.175	0.250	0.007	0.010		
b	0.150	0.250	0.006	0.010		
D	4.950	5.050	0.195	0.199		
D2	3.250	3.500	0.128	0.138		
E	4.950	5.050	0.195	0.199		
E2	3.250	3.500	0.128	0.138		
е	0.4	400	0.016			
L	0.350	0.450	0.014	0.018		

W-Type 40L QFN 5x5 Package

Footprint Information

Deelvere	Number of	Footprint Dimension (mm)									Talaranaa
Package	Pin	Р	Ax	Ay	Bx	Ву	С	D	Sx	Sy	Tolerance
V/W/U/XQFN5*5-40	40	0.40	5.80	5.80	4.10	4.10	0.85	0.20	3.40	3.40	±0.05

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2021 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

www.richtek.com